説明

冷延鋼板の製造方法、冷延鋼板および自動車部材

【課題】化成処理性に優れかつ塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境での塗装後耐食性にも優れる冷延鋼板の製造方法と、その方法で製造する冷延鋼板、ならびにその鋼板を用いた自動車部材を提供する。
【解決手段】好ましくはSiを0.5〜3.0mass%含有し、冷間圧延後、連続焼鈍した冷延鋼板を酸洗して鋼板表層のSi含有酸化物層を除去した後、さらに再酸洗することによって、鋼板表面の鉄系酸化物の表面被覆率を40%以下、より好ましくは鉄系酸化物の最大厚さを150nm以下とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷延鋼板の製造方法、冷延鋼板および自動車部材に関し、具体的には、化成処理性に優れるとともに、塩温水浸漬試験や複合サイクル腐食試験により評価される塗装後耐食性にも優れる冷延鋼板の製造方法と、その方法で製造する冷延鋼板、ならびにその冷延鋼板を用いた自動車部材に関するものである。なお、本発明の冷延鋼板は、Siを含有する引張強さTSが590MPa以上の高強度冷延鋼板に好適に用いることができる。
【背景技術】
【0002】
近年、地球環境を保護する観点から、自動車の燃費改善が強く求められている。また、衝突時における乗員の安全を確保する観点から、自動車の安全性向上も強く要求されている。それらの要求に応えるためには、自動車車体の軽量化と高強度化を同時に達成する必要があり、自動車部材の素材となる冷延鋼板においては、高強度化による薄肉化が積極的に進められている。しかし、自動車部材の多くは鋼板を成形加工して製造されることから、これらの鋼板には、高い強度に加えて、優れた成形性が求められる。
【0003】
冷延鋼板の強度を高めるには種々の方法があるが、成形性を大きく損なわずに高強度化を図ることができる方法としては、Si添加による固溶強化法が挙げられる。しかし、冷延鋼板に多量のSi、特に0.5mass%以上のSiを添加した場合には、スラブ加熱時や、熱間圧延後あるいは冷間圧延後の焼鈍時に、鋼板表面にSiOやSi−Mn系複合酸化物等のSi含有酸化物が形成されることが知られている。このSi含有酸化物は、化成処理性を著しく低下させるため、Siを多く含む高強度冷延鋼板は、化成処理性に劣るだけでなく、電着塗装後に、塩温水浸漬試験や、湿潤−乾燥を繰り返す複合サイクル腐食試験のような過酷な腐食環境に曝されると、通常の鋼板に比べて塗膜剥離を起こし易く、塗装後耐食性に劣るという問題がある。
【0004】
この問題に対する改善策としては、例えば、特許文献1には、熱延時にスラブを1200℃以上の温度で加熱し、高圧でデスケーリングし、酸洗前に熱延鋼板の表面を砥粒入りナイロンブラシで研削し、9%塩酸槽に2回浸漬して酸洗を行い、鋼板表面のSi濃度を低下させた高強度冷延鋼板が提案されている。また、特許文献2には、鋼板表面から1〜10μmに観察されるSiを含む線状酸化物の線幅を300nm以下とすることで耐食性を向上させた高強度冷延鋼板が提案されている。
【0005】
しかしながら、特許文献1に記載された高強度冷延鋼板では、冷間圧延前に鋼板表面のSi濃度を低減しても、冷間圧延後の焼鈍によって鋼板表面にSi含有酸化物が形成されるため、塗装後耐食性の改善は望めない。また、特許文献2に記載された高強度冷延鋼板では、JIS Z2371に規定された塩水噴霧試験のような腐食環境では耐食性が問題となることはないが、塩温水浸清試験や複合サイクル腐食試験のような過酷な腐食環境では、十分な塗装後耐食性が得られない。すなわち、熱間圧延後の鋼板表面のSi濃度を低減したり、Siを含む線状酸化物を低減したりするだけでは、塗装後耐食性優れた高強度冷延鋼板が得られない。
【0006】
そこで、上記問題点を解決する技術として、特許文献3には、焼鈍工程等で鋼板表面に濃化したSi含有酸化物を酸洗により除去し、更にその表面にS系化合物を付与することで、化成処理液との反応性を高めて、化成処理性を向上させる技術が開示されている。また、特許文献4には、上記技術において、S系化合物に代わり、P系化合物を付与する技術が開示されている。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2004−204350号公報
【特許文献2】特開2004−244698号公報
【特許文献3】特開2007−217743号公報
【特許文献4】特開2007−246951号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
ところで、近年では、産業廃棄物の低減(スラッジの生成抑制)およびランニングコストの削減を目的として、化成処理液の低温度化が進んでおり、従来の化成処理条件に比較して、鋼板に対する化成処理液の反応性が大きく低下してきている。上記処理液の低温度化は、従来から使用されてきた合金添加量の少ない普通鋼板では、化成処理前の表面調整技術の改良等によって問題となることはない。しかし、Siを多量に添加している高強度冷延鋼板では、焼鈍工程で鋼板表層に形成されたSi含有酸化物の影響によって化成処理液との反応性が著しく低下するため、何らかの手段で鋼板側から反応性を高めてやることが必要である。しかし、特許文献3および4に開示された技術では、従来の普通鋼板には有効ではあっても、Siを多量に含有している高強度冷延鋼板に対しては、化成処理液の低温度化にも対応できる十分な改善効果が期待できない。
【0009】
本発明は、Siを多量に含有している冷延鋼板が抱える上記問題点に鑑みてなされたものであり、その目的は、低温度化された化成処理液を用いる場合にも化成処理性に優れ、かつ塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境での塗装後耐食性にも優れる冷延鋼板の有利な製造方法と、その方法で製造する冷延鋼板、ならびにその冷延鋼板を用いた自動車部材を提供することにある。
【課題を解決するための手段】
【0010】
発明者らは、上記課題を解決するべく、焼鈍後の鋼板表面特性について詳細な解析を行い、鋼板表面と化成処理液との反応性を高める方法について鋭意検討を重ねた。その結果、冷間圧延後、連続焼鈍した鋼板表面を強酸洗し、焼鈍時に鋼板表層に形成されたSi含有酸化物層を除去すると共に、上記強酸洗よって鋼板表面に生成される鉄系酸化物による鋼板表面被覆率を低減することが極めて重要であることを見出し、本発明を完成させた。
【0011】
すなわち、本発明は、冷間圧延後、連続焼鈍した鋼板を酸洗した後、さらに再酸洗する冷延鋼板の製造方法を提案する。
【0012】
本発明の製造方法おける上記再酸洗には、再酸洗前の酸洗に用いる酸とは異なる、非酸化性の酸を用いることを特徴とする。
【0013】
また、本発明の製造方法おける上記非酸化性の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかであることを特徴とする。
【0014】
また、本発明の製造方法おける上記非酸化性の酸は、濃度が0.1〜50g/Lの塩酸、0.1〜150g/Lの硫酸、および、0.1〜20g/Lの塩酸と0.1〜60g/Lの硫酸を混合した酸のいずれかであることを特徴とする。
【0015】
また、本発明の製造方法は、上記再酸洗を、再酸洗液の温度を20〜70℃として1〜30秒間行うことを特徴とする。
【0016】
また、本発明の製造方法は、上記酸洗を、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを用いて行うことを特徴とする。
【0017】
また、本発明の製造方法は、上記酸洗を、硝酸濃度が50g/L超え200g/L以下で、硝酸濃度に対する塩酸濃度の比(HCl/HNO)が0.01〜1.0である硝酸と塩酸を混合した酸、または、硝酸濃度が50g/L超え200g/L以下で、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.0である硝酸と弗酸を混合した酸のいずれかを用いて行うことを特徴とする。
【0018】
また、本発明の製造方法おける上記鋼板は、Siを0.5〜3.0mass%含有することを特徴とする。
【0019】
また、本発明の製造方法おける上記鋼板は、Siの他に、C:0.01〜0.30mass%、Mn:1.0〜7.5mass%、P:0.05mass%以下、S:0.01mass%以下およびAl:0.06mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする。
【0020】
また、本発明の製造方法おける上記鋼板は、上記成分組成に加えてさらに、Nb:0.3mass%以下、Ti:0.3mass%以下、V:0.3mass%以下、Mo:0.3mass%以下、Cr:0.5mass%以下、B:0.006mass%以下およびN:0.008mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。
【0021】
また、本発明の製造方法おける上記鋼板は、上記成分組成に加えてさらに、Ni:2.0mass%以下、Cu:2.0mass%以下、Ca:0.1mass%以下およびREM:0.1mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。
【0022】
また、本発明は、上記のいずれかに記載の方法で製造された冷延鋼板であって、連続焼鈍後の酸洗で鋼板表層のSi含有酸化物層が除去されてなり、かつ再酸洗後の鋼板表面に存在する鉄系酸化物の表面被覆率が40%以下であることを特徴とする冷延鋼板である。
【0023】
また、本発明の上記冷延鋼板は、再酸洗後の鋼板表面に存在する鉄系酸化物の最大厚さが150nm以下であることを特徴とする。
【0024】
また、本発明は、上記のいずれかに記載の冷延鋼板を用いてなることを特徴とする自動車部材である。
【発明の効果】
【0025】
本発明によれば、Siを0.5〜3.0mass%と多量に含有していても、さらに、低温度化された化成処理液を用いる場合にも化成処理性に優れ、しかも、塩温水浸漬試験や複合サイクル腐食試験のような過酷な腐食環境下においても塗装後耐食性に優れる冷延鋼板を提供することができる。したがって、本発明によれば、Siを多量に含有する引張強さTSが590MPa以上である高強度冷延鋼板の化成処理性や塗装後耐食性を大きく改善することが可能となるので、自動車車体の強度部材等に好適に用いることができる。
【図面の簡単な説明】
【0026】
【図1】鉄系酸化物の表面被覆率を求めるための冷延鋼板標準サンプルNo.aおよびbの鋼板表面の反射電子像を示す。
【図2】冷延鋼板標準サンプルNo.aおよびbの反射電子像写真のグレー値に対するピクセル数のヒストグラムを示す。
【図3】再酸洗後の鋼板表面被覆物の断面を透過型電子顕微鏡で観察した写真である。
【図4】図3で観察された鉄系酸化物のエネルギー分散型X線(EDX)分析結果を示すグラフである。
【図5】実施例1の比較例(No.1)と発明例(No.9)の試験片表面におけるO,Si,MnおよびFeの深さ方向分布をGDSで測定したグラフである。
【発明を実施するための形態】
【0027】
まず、本発明の基本的な技術思想について説明する。
冷間圧延した冷延鋼板を再結晶させ、所望の組織と強度、加工性を付与するために行われる連続焼鈍炉を用いた焼鈍工程では、通常、雰囲気ガスとして非酸化性または還元性のガスが用いられており、露点も厳格に管理されている。そのため、合金添加量の少ない普通の一般冷延鋼板では、鋼板表面の酸化は抑制されている。しかし、0.5mass%以上のSiや、Mnを含有する鋼板では、焼鈍時の雰囲気ガスの成分や露点を厳格に管理しても、Feと比較して易酸化性であるSiやMn等が酸化して、鋼板表面にSi酸化物(SiO)やSi−Mn系複合酸化物などのSi含有酸化物を形成することが避けられない。これら酸化物の構成は、鋼板成分や焼鈍雰囲気などによっても変化するが、一般的には、両者が混在していることが多い。そして、上記Si含有酸化物は、鋼板表面だけでなく、地鉄内部にまで形成されるため、電着塗装の下地処理としてなされる化成処理(リン酸亜鉛処理)における鋼板表面のエッチング性を阻害し、健全な化成処理皮膜の形成に悪影響を及ぼすことが知られている。
【0028】
一方、近年では、化成処理時に発生するスラッジ量やランニングコストの低減を目的として、化成処理液の低温度化が進み、従来と比較して、化成処理液の鋼板に対する反応性が著しく低い条件で化成処理がなされるようになってきている。このような化成処理条件の変更は、従来から使用されている合金添加量の少ない普通鋼板においては、表面調整技術の改良等により特に問題となることはない。しかし、合金成分を多量に添加した鋼板、特にSiを多量に添加して高強度化を図っている高強度冷延鋼板では、上記化成処理条件の変更による影響は極めて大きいものがある。そのため、Siを多量に含む冷延鋼板では、化成処理条件の悪化に対応して、鋼板自体の表面を活性化して、化成処理液との反応性を高めることが必要とされている。
【0029】
発明者らは、上記のような化成処理条件の悪化に対応するべく、鋼板の化成処理性を向上させる方法について検討を重ねた。その結果、連続焼鈍後の冷延鋼板表面を、硝酸等を酸洗液に用いて強酸洗し、冷間圧延後の連続焼鈍等で形成された鋼板表層のSi含有酸化物層を除去することが有効であることを見出した。ここで、上記Si含有酸化物とは、スラブ加熱や熱間圧延後あるいは冷間圧延後の焼鈍時に鋼板表面や鋼板内部の結晶粒界に沿って形成されるSiOやSi−Mn系複合酸化物のことをいい、これらのSi含有酸化物が存在する層の厚さは、鋼板成分や焼鈍条件(温度、時間、雰囲気)によって変化するが、通常、鋼板表面から1μm程度である。また、本発明における上記Si含有酸化物層を除去するとは、GDS(グロー放電発光分光分析)で鋼板表面を深さ方向に分析したときに、SiやOのピークが現れないレベルまで酸洗してSi含有酸化物層を除去することをいう。
【0030】
なお、上記酸洗液として硝酸等の強酸を用いる理由は、Si含有酸化物のうち、Si−Mn系複合酸化物は酸に容易に溶解するが、SiOは難溶性を示すため、これを除去するには、鋼板表面のSi含有酸化物を地鉄ごと取り除いてやる必要があるからである。
【0031】
しかしながら、発明者らの研究によれば、連続焼鈍後、硝酸等で強酸洗して鋼板表面に存在するSi含有酸化物層を除去することで化成処理性は大幅に改善されるものの、時として化成処理性に劣る場合があることが明らかとなった。そして、その原因についてさらに調査したところ、上記硝酸等による強酸洗によってSi系酸化物層は除去されるものの、別に、酸洗により鋼板表面から溶解したFeが鉄系酸化物を生成し、これが鋼板表面に沈殿析出して鋼板表面を覆うことにより化成処理性が低下することを新たに知見した。
【0032】
そして、上記強酸洗による鋼板表面の酸化を抑制し、化成処理性に及ぼす悪影響を軽減するには、鋼板表面への鉄系酸化物の生成を抑制し、鉄系酸化物による鋼板表面の被覆率を40%以下に低減することが重要であること、また、その達成手段としては、上記強酸洗をした後、適正な条件でさらに再酸洗し、鋼板表面に析出した鉄系酸化物を溶解・除去することが有効であることを見出した。
【0033】
さらに、発明者らは、酸洗により鋼板表面に生成した鉄系酸化物の被覆率を40%以下とした上で、上記鉄系酸化物の最大厚さを150nm以下とした場合には、化成処理性がさらに改善され、耐食性もより向上すること、そして、その達成手段としては、再酸洗に用いる酸の濃度を適度に上げて再酸洗することが有効であることを見出した。
なお、本発明における鉄系酸化物とは、酸化物を構成する酸素以外の元素のうちで鉄の原子濃度比が30%以上である鉄主体の酸化物のことをいう。この鉄系酸化物は、鋼板表面上に不均一な厚さで存在しており、数nmの厚さで均一かつ層状に存在する自然酸化皮膜とは異なる酸化物である。なお、この冷延鋼板の表面に生成した鉄系酸化物は、透過型電子顕微鏡(TEM)による観察や電子線回折によるディフラクションパターン(回折図形)の解析結果から非晶質であることがわかっている。
本発明は、上記新規な知見に、さらに検討を加えて完成したものである。
【0034】
次に、本発明の冷延鋼板の成分組成を限定する理由について説明する。
Si:0.5〜3.0mass%
Siは、加工性を大きく損なうことなく鋼の強度を高める効果(固溶強化能)が大きいため、鋼の高強度化を達成するのに有効な元素であるが、化成処理性や塗装後耐食性に悪影響を及ぼす元素でもある。Siを高強度達成手段として添加する場合には、0.5mass%以上の添加が必要である。また、Siが0.5mass%未満では、化成処理条件の悪化による影響は少ない。一方、Siの含有量が3.0mass%を超えると、熱間圧延性や冷間圧延性が大きく低下し、生産性に悪影響を及ぼしたり、鋼板自体の延性の低下を招いたりする。よって、Siは0.5〜3.0mass%の範囲で添加する。好ましくは0.8〜2.5mass%の範囲である。
【0035】
本発明の冷延鋼板は、Siを上記範囲で含有することを必須の要件とするが、その他の成分については、通常の冷延鋼板が有する組成範囲であれば許容することができ、特に制限されるものではない。ただし、本発明の冷延鋼板を、自動車車体等に用いられる引張強さTSが590MPa以上の高強度冷延鋼板に適用する場合には、以下の成分組成を有するものであるのが好ましい。
【0036】
C:0.01〜0.30mass%
Cは、鋼を高強度化するのに有効な元素であり、さらに、TRIP(変態誘起塑性:Transformation Induced Plasticity)効果を有する残留オーステナイトや、ベイナイト、マルテンサイトを生成させるのにも有効な元素である。Cが0.01mass%以上であれば上記効果が得られ、一方、Cが0.30mass%以下であれば、溶接性の低下が生じない。よって、Cは0.01〜0.30mass%の範囲で添加するのが好ましく、0.10〜0.20mass%の範囲で添加するのがより好ましい。
【0037】
Mn:1.0〜7.5mass%
Mnは、鋼を固溶強化して高強度化するとともに、焼入性を高め、残留オーステナイトやベイナイト、マルテンサイトの生成を促進する作用を有する元素である。このような効果は、1.0mass%以上の添加で発現する。一方、Mnが7.5mass%以下であれば、コストの上昇を招かずに上記効果が得られる。よって、Mnは1.0〜7.5mass%の範囲で添加するのが好ましく、2.0〜5.0mass%の範囲で添加するのがより好ましい。
【0038】
P:0.05mass%以下
Pは、固溶強化能の大きい割に絞り性を害さない元素であり、高強度化を達成するのに有効な元素であるため、0.005mass%以上含有させることが好ましい。ただし、Pは、スポット溶接性を害する元素であるが、0.05mass%以下であれば問題は生じない。よって、Pは0.05mass%以下が好ましく、0.02mass%以下とするのがより好ましい。
【0039】
S:0.01mass%以下
Sは、不可避的に混入してくる不純物元素であり、鋼中にMnSとして析出し、鋼板の伸びフランジ性を低下させる有害な成分である。伸びフランジ性を低下させないためには、Sは0.01mass%以下が好ましい。より好ましくは0.005mass%以下、さらに好ましくは0.003mass%以下である。
【0040】
Al:0.06mass%以下
Alは、製鋼工程で脱酸剤として添加される元素であり、また、伸びフランジ性を低下させる非金属介在物をスラグとして分離するのに有効な元素であるので、0.01mass%以上含有させるのが好ましい。Alが0.06mass%以下であれば、原料コストの上昇を招かず、上記効果を得ることができる。よって、Alは0.06mass%以下とするのが好ましい。より好ましくは0.02〜0.06mass%の範囲である。
【0041】
また、本発明の冷延鋼板は、上記成分組成に加えてさらに、Nb:0.3mass%以下、Ti:0.3mass%以下、V:0.3mass%以下、Mo:0.3mass%以下、Cr:0.5mass%以下、B:0.006mass%以下およびN:0.008mass%以下のうちから選ばれる1種または2種以上を、含有することができる。
Nb,TiおよびVは、炭化物や窒化物を形成し、焼鈍時の加熱段階でフェライトの成長を抑制して組織を微細化させ、成形性、特に伸びフランジ性を向上させる元素であるため、また、Mo,CrおよびBは、鋼の焼入性を向上し、ベイナイトやマルテンサイトの生成を促進する元素であるため、上記範囲で添加することができる。また、Nは、Nb,TiおよびVと窒化物を形成しあるいは鋼中に固溶して鋼の高強度化に寄与する元素であり、0.008mass%以下であれば、窒化物が多量に形成されないので、プレス成形時のボイド形成による破断が抑制され、上記効果を得ることができる。
【0042】
また、本発明の冷延鋼板は、上記成分組成に加えてさらに、Ni:2.0mass%以下、Cu:2.0mass%以下、Ca:0.1mass%以下およびREM:0.1mass%以下のうちから選ばれる1種または2種以上を含有することができる。
NiおよびCuは、低温変態相の生成を促進し、鋼を高強度化する効果があるので、上記範囲で添加することができる。また、CaおよびREMは、硫化物系介在物の形態を制御し、鋼板の伸びフランジ性を向上させる元素であるので、上記範囲で添加することができる。
本発明の冷延鋼板は、上記成分以外の残部はFeおよび不可避的不純物である。ただし、本発明の作用効果を害しない範囲であれば、その他の成分の添加を拒むものではない。
【0043】
次に、本発明の冷延鋼板の表面特性について説明する。
前述したように、本発明の冷延鋼板は、焼鈍時に鋼板表層に形成されるSiOやSi−Mn系複合酸化物等のSi含有酸化物層を除去した鋼板表面を有するものであることが必要である。そのためには、硝酸等の酸を用いて強酸洗し、鋼板表面や表面近傍の粒界部分に形成されたSi含有酸化物を地鉄ごと溶解、除去したものであることが必要である。
【0044】
さらに、本発明の冷延鋼板は、上記Si含有酸化物層を除去することに加えてさらに、上記硝酸等を用いた強酸洗により鋼板表面に生成してくる鉄系酸化物による鋼板表面の被覆率を低減し、面積率にして85%以下に低減する必要がある。85%を超えると、化成処理における鉄の溶解反応が阻害されて、リン酸亜鉛等の化成結晶の成長が抑制されるからである。しかし、低温度化された化成処理液を用いる場合において、特に腐食の厳しい車両の足回り部材のように、極めて厳しい塗装後耐食性が求められる用途に用いられる冷延鋼板では、85%以下の被覆率では不十分であり、さらに低い、40%以下に低減する必要がある。好ましくは35%以下である。
【0045】
本発明では、上記鉄系酸化物の表面被覆率は、以下のようにして求める。
極表層情報を検出できる極低加速電圧の走査型電子顕微鏡(ULV−SEM)を用いて酸洗後の鋼板表面を加速電圧2kV、作動距離3.0mm、倍率1000倍程度で5視野程度を観察し、エネルギー分散型X線分光器(EDX)を用いて分光分析し、反射電子像を得る。この反射電子像を画像解析ソフト、例えば、Image Jを用いて2値化処理して黒色部の面積率を測定し、各視野の測定値を平均化することで鉄系酸化物の表面被覆率を得ることができる。なお、上記極低加速電圧の走査型電子顕微鏡(ULV−SEM)としては、例えば、SEISS社製;ULTRA55を、また、エネルギー分散型X線分光器(EDX)としては、例えば、Thermo Fisher社製;NSS312Eを挙げることができる。
【0046】
ここで、上記2値化処理の閾値について説明する。
後述する実施例の表3に示した鋼符号Gの鋼スラブを、同じく後述する実施例の表4のNo.8に示した条件で、熱間圧延し、冷間圧延し、連続焼鈍して板厚が1.8mmの冷延鋼板とし、次いで、上記連続焼鈍後の冷延鋼板を、表1に示した条件で、酸洗と再酸洗し、水洗し、乾燥した後、0.7%の調質圧延を施して、鋼板表面の鉄系酸化物量が異なるNo.aおよびbの2種類の冷延鋼板を得た。次いで、上記No.aの冷延鋼板を鉄系酸化物の多い標準サンプル、No.bの冷延鋼板を鉄系酸化物の少ない標準サンプルとし、それぞれの鋼板について、走査型電子顕微鏡を用いて前述した条件で反射電子像を得た。図1は、No.a,bの鋼板の反射電子像写真を、また、図2は、No.a,bの鋼板の上記反射電子像写真のグレー値に対するピクセル数のヒストグラムを示す。本発明では、上記図2に示したNo.a,bのヒストグラムの交点(X点)に対応するグレー値(Y点)を閾値として定めた。因みに、上記閾値を用いて、No.a,bの鋼板の鉄系酸化物の表面被覆率を求めたところ、No.aの鋼板は85.3%、No.bの鋼板は25.8%が得られた。
【0047】
【表1】

【0048】
また、本発明の冷延鋼板は、化成処理性ひいては耐食性をより向上させるためには、再酸洗後の鋼板表面の鉄系酸化物の被覆率が40%以下であることに加えてさらに、上記鉄系酸化物の最大厚さが150nm以下であることが好ましい。鉄系酸化物の最大厚さが150nm以下であれば、化成処理における鉄の溶解反応が局所的に阻害されることがなく、リン酸亜鉛などの化成結晶の析出が局部的に抑制されないからである。より好ましくは130nm以下である。
【0049】
ここで、上記鉄系酸化物の最大厚さは、以下のようにして求める。
まず、酸洗後の鋼板表面から、集束イオンビーム(FIB)加工により、鋼板の幅方向に対して8μm程度の断面を観察できる抽出レプリカを10個作製する。次いで、断面の局所情報を調べることができるエネルギー分散型X線分光器(EDX)を備えた透過型電子顕微鏡(TEM)を用いて、加速電圧200kV、倍率10万倍にて、各レプリカの断面8μmを連続して撮影する。一例として、図3には、鋼板表面に存在する酸洗で生成した被覆層の断面をTEMで観察した写真を、図4には、その被覆層のEDX分析結果を示した。図4から、上記被覆層は鉄主体の鉄系酸化物であることがわかるので、図3の断面写真に示した鋼板地鉄を示す線Aと酸化物層の最も厚い部分を示す線Bとの間隔を10個のレプリカ全てについて測定し、その中の最大厚さを鉄系酸化物の最大厚さとする。なお、上記レプリカのサイズや個数、TEMによる測定条件等は一つの例示であり、適宜変更してよいことは勿論である。
【0050】
次に、本発明の冷延鋼板の製造方法について説明する。
本発明の冷延鋼板の製造方法は、Siを0.5〜3.0mass%含有した鋼素材(スラブ)を加熱後、熱間圧延し、冷間圧延し、連続焼鈍し、その後、硝酸等を用いて強酸洗して鋼板表層部分のSi含有酸化物層を除去した後、さらに、再酸洗して、上記強酸洗により鋼板表面に生成した鉄系酸化物の表面被覆率を40%以下にできる方法であることが必要であり、さらに、上記鉄系酸化物の最大厚さが150nm以下にできる方法であることが好ましい。したがって、製鋼工程から冷間圧延後の連続焼鈍工程までは、常法に従って製造することができるが、連続焼鈍後の酸洗は、以下の条件とするのが好ましい。
【0051】
連続焼鈍後の酸洗条件
上記連続焼鈍後の鋼板表層には、SiOやSi−Mn系複合酸化物等のSi含有酸化物が多量に生成されており、このままでは化成処理性や塗装後耐食性が著しく低下する。そこで、本発明の製造方法では、焼鈍後の冷延鋼板を、硝酸等を用いて強酸洗し、鋼板表面のSi含有酸化物層を地鉄ごと除去してやることが必要である。
【0052】
前述したように、Si含有酸化物のうち、Si−Mn系複合酸化物は酸に容易に溶解するが、SiOは酸に対して難溶性を示す。したがって、SiOを含めてSi含有酸化物を除去するには、強酸洗して鋼板の地鉄ごと酸化物層を取り除いてやる必要がある。上記強酸洗に用いることができる酸としては、強酸化性の酸である硝酸を好適に用いることができるが、Si含有酸化物層を除去することができれば弗酸や塩酸、硫酸等でもよく、酸の種類は特に問わない。また、上記酸に酸洗促進剤を添加したり、電解処理を併用したりして地鉄の溶解を促進することも有効である。
【0053】
なお、連続焼鈍後の鋼板表層のSi含有酸化物層を除去し、なおかつ、後述する再酸洗の負荷を軽減してやるためには、連続焼鈍後再酸洗前の強酸洗により鋼板表面に生成する鉄系酸化物量を抑制してやることが好ましく、そのためには、硝酸濃度を50g/L超え200g/L以下の範囲とし、さらに、酸化膜破壊効果のある塩酸を、硝酸濃度に対する塩酸濃度の比R(HCl/HNO)が0.01〜1.0の範囲となるよう混合した酸洗液、あるいは、弗酸を、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.0の範囲となるよう混合した酸洗液を用いて酸洗することが好ましい。また、上記の酸洗液を用いる場合には、上記酸洗液の温度を20〜70℃とし、酸洗時間を3〜30秒として行うのが好ましい。
【0054】
酸洗後の再酸洗条件
しかしながら、上記のような硝酸と塩酸、あるいは硝酸と弗酸を混合した酸洗液を用いて強酸洗するだけでは、鋼板表面に生成する鉄系酸化物の表面被覆率を安定して40%以下に制御することは難しい。そこで、本発明では、上記強酸洗によって鋼板表面に生成した鉄系酸化物をより確実に低減する方法として、上記連続焼鈍後に酸洗した鋼板を、さらに非酸化性の酸で再酸洗して鉄系酸化物を溶解・除去することとした。
【0055】
上記再酸洗に用いることのできる非酸化性の酸としては、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸あるいはこれらを2種以上混合した酸等があり、いずれを用いてもよいが、製鉄業で一般的に用いられている塩酸や硫酸であれば、好ましく用いることができる。中でも塩酸は、揮発性の酸であるため、硫酸のように水洗後の鋼板表面に硫酸根などの残留物が残存し難いこと、および、塩化物イオンによる酸化物破壊効果が大きいことなどから、好適である。また、塩酸と硫酸を混合した酸を用いてもよい。
【0056】
上記再酸洗の酸洗液として、塩酸を用いる場合には、塩酸濃度を0.1〜50g/Lとして、また、硫酸を用いる場合には、硫酸濃度を0.1〜150g/Lとして用いるのが好ましく、また、塩酸と硫酸を混合した酸を再酸洗に用いる場合は、塩酸濃度を0.1〜20g/L、硫酸濃度を0.1〜60g/Lとして混合した酸を用いるのが好ましい。また、本発明における再酸洗は、上記のいずれの再酸洗液を用いる場合でも、再酸洗液の温度は20〜70℃の範囲とし、処理時間を1〜30秒として行うのが好ましい。再酸洗液の濃度が上記下限以上で、かつ液温が20℃以上、処理時間が1秒以上であれば、鋼板表面に残存する鉄系酸化物の除去が十分であり、一方、再酸洗液の濃度が上記上限濃度以下、かつ温度が70℃以下、処理時間が30秒以下であれば、鋼板表面の溶解が過剰とならず、新たな表面酸化膜を生成させてしまうことがないからである。
【0057】
さらに、化成処理性や耐食性がより優れる鋼板を得るには、上記酸洗後に鋼板表面に存在する鉄系酸化物の最大厚さを確実に150nm以下に薄くしてやることが好ましく、そのためには、上記再酸洗で用いる酸洗液の濃度を適度に上げてやることが好ましい。例えば、再酸洗に塩酸を用いる場合には、塩酸濃度を3〜50g/Lとし、再酸洗に硫酸を用いる場合には、硫酸濃度を8〜150g/Lとするのが好ましい。また、再酸洗に塩酸と硫酸を混合した酸洗液を用いる場合は、濃度が3〜20g/Lの塩酸と濃度が8〜60g/Lの硫酸とを混合した酸を用いるのが好ましい。上記濃度範囲であれば、鉄系酸化物を確実に150nm以下に薄くすることができ、化成処理性や塗装後耐食性が向上する。また、上記濃度範囲であれば、鋼板表面の溶解が過剰とならず、新たな表面酸化膜を生成することがない。
【0058】
上記のようにして連続焼鈍後、酸洗し、再酸洗して鋼板表面の鉄系酸化物の被覆率を40%以下とした冷延鋼板、あるいはさらに上記鉄系酸化物の最大厚さを150nm以下とした冷延鋼板は、その後、調質圧延等の通常の処理工程を経て製品板とする。
【実施例1】
【0059】
C:0.125mass%、Si:1.5mass%、Mn:2.6mass%、P:0.019mass%、S:0.008mass%およびAl:0.040mass%を含有し、残部がFeおよび不可避的不純物からなる鋼を、転炉、脱ガス処理等を経る通常の精練プロセスで溶製し、連続鋳造して鋼素材(スラブ)とした。次いで、このスラブを、1150〜1170℃の温度に再加熱した後、仕上圧延終了温度を850〜880℃とする熱間圧延し、500〜550℃の温度でコイルに巻き取り、板厚が3〜4mmの熱延鋼板とした。その後、これらの熱延鋼板を酸洗し、スケールを除去した後、冷間圧延し、板厚が1.8mmの冷延鋼板とし、次いで、これらの冷延鋼板を、750〜780℃の均熱温度に加熱し、40〜50秒間保持した後、上記均熱温度から350〜400℃の冷却停止温度までを20〜30℃/秒で冷却し、上記冷却停止温度範囲に100〜120秒間保持する連続焼鈍を施した後、表2に示した条件で鋼板表面を酸洗し、さらに再酸洗し、水洗し、乾燥した後、伸び率0.7%の調質圧延を施して、表2に示したNo.1〜85の冷延鋼板を得た。
【0060】
上記の各冷延鋼板から試験片を採取し、極低加速電圧の走査型電子顕微鏡(ULV−SEM;SEISS社製;ULTRA55)を用いて鋼板表面を加速電圧2kV、作動距離3.0mm、倍率1000倍で5視野を観察し、エネルギー分散型X線分光器(EDX;Thermo Fisher社製;NSS312E)を用いて分光分析して反射電子像を得た。この反射電子像を、画像解析ソフト(Image J)を用いて、前述した標準サンプルNo.a,bのヒストグラムの交点(X点)に対応するグレー値(Y点)を閾値として定め、2値化処理して黒色部の面積率を測定し、5視野の平均値を求めて、鉄系酸化物の表面被覆率とした。
【0061】
また、上記の各冷延鋼板から試験片を採取し、下記条件で化成処理と塗装処理を施した後、塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験の3種の腐食試験に供して、塗装後耐食性を評価した。さらに、各冷延鋼板から採取した試験片の表面についてのO,Si,MnおよびFeの深さ方向分布を、GDSを用いて測定した。
(1)化成処理条件
上記各冷延鋼板から採取した試験片に、日本パーカライジング社製の脱脂剤:FC−E2011、表面調整剤:PL−Xおよび化成処理剤:パルボンドPB−L3065を用いて、下記の標準条件および化成処理液の温度を下げて低温度化した比較条件の2条件で、化成処理皮膜付着量が1.7〜3.0g/mとなるよう化成処理を施した。
<標準条件>
・脱脂工程:処理温度 40°C、処理時間 120秒
・スプレー脱脂、表面調整工程:pH 9.5、処理温度室温、処理時間 20秒
・化成処理工程:化成処理液の温度 35℃、処理時間 120秒
<低温度化条件>
上記標準条件における化成処理液の温度を33℃に低下した条件
(2)腐食試験
上記化成処理を施した試験片の表面に、日本ペイント社製の電着塗料:V−50を用いて、膜厚が25μmとなるように電着塗装を施し、下記3種類の腐食試験に供した。
<塩温水浸漬試験>
化成処理および電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl溶液(60℃)に360時間浸漬し、その後、水洗し、乾燥し、カット疵部に粘着テープを貼り付けた後、引き剥がすテープ剥離試験を行い、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が5.0mm以下であれば、耐塩温水浸漬試験における耐食性は良好と評価することができる。
<塩水噴霧試験(SST)>
化成処理、電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl水溶液を使用して、JIS Z2371:2000に規定される中性塩水噴霧試験に準拠して1200時間の塩水噴霧試験を行った後、クロスカット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が4.0mm以下であれば、塩水噴霧試験における耐食性は良好と評価することができる。
<複合サイクル腐食試験(CCT)>
化成処理、電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、塩水噴霧(5mass%NaCl水溶液:35℃、相対湿度:98%)×2時間→乾燥(60℃、相対湿度:30%)×2時間→湿潤(50℃、相対湿度:95%)×2時間、を1サイクルとして、これを120サイクル繰り返す腐食試験後、水洗し、乾燥した後、カット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が6.0mm以下であれば、複合サイクル腐食試験での耐食性は良好と評価できる。
【0062】
上記試験の結果を表2に併記した。この結果から、連続焼鈍後、本発明に適合する条件で酸洗し、再酸洗した発明例の鋼板は、塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験のいずれにおいても最大剥離全幅が小さく、良好な塗装後耐食性を示していることがわかる。特に、鉄系酸化物の表面被覆率が40%以下の冷延鋼板は、いずれも、過酷な腐食環境下における塗装後耐食性に優れていることがわかる。なお、表2の各鋼板表面におけるO,Si,MnおよびFeの深さ方向分布をGDSで測定した結果では、本発明に適合する条件で酸洗した鋼板には、SiやOのピークが現れず、Si含有酸化物層が十分に除去されていることが確認された。参考として、表2の比較例のNo.1と、発明例のNo.9の試験片についての、GDSで表面分析したときの、O,Si,MnおよびFeの深さ方向プロフィールを図5に示した。
【0063】
【表2−1】

【0064】
【表2−2】

【0065】
【表2−3】

【実施例2】
【0066】
表3に示した成分組成を有するA〜Zの鋼を転炉、脱ガス処理等を経る通常の精練プロセスで溶製し、連続鋳造して鋼スラブとした。これらの鋼スラブを、表4に示した熱延条件で熱間圧延し、板厚3〜4mmの熱延鋼板とし、酸洗して鋼板表面のスケールを除去した後、冷間圧延して板厚1.8mmの冷延鋼板とした。次いで、これらの冷延鋼板を、同じく表4に示した条件で連続焼鈍後、表5に示した条件で酸洗し、再酸洗した後、水洗し、乾燥し、伸び率0.7%の調質圧延を施して、No.1〜39の冷延鋼板を得た。
【0067】
【表3】

【0068】
【表4−1】

【0069】
【表4−2】

【0070】
【表5−1】

【0071】
【表5−2】

【0072】
斯くして得られた上記各冷延鋼板から試験片を採取し、実施例1と同様にして、再酸洗後の鋼板表面における鉄系酸化物の表面被覆率を測定した後、下記の引張試験および塗装後耐食性試験に供した。また、各冷延鋼板から採取した試験片の表面におけるO,Si,MnおよびFeの深さ方向分布を、GDSを用いて測定した。
【0073】
(1)機械的特性
圧延方向に直角方向(C方向)から採取したJIS Z2201:1998に規定のJIS5号引張試験片(n=1)を用いて、JIS Z2241:1998の規定に準拠して引張試験を行い、引張強さTSを測定した。
(2)塗装後耐食性
各冷延鋼板から採取した試験片に、実施例1と同じ条件で、化成処理し、電着塗装を施した試験片を作製し、実施例1と同様にして、塩温水浸漬試験、塩水噴霧試験(SST)および複合サイクル腐食試験(CCT)の3種類の腐食試験に供して、塗装後耐食性を評価した。
【0074】
上記試験の結果を、表4および表5に示した。この結果から、Siを0.5mass%以上含有し、本発明に適合する条件で酸洗し、再酸洗して鋼板表面の鉄系酸化物による被覆率を40%以下とした本発明例の高強度冷延鋼板は、塗装後耐食性にも優れているだけでなく、引張強さTSが590MPa以上の高強度を有していることがわかる。なお、GDSでO,Si,MnおよびFeの深さ方向分布を測定した結果では、本発明に適合する条件で酸洗した鋼板は、いずれも、SiやOのピークが現れず、Si含有酸化物層が十分に除去されていることが確認された。
【実施例3】
【0075】
C:0.125mass%、Si:1.5mass%、Mn:2.6mass%、P:0.019mass%、S:0.008mass%およびAl:0.040mass%を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、連続鋳造して鋼素材(スラブ)とした。このスラブを1150〜1170℃の温度に再加熱後、仕上圧延終了温度を850〜880℃とする熱間圧延し、500〜550℃の温度で巻き取り、板厚が3〜4mmの熱延鋼板とした。これらの熱延鋼板を酸洗し、スケールを除去した後、冷間圧延して板厚が1.8mmの冷延鋼板とした。次いで、これらの冷延鋼板を、750〜780℃の均熱温度に加熱し、40〜50秒間保持した後、上記均熱温度から350〜400℃の冷却停止温度までを20〜30℃/秒で冷却し、上記冷却停止温度範囲に100〜120秒間保持する連続焼鈍を施した後、表6に示した条件で鋼板表面を酸洗し、さらに再酸洗し、水洗し、乾燥した後、伸び率0.7%の調質圧延を施して、表6に示したNo.1〜61の冷延鋼板を得た。
【0076】
上記の各冷延鋼板から試験片を採取し、前述した手法を用いて、酸洗により鋼板表面に生成した鉄系酸化物の表面被覆率および最大厚さを測定した。
【0077】
また、上記各冷延鋼板から試験片を採取し、下記条件で化成処理と塗装処理を施した後、塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験の3種の腐食試験に供して、塗装後耐食性を評価した。また、各冷延鋼板から採取した試験片の表面におけるO,Si,MnおよびFeの深さ方向分布を、GDSを用いて測定した。
(1)化成処理条件
上記各冷延鋼板から採取した試験片に、日本パーカライジング社製の脱脂剤:FC−E2011、表面調整剤:PL−Xおよび化成処理剤:パルボンドPB−L3065を用いて、下記の標準条件および化成処理液の温度を下げて低温度化した比較条件の2条件で、化成処理皮膜付着量が1.7〜3.0g/mとなるよう化成処理を施した。
<標準条件>
・脱脂工程:処理温度 40°C、処理時間 120秒
・スプレー脱脂、表面調整工程:pH 9.5、処理温度室温、処理時間 20秒
・化成処理工程:化成処理液の温度 35℃、処理時間 120秒
<低温度化条件>
上記標準条件における化成処理液の温度を33℃に低下した条件
(2)腐食試験
上記化成処理を施した試験片の表面に、日本ペイント社製の電着塗料:V−50を用いて、膜厚が25μmとなるように電着塗装を施し、実施例1と比較してより厳しい条件の下記3種類の腐食試験に供した。
<塩温水浸漬試験>
化成処理および電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl溶液(60℃)に480時間浸漬し、その後、水洗し、乾燥し、カット疵部に粘着テープを貼り付けた後、引き剥がすテープ剥離試験を行い、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が5.0mm以下であれば、耐塩温水浸漬試験における耐食性は良好と評価することができる。
<塩水噴霧試験(SST)>
化成処理、電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、5mass%NaCl水溶液を使用して、JIS Z2371:2000に規定される中性塩水噴霧試験に準拠して1400時間の塩水噴霧試験を行った後、クロスカット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が4.0mm以下であれば、塩水噴霧試験における耐食性は良好と評価することができる。
<複合サイクル腐食試験(CCT)>
化成処理、電着塗装を施した上記試験片(n=1)の表面に、カッターで長さ45mmのクロスカット疵を付与した後、この試験片を、塩水噴霧(5mass%NaCl水溶液:35℃、相対湿度:98%)×2時間→乾燥(60℃、相対湿度:30%)×2時間→湿潤(50℃、相対湿度:95%)×2時間、を1サイクルとして、これを150サイクル繰り返す腐食試験後、水洗し、乾燥した後、カット疵部についてテープ剥離試験し、カット疵部左右を合わせた最大剥離全幅を測定した。この最大剥離全幅が6.0mm以下であれば、複合サイクル腐食試験での耐食性は良好と評価できる。
【0078】
上記試験の結果を、表6に示した。この結果から、再酸洗後の鋼板表面の鉄系酸化物の表面被覆率が40%以下で、かつ、鉄系酸化物の最大厚さが150nm以下となる条件で焼鈍後の鋼板表面を酸洗し、再酸洗した本発明例の鋼板は、実施例1と比較して試験時間が長く厳しい条件で行った塩温水浸漬試験、塩水噴霧試験および複合サイクル腐食試験のいずれにおいても最大剥離全幅が小さく、極めて良好な塗装後耐食性を示していることがわかる。なお、GDSでO,Si,MnおよびFeの深さ方向分布を測定した結果では、本発明に適合する条件で酸洗した鋼板は、いずれも、SiやOのピークが現れず、Si含有酸化物層が十分に除去されていることが確認された。
【0079】
【表6−1】

【0080】
【表6−2】

【0081】
【表6−3】

【産業上の利用可能性】
【0082】
本発明により製造される冷延鋼板は、塗装後耐食性に優れるだけでなく、高い強度と優れた加工性を有しているので、自動車車体の部材に用いられる素材としてだけでなく、家電製品や建築部材などの分野で同様の特性が求められる用途の素材としても好適に用いることができる。

【特許請求の範囲】
【請求項1】
冷間圧延後、連続焼鈍した鋼板を酸洗した後、さらに再酸洗する冷延鋼板の製造方法。
【請求項2】
上記再酸洗には、再酸洗前の酸洗に用いる酸とは異なる、非酸化性の酸を用いることを特徴とする請求項1に記載の冷延鋼板の製造方法。
【請求項3】
上記非酸化性の酸は、塩酸、硫酸、リン酸、ピロリン酸、ギ酸、酢酸、クエン酸、弗酸、シュウ酸およびこれらの2種以上を混合した酸のいずれかであることを特徴とする請求項2に記載の冷延鋼板の製造方法。
【請求項4】
上記非酸化性の酸は、濃度が0.1〜50g/Lの塩酸、0.1〜150g/Lの硫酸、および、0.1〜20g/Lの塩酸と0.1〜60g/Lの硫酸を混合した酸のいずれかであることを特徴とする請求項2に記載の冷延鋼板の製造方法。
【請求項5】
上記再酸洗を、再酸洗液の温度を20〜70℃として1〜30秒間行うことを特徴とする請求項1〜4のいずれか1項に記載の冷延鋼板の製造方法。
【請求項6】
上記酸洗を、硝酸、塩酸、弗酸、硫酸およびそれらを2種以上混合した酸のいずれかを用いて行うことを特徴とする請求項1〜5のいずれか1項に記載の冷延鋼板の製造方法。
【請求項7】
上記酸洗を、硝酸濃度が50g/L超え200g/L以下で、硝酸濃度に対する塩酸濃度の比(HCl/HNO)が0.01〜1.0である硝酸と塩酸を混合した酸、または、硝酸濃度が50g/L超え200g/L以下で、硝酸濃度に対する弗酸濃度の比(HF/HNO)が0.01〜1.0である硝酸と弗酸を混合した酸のいずれかを用いて行うことを特徴とする請求項1〜6のいずれか1項に記載の冷延鋼板の製造方法。
【請求項8】
上記鋼板は、Siを0.5〜3.0mass%含有することを特徴とする請求項1〜7のいずれか1項に記載の冷延鋼板の製造方法。
【請求項9】
上記鋼板は、Siの他に、C:0.01〜0.30mass%、Mn:1.0〜7.5mass%、P:0.05mass%以下、S:0.01mass%以下およびAl:0.06mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項8に記載の冷延鋼板の製造方法。
【請求項10】
上記鋼板は、上記成分組成に加えてさらに、Nb:0.3mass%以下、Ti:0.3mass%以下、V:0.3mass%以下、Mo:0.3mass%以下、Cr:0.5mass%以下、B:0.006mass%以下およびN:0.008mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項8または9に記載の冷延鋼板の製造方法。
【請求項11】
上記鋼板は、上記成分組成に加えてさらに、Ni:2.0mass%以下、Cu:2.0mass%以下、Ca:0.1mass%以下およびREM:0.1mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする請求項8〜10のいずれか1項に記載の冷延鋼板の製造方法。
【請求項12】
請求項1〜11のいずれか1項に記載の方法で製造された冷延鋼板であって、連続焼鈍後の酸洗で鋼板表層のSi含有酸化物層が除去されてなり、かつ再酸洗後の鋼板表面に存在する鉄系酸化物の表面被覆率が40%以下であることを特徴とする冷延鋼板。
【請求項13】
上記冷延鋼板は、再酸洗後の鋼板表面に存在する鉄系酸化物の最大厚さが150nm以下であることを特徴とする請求項12に記載の冷延鋼板。
【請求項14】
請求項12または13に記載の冷延鋼板を用いてなることを特徴とする自動車部材。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−132092(P2012−132092A)
【公開日】平成24年7月12日(2012.7.12)
【国際特許分類】
【出願番号】特願2011−177861(P2011−177861)
【出願日】平成23年8月16日(2011.8.16)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】