説明

Fターム[4L037FA20]の内容

無機繊維 (8,808) | 製品の形態;構造 (2,018) | その他の形態、構造 (216)

Fターム[4L037FA20]に分類される特許

161 - 180 / 216


【課題】 機械的強度、電気伝導度、熱伝導度などの物性に優れたカーボンナノチューブ繊維を製造するにあたって、安価な工業的に優れた製造方法を提供する。
【解決手段】 紡糸されたカーボンナノチューブ繊維100を2つのボビン10、11によって、電気炉12を通過させることで加熱しつつ、この加熱されている状態の繊維100に対して、一対の電極14および電源15によって電流を流すことにより、繊維100内におけるカーボンナノチューブの接触部同士を化学結合させる。 (もっと読む)


【課題】 炭素ナノチューブの大量生産のための装置を提供する。
【解決手段】 その装置は互いに異なる反応段階にある多数の反応チェンバー(20)を必要な温度に加熱する移動可能なヒーター(30)を有する。ヒーターは移動することによって、多数の反応チェンバーを反応の進行に応じた複数の温度で同時に加熱する。一実施例では、ヒーターは低温領域、反応領域、及び冷却領域を有する。低温領域、反応領域、及び冷却領域にそれぞれ隣接した反応チェンバーで予熱工程、反応工程及び冷却工程が同時に行なわれる。 (もっと読む)


【課題】 生成された後の微細炭素繊維から効果的に鉄分等の磁性体を除去する。
【解決手段】 微細炭素繊維の磁性体除去装置1に関して、生成された微細炭素繊維をエアと共に流入させる流入部20と、エア中に存する磁性体を除去処理する磁性体除去槽2と、磁性体の除去された微細炭素繊維を流出させる流出部30とを備える。そして、前記磁性体除去槽2に、前記微細炭素繊維を含む前記エアの気流中に磁石を配置する。 (もっと読む)


【課題】 コイルのピッチが実質的に0である中空状カーボンマイクロコイル、及び、これらを金属化処理等をしてなる中空状セラミックマイクロコイル又は中空状セラミックマイクロファイバーを提供する。
【解決手段】本発明は、アセチレンの触媒活性化熱分解によりマイクロコイル状炭素を合成する際、反応条件を厳密に制御し、ファイバーの成長につれて基板を下げてゆくことを特徴とする、コイルが極めて密に規則正しく巻いた中空状カーボンマイクロコイルに関する。また、本発明は、これらを原料として、種々の金属成分、ケイ素、ホウ素、炭素、窒素及び/又は酸素原子などを含むガス中、800〜1700℃で高温反応/拡散処理を行うと、原料ガス成分が炭素と反応あるいは置換し、一方繊維軸中の空洞は完全に保持された中空状のセラミックス系マイクロコイル又はマイクロファイバーに関する。
(もっと読む)


【課題】 本発明は工業生産に適する、極めて容易な手段によるカーボンナノ繊維の製造方法、特に金属触媒など製品中に除去の厄介な混入物のないカーボンナノ繊維、とりわけカーボンナノチューブの製造方法を提供する。
【解決手段】 不活性ガスのプラズマジェット気流中に炭化水素ガスを供給し、該気流中で炭化水素を熱分解し、冷却過程でカーボンナノ繊維を生成させることを特徴とする。 (もっと読む)


【課題】 マリモカーボンの比表面積を増大する方法、すなわち、高比表面積マリモカーボンの製造方法と、これを用いた電気二重層キャパシタを提供する。
【解決手段】 マリモカーボンに水酸化カリウムを混合し、この混合物を不活性ガス中で熱処理することで高比表面積マリモカーボンを得る。温度700℃で賦活したマリモカーボンを用いた電気二重層キャパシタの放電容量は、未処理のマリモカーボンを用いた電気二重層キャパシタの放電容量に比べて約3倍大きく、未処理のマリモカーボンを用いた電気二重層キャパシタの放電容量は、従来の活性炭を用いた電気二重層キャパシタの放電容量に比べて約1.4倍大きいので、高比表面積マリモカーボンを分極性電極とした電気二重層キャパシタの放電容量は、従来の活性炭を用いた電気二重層キャパシタの放電容量に比べて、約4.2倍大きい。 (もっと読む)


フィラメント状構造体を製造するための方法及び装置。この構造体は、単層ナノチューブを含む。この方法は、すす無し火炎を確立するように炭化水素燃料及び酸素を燃焼させること、並びに火炎のポスト火炎領域中でフィラメント状構造体を合成するための非担持触媒を提供することを含む。滞留時間は、フィラメント状構造体の成長に有利となるように選択される。
(もっと読む)


【課題】グラファイト層欠陥が少ないカーボンナノチューブを得る中空状ナノファイバーを含有する中空状ナノファイバー含有組成物を提供する。
【解決手段】次の要件を全て満たす中空状ナノファイバー含有組成物。
(1)化学蒸着法で生成するカーボンナノチューブであって、高分解能透過型電子顕微鏡で直径0.4〜1.0nmの2層カーボンナノチューブのバンドルが観測されること。
(2)中空状ナノファイバー中の50%以上が1〜5層のカーボンナノチューブであること。
(3)共鳴ラマン散乱測定法の測定により、150〜350cm-1にピークが観測されること。 (もっと読む)


【課題】
本発明は、従来にない複雑な形状の耐炎成形品を得ることができる成形加工性の優れた耐炎ポリマー前駆体、耐炎ポリマー、およびそれからなる耐炎成形品やその製造方法を提供せんとするものである。
【解決手段】
本発明の耐炎ポリマー前駆体は、アミン系共重合成分およびヘテロ環系共重合成分から選ばれた少なくとも1種によって変性されてなるポリマーで構成されていることを特徴とするものである。また、本発明の耐炎ポリマー前駆体分散液は、かかる耐炎ポリマー前駆体および極性有機溶媒で構成されている分散体であることを特徴とするものであり、さらに、本発明の耐炎ポリマーは、かかる耐炎ポリマー前駆体分散液を、酸化剤によって酸化してなることを特徴とするものである。 (もっと読む)


本発明は、ナノメートル・フィラメント状構造体を堆積させる方法に関する。この方法は、ナノメートル・フィラメント状構造体を電極のうちの少なくとも1つに堆積させるために、ナノメートル・フィラメント状構造体を含むガス相を電界を発生させる少なくとも2つの電極の間に画成される空間を通過させるステップと、堆積中堆積したナノメートル・フィラメント状構造体が電極を架橋することを少なくとも実質的に防止するステップとを含む。本発明は、ナノメートル・フィラメント状構造体を堆積させる装置、ならびにナノメートル・フィラメント状構造体の製造を監視する方法および装置、およびナノメートル・フィラメント状構造体の巨視的集合体にも関する。 (もっと読む)


【課題】触媒と反応温度の適正化を図ることにより、高比表面積をもつ炭素ナノ繊維およびその製造方法を提供することにある。
【解決手段】本発明の炭素ナノ繊維5A等は、片面同士を合体させた複合構造をもつ、薄片繊維状の2枚のナノリボン7a,7bを有することを特徴とする。本発明の炭素ナノ繊維の製造方法は、熱処理炉内に、マンガン(Mn)を50質量%以上含有する非担持型Fe−Mn合金触媒を装入し、一酸化炭素を含有する反応ガス中にて450〜620℃で反応させることを特徴とする。 (もっと読む)


【課題】 高純度で良質の窒化ホウ素ナノチューブを広い反応温度範囲にわたって製造できる、高純度窒化ホウ素ナノチューブの製造方法を提供する。
【解決手段】 ホウ素(B)粉末と酸化鉄(FeO)粉末と酸化マグネシウム(MgO)粉末とからなる混合物を、アンモニアガス気流中で所定時間加熱し、高純度窒化ホウ素ナノチューブを合成する。1100〜1700℃で0.7〜3時間保持することで、直径が約50nm、壁厚10〜15nm、長さ数十μmを有する高純度窒化ホウ素ナノチューブを得ることができる。半導体材料、エミッタ材料、耐熱性充填材料、高強度材料、触媒等として利用可能である。 (もっと読む)


【課題】 多数の炭素六角端面を表面に有する超高黒鉛化度炭素ナノ繊維を提供する。
【解決手段】炭素六角網面の積層体からなる炭素ナノ繊維素3を、前記炭素六角網面2の少なくとも一端が炭素ナノ繊維1の側周面を形成するように、繊維軸方向Lに沿って複数積層して形成した炭素ナノ繊維素群4を、さらに、繊維軸方向Lに沿って複数積層して形成してなる炭素ナノ繊維1において、前記炭素ナノ繊維素3を構成する炭素六角網面2の面間隔d002及び積層の大きさLc002が、それぞれ0.3360nm以下及び20nm以上であり、かつ比表面積が50m/g以上であることを特徴とする。 (もっと読む)


【課題】
新規な炭素材料と、その製造方法を提供することを目的とする。
【解決手段】
ダイヤモンド構造を有する多面体の結晶が繊維状に連結してなる炭素材料である。この炭素材料は、超臨界状態にした二酸化炭素中でプラズマ放電を行うことにより製造することができ、耐摩耗性材料、分散強化材料、水素吸蔵材料、電子線放射エミッター、ダイヤモンド半導体その他の電子材料等として用いることができる。 (もっと読む)


【課題】輸送性、分散性及び保管性等のハンドリングを容易とするナノカーボン材料を提供する。
【解決手段】本発明にかかるナノカーボン材料は、ナノ単位のナノカーボン材料の熱重量分析の燃焼ピークよりも低温側の燃焼不純物濃度が1〜30%であり、熱重量分析の燃焼ピークがシャープである。よって、樹脂等に分散させて使用する場合においても、高濃度に分散させることが可能となり、また、その混合操作が簡易となる。 (もっと読む)


【課題】輸送性、分散性及び保管性等のハンドリングを容易とするナノカーボン材料を提供する。
【解決手段】本発明にかかるナノカーボン材料は、繊維状、粒状、チューブ状のいずれかであると共に、そのかさ密度が大きなナノ単位のカーボン材料であり、軽装かさ密度が0.03〜1.7g/mlであり、重装かさ密度が0.05〜1.7g/mlである。よって、樹脂等に分散させて使用する場合においても、高濃度に分散させることが可能となり、また、その混合操作が簡易となる。 (もっと読む)


【課題】本発明は、構造欠陥が少ないナノカーボン材料を提供するとともに、高収率、かつ量産的に製造可能なナノカーボン材料の製造方法を提供することを目的とする。
【解決手段】本発明のナノカーボンは、平均直径が100nm 〜1μmの範囲にある炭素微小球からなる。 (もっと読む)


【課題】 先端材料分野において、その応用展開が有望視される有機無機複合ナノファイバーの簡便な製造方法を提供することにある。
【解決手段】 直鎖状ポリエチレンイミン骨格を有する結晶性ナノファイバーの水性分散体を70℃以下で濃縮し、次いでそれにアルコキシシランを添加し、該アルコキシシランを加水分解することを特徴とする有機無機複合ナノファイバーの製造方法を提供し、特に前記水性分散体が該結晶性ナノファイバーを0.1〜20質量%含有し、前記水性分散体を濃縮して水含有量10〜96質量%とし、且つ前記アルコキシシランの添加量が結晶性ナノファイバーに対して1〜500質量倍である有機無機複合ナノファイバーの製造方法を提供する。 (もっと読む)


【課題】本発明は、ナノサイズのエレクトロニクス材料やオプトエレクトロニクス材料などとして有用な直径が制御された極細単層カーボンナノチューブからなる炭素繊維集合体及びその効率的、且つ大量・安価に製造する方法を提供する。
【解決手段】直径が2.0nm未満の極細単層カーボンナノチューブからなる炭素繊維集合体。好ましくは直径が0.6nm〜1nmの極細単層カーボンナノチューブからなる炭素繊維集合体。2種類の分解温度の異なる炭素源を使用し、それらの割合を変えることにより、単層カーボンナノチューブの直径を制御し、極細単層カーボンナノチューブからなる炭素繊維集合体を製造する。 (もっと読む)


【課題】 シリカナノチューブが高度に集積化されたシリカナノチューブ会合体、及び、該会合体を短時間で簡便に製造する方法を提供すること。
【解決手段】 シリカナノチューブが相互に会合した多分岐状構造からなるシリカナノチューブ会合体、及び、(1)直鎖状ポリエチレンイミン骨格を有するポリマーを溶媒に溶解させた後、水の存在下で析出させ、直鎖状ポリエチレンイミン骨格を有するポリマーの結晶性ポリマーフィラメントを得ると共に、前記結晶性ポリマーフィラメントからなるヒドロゲルを得る工程、(2)前記ヒドロゲルとアルコキシシランとを接触させることにより、前記結晶性ポリマーフィラメントとシリカとの複合体からなる有機無機複合会合体を得る工程、及び(3)前記有機無機複合会合体中の結晶性ポリマーフィラメントを除去する工程を有するシリカナノチューブ会合体の製造方法。 (もっと読む)


161 - 180 / 216