説明

Fターム[4K058DD18]の内容

金属の電解製造 (5,509) | 電解装置 (250) | 隔膜、隔壁 (115) | 2室式 (12)

Fターム[4K058DD18]に分類される特許

1 - 12 / 12


【課題】目的金属を含む電解液から不純物(特に、目的金属よりもイオン化傾向が小さい金属イオンおよびその金属)の含有量が著しく低減された高純度な目的金属を、連続的に、かつ、高い作業効率で電解採取できる電解装置、および、このような電解装置を用いた電解採取方法を提供すること。
【解決手段】目的金属を含む電解液から、高純度な目的金属を電解採取するための電解装置であって、所定の、隔壁12、予備電解槽18a、本電解槽18bと、電極対20とを備え、前記隔壁12は、予備電解槽18aと本電解槽18bとを区分けして、各電解槽に析出する目的金属同士が混合することを防ぎ、かつ、前記予備電解槽18aと前記本電解槽18bとの間で電解液14を流通可能にする開口部12’を備えていることを特徴とする。 (もっと読む)


【課題】電流密度を高めても安全に精製ナトリウムを製造することができるナトリウム精製用電解槽を提供する。
【解決手段】不純物含有ナトリウム、電解液および精製ナトリウムを収容する電解槽本体110に、開口面積が0.25〜4mmの範囲内の貫通孔を複数有し、開口面積率が50%以上の分離部材120,130を設ける。分離部材120,130は、不純物含有ナトリウムを収容する空間と電解液を収容する空間との間、および電解液を収容する空間と精製ナトリウムを収容する空間との間の少なくとも一方に配置される。分離部材を設置することで、不純物含有ナトリウムと電解液の界面と、電解液と精製ナトリウムの界面とを対向させることができる。その結果、これらの界面の一部分に電流が集中することがなくなり、電流密度を高めても安全に精製ナトリウムを製造することができる。 (もっと読む)


【課題】少ないエネルギー消費量で効率的に不純物含有アルカリ金属から高純度のアルカリ金属を製造することができるアルカリ金属の製造方法およびアルカリ金属製造装置を提供すること。
【解決手段】不純物含有アルカリ金属180を陽極とし、かつカーボネート系有機溶媒およびアルカリ金属のイオンを含む溶液を電解液170として電気分解を行う。陽極では、不純物含有アルカリ金属180に含まれるアルカリ金属のみがイオンとなって電解液170に溶出し、その他の不純物は不純物含有アルカリ金属180中に残存する。一方、陰極では、電解液に含まれるアルカリ金属(アルカリ金属イオン)のみが陰極の表面に析出する。結果として、不純物含有アルカリ金属から高純度のアルカリ金属190を製造することができる。 (もっと読む)


【課題】 インジウムイオンを含有する水溶液から金属インジウムを、電解採取により経済的に製造する。
【解決手段】 電解槽10内を陽イオン交換膜11により陽極室12と陰極室13とに仕切る。不溶性の陽極14を配置した陽極室12の電解液をアルカリ金属の水酸化物水溶液とし、陰極室13の電解液をインジウムイオンを含有する水溶液として、陰極室13おいて金属インジウムを析出させる。安価な陽極14の使用が可能となる。電解液のpH調整が不要となる。陽極側での塩素ガスの発生がない。インジウムの電解採取に要する電圧が下がり、電流効率が上がる。 (もっと読む)


【課題】銅原料を塩素浸出する工程、得られた塩化物水溶液を還元する工程、溶媒抽出方法により銅を分離する工程、及び銅イオンを電解採取する工程を含む湿式銅製錬法に用いる、抽出段と逆抽出段からなる溶媒抽出方法において、逆抽出段において、抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と銅電解陰極廃液からなる水相を接触混合して銅を逆抽出することにより形成される抽出剤中の残留銅濃度を極力させることができる溶媒抽出方法を提供する。
【解決手段】前記抽出段において、還元後の塩化物水溶液とトリブチルフォスフェイトを含む抽出剤を接触混合し、次いで前記逆抽出段において、該抽出段で得られた1価の銅イオンを含む抽出剤からなる有機相と前記銅電解陰極廃液からなる水相を接触混合して銅を逆抽出する際に、逆抽出後の水相の酸化還元電位(銀/塩化銀電極基準)を300〜400mVになるように制御することを特徴とする。 (もっと読む)


【課題】鉄イオンを含む酸性塩化物水溶液から電解採取法によって金属鉄を回収する際に、電解槽の槽電圧の低減を図り、電力コストが低い電解処理を行うことができる経済的な電解採取方法を提供する。
【解決手段】隔膜2で仕切られたカソード室3とアノード室4から構成される電解槽1を用いて、鉄イオンを含む酸性塩化物水溶液をカソード室3に供給し、鉄イオンの一部を電解析出させ、続いて隔膜2を通して酸素発生型の不溶性アノード6を備えたアノード室4に導き、鉄イオンを酸化させた後、アノード室4から排出させることにより、鉄を電解採取する方法において、前記電解槽1内での酸性塩化物水溶液の温度を、65〜90℃に制御するとともに、前記不溶性アノード6の表面上の電解液を、アノード表面でのアノード反応のため必要な鉄イオンの供給がなされるのに十分に、強制的に流動させることを特徴とする。 (もっと読む)


【課題】溶液中での電気化学的輸送による第1電解液(E1)から第2電解液(E2)への選択的なカチオン(Mn+)の抽出法を提供する。
【解決手段】電解質分離壁としてモリブデンクラスターとのカルコゲニドであるMon+2又はMMon+2で作成された輸送壁を用い且つ、第1電解液の側の輸送壁で複数のカチオンの交互配置、輸送壁の中で複数のカチオンの分散、そして第2電解液中でのそれらの交互配置解除を生じさせるために第1電解液(E1)中の電極A1と第2電解液(E2)中の電極C2又は前記輸送壁(2)との間に電位差(ΔE)を発生させることによって前記輸送壁を通るカチオンの輸送を確保することを特徴とする、前記抽出方法。 (もっと読む)


【課題】銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得ることができる安全性と経済性に優れた銅電解方法を提供する。
【解決手段】銅を含有する酸性塩化浴からなる電解液から平滑性に優れた電着物を得る銅電解方法であって、前記電解液をカソードとアノードを備えた電解槽へ給液し、電解槽への通電を断続通電とするとともに、1周期での通電時間と停電時間の合計時間で通電時間を除して求めた有効通電率が50〜90%であることを特徴とする。 (もっと読む)


【課題】溶融塩中で還元により生成したTi粒又はTi合金粒の製造方法、並びにこの製造方法を適用した金属Ti又はTi合金の製造方法及び装置を提供する。
【解決手段】溶融塩中で還元により生成したTi粒又はTi合金粒同士を接触させることにより造粒するに際し、浴中に案内板を設けて浴流れを変えることを特徴とし、また、造粒後の粒の平均粒径を100μm以上とすることを特徴とし、さらに、造粒後の粒の平均粒径を1μm以上となるように造粒したTi粒又はTi合金粒の構成粒子の粒径が0.05μm以上10μm以下であることを特徴とするTi粒又はTi合金粒の製造方法、並びにこのTi粒又はTi合金粒の製造方法を適用した金属Ti又はTi合金の製造方法及びそれに用いる製造装置である。 (もっと読む)


本発明は、塩化亜鉛を含む溶融塩から亜鉛を電解製造する方法及びセルに関する。セルは、電解質を含有する少なくとも1つの電解チャンバ(2)と、少なくとも1つの隔壁(7,8)によって該電解チャンバと分離される少なくとも1つの隣接チャンバ(1)とを有する。電解チャンバ内の環境は、少なくとも1つの隔壁によって隣接チャンバ内の環境と分離される。電解質は、電解質の液位よりも低い位置の隔壁における少なくとも1つの開口部を通って、電解チャンバと隣接チャンバとの間を流れるように誘導される。生成される亜鉛金属は、セルの底部で回収される。電解質流れは、実質的に層流に制御されることができる。
(もっと読む)


【課題】混合溶融塩を用いた電気化学的還元法により、二酸化チタンから低次チタン酸化物を経て金属チタンを得る。
【解決手段】原料の二酸化チタンを還元用陰極12として電析用陰極13,陽極14と共に塩化カルシウム,アルカリ金属塩化物の混合溶融塩浴11に浸漬する。二酸化チタンが低次チタン酸化物に還元される電位に陰極12を維持し、低次チタン酸化物を混合溶融塩浴11にチタンイオンとして溶解させる。混合溶融塩浴11を拡散したチタンイオンは、金属チタンの析出電位に維持された陰極13上で金属チタンとして析出する。 (もっと読む)


【課題】カルシウム、希土類元素等、電解法により製造される金属に適用できる金属製造方法を提供する。
【解決手段】イットリアを含む多孔質セラミックス体を隔膜5として使用する電解法による金属製造方法で、電解により生成するカルシウムは隔膜を通過できず、バックリアクションを効果的に抑制できる。イットリアの純度が90質量%以上(より望ましくは、99%以上)、気孔率が1%以上、細孔径が20μm以下の多孔質セラミックス体からなる、厚みが0.05〜50mmの隔膜を使用し、電解浴として金属のハロゲン化物を使用するのが望ましい。 (もっと読む)


1 - 12 / 12