説明

Fターム[4M104DD45]の内容

半導体の電極 (138,591) | 製造方法(特徴のあるもの) (30,582) | 電極材料の析出 (10,624) | CVD (2,824) | 原料ガス (770)

Fターム[4M104DD45]に分類される特許

761 - 770 / 770


【課題】 間欠的なプリカーサガスフロープロセスを使用して金属層を形成する方法を提供することである。
【解決手段】 間欠的なプリカーサガスフロープロセスを使用して基板上に金属層を形成する方法は、提供される。方法は、金属−カルボニルプリカーサガスのパルスに基板を曝すと共に、還元ガスに基板を曝すことを含む。所望の厚さを有する金属層が基板上に形成されるまで、プロセスは実行される。金属層は、基板上に形成されることができ、または、交互に、金属層は、金属核生成層上に形成されることができる。 (もっと読む)


【課題】 高性能デバイスの金属置換ゲートのための構造および形成方法を提供する。
【解決手段】 まず、半導体基板(240)上に設けたエッチ・ストップ層(250)上に、犠牲ゲート構造(260)を形成する。犠牲ゲート構造(300)の側壁上に、1対のスペーサ(400)を設ける。次いで、犠牲ゲート構造(300)を除去して、開口(600)を形成する。続けて、スペーサ(400)間の開口(600)内に、タングステン等の金属の第1の層(700)、窒化チタン等の拡散バリア層(800)、およびタングステン等の金属の第2の層(900)を含む金属ゲート(1000)を形成する。 (もっと読む)


集積回路デバイス製造のための半導体基板のような基板上への、超臨界流体を利用した物質の蒸着。蒸着は、基板表面に蒸着される物質の前駆体を含む、超臨界流体をベースとする組成物を使用して行われる。そのようなアプローチにより、気相蒸着工程に必要な揮発性および搬送性がないために、蒸着への適用には全く不適切であった前駆体の使用が可能になる。 (もっと読む)


1以上の物質層のバリヤ層を原子層堆積により堆積させるために基板を処理する方法が提供される。一態様においては、金属含有化合物の1以上のパルスと窒素含有化合物の1以上のパルスを交互に導入することにより基板表面の少なくとも一部上に金属窒化物バリヤ層を堆積させるステップと、金属含有化合物の1以上のパルスと還元剤の1以上のパルスを交互に導入することにより金属窒化物バリヤ層の少なくとも一部上に金属バリヤ層を堆積させるステップとを含む基板を処理する方法が提供される。金属窒化物バリヤ層及び/又は金属バリヤ層の堆積前に基板表面上で浸漬プロセスが行われてもよい。 (もっと読む)


窒化タンタル/タンタルバリア層を堆積させるための方法および装置が、集積処理ツールでの使用のために提供される。遠隔発生プラズマによる洗浄ステップの後、窒化タンタルは原子層堆積法で堆積され、タンタルはPVDで堆積される。窒化タンタル/タンタルは、堆積された窒化タンタルの下の導電性材料を露呈するために、誘電体層の部材の底部から除去される。場合によって、さらなるタンタル層が、除去ステップの後に物理気相堆積法で堆積されてもよい。場合によって、窒化タンタル堆積およびタンタル堆積は同一の処理チャンバで生じてもよい。シード層が最後に堆積される。 (もっと読む)


本発明の実施形態は、半導体処理システム(320)の前駆物質を生成する装置に関する。装置は、側壁(402)、上部、底部を有するキャニスタ(300)を含んでいる。キャニスタ(300)は、上の領域(418)と下の領域(434)を有する内容積(438)を画成している。一実施形態においては、装置は、更に、キャニスタ(300)を部分的に取り囲んでいるヒータ(430)を含んでいる。ヒータ(430)によって、上の領域(418)と下の領域(434)間に温度勾配が生じる。また、精製ペンタキス(ジメチルアミド)タンタルから原子層堆積によってバリヤ層、例えば、窒化タンタルバリヤ層を形成する方法も特許請求される。 (もっと読む)


【課題】 凹部への埋め込み性が良好で、長期に亘り安定した良好な電気的特性を得ることができ、さらに作製工程を可及的に低減し得る配線構造を提供する。
【解決手段】 Cu板と基板3との温度及び温度差を所定通りに制御しつつ、原料ガスであるCl2 ガスのプラズマによりCu板をエッチングすることによりCu成分とCl2 ガスとの前駆体であるCuClを形成し、この前駆体が基板3に吸着され、その後Cu成分を析出させることによりCuの薄膜を形成する成膜反応と、この成膜反応により形成されたCu膜をCl2 ガスのプラズマでエッチングするエッチング反応とを共存させるとともに、前記成膜反応の速度が前記エッチング反応の速度よりも大きくなるように制御することにより前記凹部3aにその底部から順にCu膜を積層してこの凹部3aにCuを埋め込んだ。 (もっと読む)


【課題】 ソース/ドレイン電極材料に銅を用いた場合の加工時のバリアメタル層のアンダーカットに起因する特性不良を防止し、低抵抗配線が充分に実現できるTFTの構造とその製造方法を提供する。
【解決手段】 本発明のTFTの構造は、ガラス基板2上のゲート電極3と、ゲート絶縁膜4と、ゲート絶縁膜4上にゲート電極3に対向配置された半導体能動層5と、半導体能動層5の両端部上に設けられたオーミックコンタクト層6と、各オーミックコンタクト層6を介して半導体能動層5に電気的に接続されたソース電極7、ドレイン電極8とを有している。そして、ソース電極7およびドレイン電極8が銅で形成され、これらソース電極7、ドレイン電極8の下面のうち、各オーミックコンタクト層6の上面上に位置する領域にのみバリアメタル層9が設けられている。 (もっと読む)


【課題】 減圧処理室から未反応の原料ガスや反応副生成物ガスを排気するための真空ポンプの安定稼動を保証するとともに、反応副生成物を効率良く回収して資源の有効利用およびランニングコストの低減をはかること。
【解決手段】 この減圧CVD装置は、減圧CVD法によって銅の成膜を行うための処理室10と、この処理室10に原料ガスとして有機銅化合物たとえばCu(I)hfacTMVSを供給するための原料ガス供給部12と、処理室10を真空引きして排気するための真空排気部14とで構成されている。真空排気部14は、真空ポンプ26と、その前段および後段にそれぞれ設けられた高温トラップ装置28および低温トラップ装置30とで構成されている。高温トラップ装置28では処理室10からの排気ガスに含まれている未反応のCu(I)hfacTMVSが分解して金属銅がトラップされ、低温トラップ装置30では反応副生成物のCu(II)(hfac)2がトラップされる。 (もっと読む)


【課題】Cu(hfac)(tmvs)カクテルを原料としてCVD法でCu膜を形成するとき、熱安定性を良くし、核発生が良好に誘起され、低温であっても低抵抗でマイクロボイドが発生しにくくする。
【解決手段】Cu−CVDプロセス用原料はCu(hfac)(tmvs)に対してtmvsとHhfac・2H2 Oを添加して作られる液体原料であり、Cu(hfac)(tmvs)に対するtmvsの添加割合が1〜10wt%の範囲に含まれ、触媒であるHhfac・2H2 Oの添加割合が0.1〜0.01wt%の範囲に含まれる。好ましくはtmvsの添加割合が5wt%であり、Hhfac・2H2 Oの添加割合が0.04wt%である。 (もっと読む)


761 - 770 / 770