説明

Fターム[4M104BB01]の内容

半導体の電極 (138,591) | 電極材料 (41,517) | Si (2,965)

Fターム[4M104BB01]に分類される特許

2,021 - 2,040 / 2,965


【目的】低抵抗なコンタクトを歩留まり良く形成することができる半導体装置及びその製造方法を提供する。
【解決手段】ニッケルシリサイド層7が十分な膜厚を有する領域にコンタクトホール11を形成するとともに、金属シリサイド層7のエッチングを行い金属シリサイド層7に凹部を形成する。次いで、コンタクトホール11を所望のコンタクト径まで拡大する。これにより、コンタクトホールの底部を占めるシリサイド面積率を下げることなく、所望のコンタクトホール11のボトム面積を確保することができ、コンタクト抵抗上昇に起因する製造歩留まり低下を抑制することができる。 (もっと読む)


【課題】MISトランジスタを有する半導体装置の歩留りを向上することが可能な技術を提供する。
【解決手段】半導体層80における半導体基板1の上面1a上には、MISトランジスタのゲート構造4cが形成されている。また、半導体層80における半導体層8の上面8a内にはソース・ドレイン領域9が形成されている。半導体層80上には、ゲート構造4cを覆って層間絶縁膜20が形成されている。層間絶縁膜20内には、ゲート構造4cに含まれるゲート電極6の上面6aと、半導体層8の上面8aとの両方に接続されたコンタクトプラグ23が形成されている。そして、半導体層8の上面8aは、活性領域100cにおける半導体基板1の上面1aよりも上方に位置している。 (もっと読む)


2重ゲートFinFETおよびその製造方法を提供する。FinFETは、フィン(20)の各側面に隣接して第1および第2ゲート(72、74)を有し、第1ゲートのフィンに対面する少なくとも一部分を多結晶シリコンによって形成し、第2ゲートのフィンに対面する少なくとも一部分を金属シリサイド化合物によって形成する。2個のゲートの異なった組成は、それぞれ異なった動作機能を提供し、短チャンネル効果を減少させる。
(もっと読む)


【課題】ゲート幅方向の各位置における閾値電圧をばらつかせることなく、基板浮遊効果を抑制することが可能な半導体装置および半導体装置の製造方法を提供する。
【解決手段】支持基板11aとBOX層11bとSOI層11cとを有するSOI基板11と、SOI層11c上に形成されたゲート絶縁膜13と、ゲート絶縁膜13上に形成されたゲート電極14と、SOI層11cにおけるゲート電極14端下の領域に形成された第1導電型の低濃度領域15bと、ゲート電極14下であってSOI層11cにおける低濃度領域15bで挟まれた領域に形成され、低濃度領域15bよりも不純物濃度が高い第1導電型の高濃度領域15aと、SOI層11cにおける高濃度領域15a及び低濃度領域15bを挟む一対の領域に形成され、第2導電型のソース領域16s及びドレイン領域16dとを有する。 (もっと読む)


ドライプラズマエッチングシステム内で誘電体層をシリコン及びポリシリコンに対して選択的な均一エッチングを行う方法及びシステムが記載されている。エッチング用化学は、たとえばCH2F2やCHF3のようなフルオロハイドロカーボンを有する。高いエッチング選択性及び受容可能な均一性は、CH2F2の流速やドライプラズマエッチングシステムと結合する出力を含むプロセス条件を選択することによって実現されて良い。それにより、エッチングプラズマ中での活性エッチングラジカルとポリマー生成ラジカルとの適切なバランスがとられる。
(もっと読む)


【課題】凹部の埋め込み性を向上できる半導体装置およびその製造方法を提供する。
【解決手段】半導体基板10上に互いに並走する導電層1、1が形成されている。各導電層1上には上層絶縁層2と保護絶縁層3とが積層して積層構造が形成されている。この積層構造の側壁を覆うように側壁絶縁層4、5が形成されている。半導体基板10の表面に平行な方向における側壁絶縁層5、5の間隔(凹部7の寸法)が側壁絶縁層5の上部において大きく(寸法W3)、下部において小さく(寸法W4)なるように側壁絶縁層5はその上部と下部との間に段差部Pを有している。 (もっと読む)


【課題】金属シリサイド層のグレインサイズを均一化することが可能であって、信頼性を向上する。
【解決手段】ソース・ドレイン領域21sdが形成された単結晶シリコンの半導体基板11や、ポリシリコンのゲート電極21gのように、シリコンを含む半導体領域においてシリサイド化が生ずる第1の温度にて、その半導体領域に第1金属を堆積することによって、第1金属層12を形成する。つぎに、その形成された第1金属層12を被覆するように、第1の温度より低い第2の温度にて、その半導体領域に第2金属13を堆積することによって、第2金属層を形成する。つぎに、第2金属層13が第1金属層12を被覆するように形成された半導体領域に対して熱処理を実施することによって、金属シリサイド層21gm,21sdmを形成する。 (もっと読む)


【課題】半導体プロセスの微細化に伴い、信頼性の高い微細なゲート電極の形成がより困難なものとなっている。
【解決手段】ゲート電極105の上面に加え、ゲート電極105の側面に対しても金属シリサイド110を形成することで、ゲート電極105を所望の太さの幅に拡大しなくても、信頼性の高いゲート電極105を形成することができる。 (もっと読む)


【課題】従来の半導体装置では、パワー用半導体素子のドレイン領域でのシート抵抗値を低減させることが難しいという問題があった。
【解決手段】本発明の半導体装置では、P型の単結晶シリコン基板3上に、2層のN型のエピタキシャル層4、5が形成されている。基板3の裏面49からはドレイン領域として用いられるN型の埋込拡散層20が露出している。そして、基板3の裏面49側には、N型の埋込拡散層20とコンタクトする金属層50が形成されている。この構造により、金属層50がドレイン領域として用いられ、ドレイン領域でのシート抵抗値を大幅に低減することができる。 (もっと読む)


【課題】より低い電圧の印加によって溶断可能であって、しかも溶断に要する熱量を低減可能なヒューズ素子、及びヒューズ素子を備えた半導体装置、並びに半導体装置の製造方法を提供する。
【解決手段】ヒューズ素子は、半導体基板上に少なくともシリコンと、このシリコンよりも融点が低い元素とで形成した導電層と、この導電層の上面に形成した金属シリサイド層とで形成する。シリコンよりも融点が低い元素はゲルマニウムとする。特に、半導体基板には、上面に金属シリサイド層を設けたシリコン−ゲルマニウム層からなるベース引き出し電極を備えたバイポーラトランジスタが形成されており、導電層はバイポーラトランジスタにおけるシリコン−ゲルマニウム層の形成にともなってヒューズ素子部分に形成されたシリコン−ゲルマニウム層で形成する。 (もっと読む)


【課題】パターンのCD変異を減らすことが可能な半導体素子の微細パターン形成方法を提供すること。
【解決手段】被エッチング層を有する半導体基板上に第1ポリシリコン膜28とバッファ酸化膜29を順次形成し、さらに第2ポリシリコン膜30、研磨停止膜31及び第1酸化膜32が積層された構造のハードマスクを形成する。ハードマスクの側面に窒化膜スペーサ35を形成し、全体に第2酸化膜36を形成する。第2酸化膜、窒化膜スペーサ及び第1酸化膜を研磨し、前記研磨停止膜と窒化膜スペーサを除去する。第2ポリシリコン膜と第2酸化膜をマスクとしてバッファ酸化膜をエッチングする。第2酸化膜を除去し、第2ポリシリコン膜とバッファ酸化膜をマスクとして第1ポリシリコン膜をエッチングし、第2ポリシリコン膜を除去する。バッファ酸化膜と前記第1ポリシリコン膜をマスクとして被エッチング層をエッチングする。 (もっと読む)


【課題】SAC法で形成されたスルーホールを備え、薄い配線保護膜を有し、且つ、配線の露出を防止可能な配線構造を備える半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、ソース・ドレイン領域が表面に露出するゲート酸化膜12を形成する工程と、ゲート酸化膜12上に、ゲート電極13及びゲート電極13を保護するSiCN保護膜(16)を形成する工程と、SiCN保護膜(16)を覆う層間絶縁膜17を堆積する工程と、SiCN保護膜(16)と自己整合的に層間絶縁膜17をエッチングして、ソース・ドレイン領域を露出させるコンタクトホール18を形成する工程と、コンタクトホール18内にソース・ドレイン領域と接続するコンタクトプラグ20を形成する工程とを有する。 (もっと読む)


【課題】 ゲート絶縁膜とゲート電極との間に金属粒子を備えた半導体装置において、ゲート電極の仕事関数の調整(閾値電圧の制御)と空乏化の抑制に加え、さらに金属粒子とこの周囲の膜との密着性を向上させた半導体装置を提供する。
【解決手段】 p型シリコン基板1、埋め込み酸化膜2、及び単結晶シリコン層3から構成されるSOI基板4において、単結晶シリコン層3にソース領域10およびドレイン領域11を備える。ソース領域10とドレイン領域11との間の単結晶シリコン層3の表面側はチャネル層3aとして機能する。チャネル層3aの上にはゲート絶縁膜5が形成される。ゲート絶縁膜5上には、窒化チタンからなる金属粒子6aと多結晶シリコン膜7から構成されるゲート電極8が設けられる。ここで、金属粒子6aと多結晶シリコン膜7との間にはチタンシリサイド反応層6bが形成され、金属粒子6aとゲート絶縁膜5との間には反応層6cが形成される。 (もっと読む)


【課題】Finに応力を印加することによってN型MISおよびP型MISの両方のキャリア移動度を向上させることができるFin型FETを提供する。
【解決手段】半導体装置の製造方法は、半導体材料から成る複数のFin11、12を絶縁層10上に形成し、複数のFinの側面にゲート絶縁膜25を形成し、複数のFinのうちN型FETに用いられる第1のFin11の側面を該側面に対して垂直方向から圧縮し、かつ、P型FETに用いられる第2のFin12の側面を該側面に対して垂直方向へ引張するように、ゲート絶縁膜上にゲート電極31、32を形成することを具備する。 (もっと読む)


【課題】CET特性及び絶縁特性を向上させた半導体素子を提供する。
【解決手段】基板110と、基板110上に積層され、高誘電体物質から形成されるゲート酸化膜120と、ゲート酸化膜120上に積層され、ゲート酸化膜120と同種金属の窒化物から形成される第1金属層131と、第1金属層131上に積層される第2金属層132と、第2金属層132上に積層される第3金属層133と、第3金属層133上に積層され、第1金属層131〜第3金属層133と共にゲート電極を形成する物質層140と、を含んでいる。これにより、半導体素子のゲート酸化膜と金属層間の化学的な反応により発生するCET特性の低下および電流の漏れなどを防止することで半導体素子の絶縁特性を向上させることができる。 (もっと読む)


【課題】応力印加膜の膜厚の増大が容易な半導体装置および半導体装置の製造方法を提供する。
【解決手段】半導体装置が,半導体基板,ゲート絶縁膜,ゲート電極,ゲート側壁絶縁膜,層間絶縁膜,配線層,層間接続部,応力印加膜と,を具備する。この応力印加膜は,半導体基板と層間絶縁膜との間に配置される第1の部分と,ゲート電極と層間絶縁膜との間に配置される第2の部分と,ゲート側壁絶縁膜と層間絶縁膜との間に配置される第3の部分と,貫通孔の内面と層間接続部との間に配置される第4の部分と,を有し,かつ半導体基板に応力を印加する。 (もっと読む)


【課題】high−k(高誘電率)膜を含むゲート絶縁膜を用いたMISトランジスタの信頼性および特性を向上させる。
【解決手段】ゲート長が10nm以下のMISトランジスタにおいて、シリコン基板11上に形成された酸化シリコン膜4およびその酸化シリコン膜4上に形成されたhigh−k膜5を含んでなるゲート絶縁膜2は、ゲート長方向において中央より側面側で窒素を多く含み、かつ、膜厚方向において下面側より上面側で窒素を多く含む窒素領域21を有している。 (もっと読む)


【課題】複数の半導体素子が集積された半導体装置にあって、それら半導体素子における電流分布の偏りを好適に抑制することのできる半導体装置を提供する。
【解決手段】半導体基板の上表面に延設されたトレンチ溝7A,7Bと、これらトレンチ溝7A,7Bの内部に埋め込まれたドレイン引出電極15A,15Bとを備えた半導体素子を複数併設して半導体装置を構成した。こうした半導体装置において、半導体素子の形成領域S全体の下方における半導体基板の内部に、半導体素子の形成領域Sの下方全体にわたる面状のN型埋込拡散層3をドレイン引出電極15A,15Bと接続された状態で埋込形成するようにした。 (もっと読む)


【課題】熱処理による基板とゲート絶縁膜形成膜との界面へのフッ素の導入工程の際に、フッ素の外方拡散が起こることを防止する。
【解決手段】半導体基板100上における素子形成領域にゲート絶縁膜形成膜102、103を形成した後、ゲート絶縁膜形成膜102、103上にゲート電極形成膜104を形成する。その後、ゲート電極形成膜104上にフッ素を含有する絶縁膜105を形成する。その後、熱処理により、半導体基板100とゲート絶縁膜形成膜102、103との界面に、フッ素を含有する絶縁膜105に含有されるフッ素を拡散させて導入する。 (もっと読む)


【課題】多様なデバイス特性の要求を満足させることができる構造の半導体装置を得る。
【解決手段】実施の形態1の半導体装置は、同一のSOI基板(シリコン支持基板1、埋込酸化膜2及びシリコン層3)上に、ボディ膜厚の異なるボディ厚膜トランジスタQ1とボディ薄膜トランジスタQ2とを形成している。ボディ厚膜トランジスタQ1はボディ膜厚は比較的厚く形成するが、ソース・ドレイン領域32の表面高さをボディ領域の表面高さ比べて低く配置したリセス構造を有することにより、ソース・ドレイン領域32のSOI膜厚をボディ薄膜トランジスタQ2のSOI膜厚と同程度に薄く形成している。一方、ボディ薄膜トランジスタQ2はSOI膜厚全体を比較的薄い膜厚で形成している。また、ソース・ドレイン領域32及び34はシリコン層3を貫通して形成している。 (もっと読む)


2,021 - 2,040 / 2,965