説明

Fターム[4M119JJ01]の内容

MRAM・スピンメモリ技術 (17,699) | 製造方法 (929) | 成膜 (278)

Fターム[4M119JJ01]の下位に属するFターム

Fターム[4M119JJ01]に分類される特許

1 - 20 / 26


【課題】厚さが35nm以下でも十分に高い保磁力および角型比を有する磁性のコバルト薄膜を得ることができるコバルト薄膜の形成方法およびこの方法により形成したコバルト薄膜を用いたナノ接合素子を提供する。
【解決手段】ポリエチレンナフタレート基板11上に真空蒸着法などによりコバルト薄膜12を35nm以下の厚さに成膜する。こうしてポリエチレンナフタレート基板11上にコバルト薄膜12を成膜した積層体を二つ用い、これらの二つの積層体をそれらのコバルト薄膜12のエッジ同士が、必要に応じて有機分子を挟んで、互いに対向するように交差させて接合することによりナノ接合素子を構成する。このナノ接合素子により不揮発性メモリや磁気抵抗効果素子を構成する。ポリエチレンナフタレート基板11の代わりに、少なくとも一主面がSiO2 からなる基板、例えば石英基板を用いてもよい。 (もっと読む)


【課題】新しいスピン機能素子への展開が可能な、省電力で動作可能な新しい磁化配向制御方法の基本要素技術を提供する。
【解決手段】単結晶強誘電体層上に、強磁性体層をエピタキシャル成長させたヘテロ構造体を準備し、強誘電体層に電圧を印加して強誘電体層と強磁性体層との接合界面に生じる歪みによって、強磁性体の磁気異方性を変化させる、磁気異方性制御方法。 (もっと読む)


【課題】室温でのシリコンチャンネル層におけるスピンの注入を可能とするスピン注入電極構造、スピン伝導素子又はスピン伝導デバイスの提供。
【解決手段】スピン注入電極構造IEは、シリコンチャンネル層12と、シリコンチャンネル層12の第一部分上に設けられた第一酸化マグネシウム膜13Aと、第一酸化マグネシウム膜13A上に設けられた第一強磁性層14Aと、を備える。第一酸化マグネシウム膜13Aには、シリコンチャンネル層12及び第一強磁性層14Aの両方と格子整合している第一格子整合部分Pが部分的に存在している。 (もっと読む)


【課題】磁気特性の低下の抑制を図る。
【解決手段】磁気抵抗素子の製造方法は、磁化の方向が不変の固定層4、コバルトまたは鉄を含み、磁化の方向が可変の自由層6、および前記固定層と前記自由層との間に挟まれる非磁性層5で構成される積層体を形成し、前記積層体上に、ハードマスク11を形成し、前記ハードマスクをマスクとして塩素を含むガスで前記積層体をエッチングし、エッチングされた前記固定層および前記自由層の側面に、ボロンと窒素とを含む絶縁膜14を形成する。 (もっと読む)


【課題】 三端子型磁気抵抗効果素子に関し、一次元線状巨大磁気抵抗素子の特性や磁壁の移動を外部から制御する。
【解決手段】 第1の強磁性体層と、前記第1の強磁性体層より保磁力の大きな第2の強磁性体層と、前記第1の強磁性体層と前記第2の強磁性体層との間に設けられた膜厚が単調に変化する非磁性体と、前記第1の強磁性体層上にゲート絶縁膜を介して設けられたゲート電極とを設ける。 (もっと読む)


マルチフェロイック薄膜材料の製造方法。その方法は、マルチフェロイック前駆体溶液を提供する工程、その前駆体溶液をスピンキャスティングしてスピンキャスト膜を製造する工程、およびそのスピンキャスト膜を加熱する工程を有する。前駆体溶液は、ビスマスフェライト膜を製造するために、エチレングリコール中にBi(NO3)3o5H2OおよびFe(NO3)3o9H2Oを含有していてもよい。さらに、薄膜は、情報保存のための記憶デバイスを含む様々な技術分野において利用されうる。 (もっと読む)


【課題】絶縁層の絶縁性を保ちつつ導電部の導電性を向上し、MR変化率の高いCCP−CPP型の磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置を提供する。
【解決手段】強磁性体を含む第1磁性層と、強磁性体を含む第2磁性層と、前記第1、第2磁性層の間に設けられ、絶縁層と前記絶縁層を貫通する導電部とを含むスペーサ層と、を有する磁気抵抗効果素子の製造方法であって、スペーサ層の母材となる膜を形成する第1工程と、前記膜に、酸素分子、酸素イオン、酸素プラズマ及び酸素ラジカルの少なくともいずれかを含むガスを用いた第1処理を施す第2工程と、前記第1処理が施された前記膜に、窒素分子、窒素原子、窒素イオン、窒素プラズマ及び窒素ラジカルの少なくともいずれかを含むガスを用いた第2処理を施す第3工程と、を備えたことを特徴とする。 (もっと読む)


磁気ランダムアクセスメモリを製造するためのシステム及び方法が、開示される。特に、堆積の間に磁性膜のアライニング方法が、開示される。上記方法は、基板上への第1の磁性材料の堆積の間に存在する基板の領域の第1の方向に沿って第1の磁場を印加することを含む。上記方法は、基板上への前記第1の磁性材料の堆積の間に、領域に第2の方向に沿って第2の磁場を印加することをさらに含む。
(もっと読む)


【課題】より大きなMR変化率を実現できる磁気抵抗効果素子を提供する。
【解決手段】磁化方向が実質的に一方向に固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられた中間層と、前記磁化固着層または磁化自由層の上に設けられたキャップ層と、前記磁化固着層中、前記磁化自由層中、前記磁化固着層と前記中間層との界面、前記中間層と前記磁化自由層との界面、および前記磁化固着層または磁化自由層と前記キャップ層との界面のいずれかに設けられた機能層とを含む磁気抵抗効果膜と、前記磁気抵抗効果膜の膜面に垂直に電流を流すための一対の電極とを有し、前記機能層は、Fe含有量が5原子%以上である金属材料と窒素とを含有する層からなることを特徴とする磁気抵抗効果素子。 (もっと読む)


【課題】より大きなMR変化率を実現できる磁気抵抗効果素子を提供する。
【解決手段】磁化方向が実質的に一方向に固着された磁化固着層と、磁化方向が外部磁界に対応して変化する磁化自由層と、前記磁化固着層と前記磁化自由層との間に設けられた中間層と、前記磁化固着層または磁化自由層の上に設けられたキャップ層と、前記磁化固着層中、前記磁化自由層中、前記磁化固着層と前記中間層との界面、前記中間層と前記磁化自由層との界面、および前記磁化固着層または磁化自由層と前記キャップ層との界面のいずれかに設けられ、酸素または窒素を含有する材料で形成された機能層とを含む磁気抵抗効果膜と、前記磁気抵抗効果膜の膜面に垂直に電流を流すための一対の電極とを有し、前記機能層の結晶配向面が、その上または下の隣接する層の結晶配向面と異なることを特徴とする磁気抵抗効果素子。 (もっと読む)


【課題】これまで以上に磁気情報を正確に読み出すことができるCPP構造磁気抵抗効果素子およびその製造方法を提供する。
【解決手段】導電性の自由磁性層58および導電性の固定磁性層56の間には導電性の非磁性中間層57が挟み込まれる。自由磁性層58および固定磁性層56の少なくともいずれかは、窒化された磁性金属合金から構成される。本発明者らの検証によれば、自由磁性層58および固定磁性層56の少なくともいずれかで単位面積あたりの磁気抵抗変化量(ΔRA)が増大することが確認された。その結果、CPP構造磁気抵抗効果素子の出力は向上する。しかも、窒化された磁性金属合金では飽和磁束密度(Bs)が減少する。その結果、磁性層では磁化は容易に反転する。CPP構造磁気抵抗効果素子の読み出し感度はこれまで以上に向上する。こうしたCPP構造磁気抵抗効果素子はこれまで以上に正確に磁気情報を読み出すことができる。 (もっと読む)


【課題】TMR素子における出力電圧を大きくすることを目的とする。
【解決手段】磁気抵抗素子は、単結晶MgO(001)あるいは(001)結晶面が優先配向した酸素欠損多結晶MgO(0<x<1)層503の両側に設けられる電極として、アモルファス強磁性合金、例えばCoFeB層501、505を用いた点に特徴がある。アモルファス強磁性合金は、例えば蒸着法或いはスパッタリング法を用いて形成可能である。得られた特性等は第1の実施の形態の場合とほぼ同様である。 (もっと読む)


【課題】本発明は、交互する異なった材料組成の第一強磁性層と第二強磁性層とを包含する構造を形成する方法に関する。
【解決手段】最初に、少なくとも一つの開孔を有する支持マトリックスと、導電ベース層とを包含する基材が形成される。次いで、少なくとも一つの強磁性金属元素と、さらなる一つ以上の異なった金属元素を包含する電気メッキ液の中で該基材の電気メッキが行われる。交互する高電位と低電位とを有するパルス電流を基材構造の導電ベース層に印加し、これにより、支持マトリックスの開孔中に、交互する異なった材料組成の層を形成する。 (もっと読む)


【課題】積層構造を有さないでトンネル接合を形成した新規な構造のトンネル接合磁気抵抗素子を提供する。
【解決手段】強磁性体からなる第1の電極12と強磁性体からなる第2の電極13と第1の電極12及び第2の電極13の間に配置されるナノ粒子14とを備え、ナノ粒子14が強磁性金属ナノ粒子14aの外周に絶縁性を有する保護基14bを有する。強磁性金属ナノ粒子14aと第1の電極12との間に第1のトンネル接合15aが形成され、強磁性金属ナノ粒子14aと第2の電極13との間に第2のトンネル接合15bが形成される。 (もっと読む)


【課題】ボトムアップ系とシリコンLSIに代表されるトップダウン系との利点を最大限活かすことができる高機能の機能素子を従来のクリーンルームを用いることなく、高い歩留まりで製造する方法を提供する。
【解決手段】局所的な相互作用により形成される第1の構造と予め設定された大局的な規則により形成された第2の構造とが、1次元超格子を薄片化した超格子薄片を複数交差させて重ねたものからなる第3の構造を介して結合されてなる機能素子を製造する場合に、防塵フィルター256を用いて作業室251をクリーンな環境に維持するクリーンユニットを用いる。防塵フィルター256は送風動力を有し、作業室251から流出する気体の全てが防塵フィルター256の入り口に入るように構成する。 (もっと読む)


【課題】高い磁気抵抗効果が得られるポイントコンタクトを有する磁気抵抗効果素子及びその製造方法、磁気メモリ、磁気ヘッド並びに磁気記録装置を提供することを目的とする。
【解決手段】絶縁性の下地と、前記下地の主面上に設けられた第1の強磁性体層と、前記下地の前記主面上において前記第1の強磁性体層と離間して設けられた第2の強磁性体層と、前記下地の前記主面上において前記第1の強磁性体層と前記第2の強磁性体層とに接してこれらの間に設けられた接続部であって、強磁性体からなる第1の結晶粒と強磁性体からなる第2の結晶粒とを有し、前記第1の強磁性体層と前記第2の強磁性体層との間を流れる電流の経路のうちの最も狭い部分は、前記第1の結晶粒と第2の結晶粒との結晶粒界である、接続部と、を備えたことを特徴とする磁気抵抗効果素子を提供する。 (もっと読む)


【課題】強磁性から常磁性への転移が必要とされる、強磁性体を用いたデバイスを小型化することが可能な磁性制御方法を提供する。
【解決手段】強磁性半導体110の強磁性を常磁性に転移させる方法であって、光照射又は電界印加により強磁性半導体110に強磁性半導体110のバンドギャップエネルギー以上のエネルギーを与えて強磁性半導体110内に伝導電子を発生させ、該伝導電子により強磁性半導体110における強磁性を担うイオンの価数を変化させて強磁性半導体110の強磁性を常磁性に転移させる。 (もっと読む)


【課題】強磁性導電体薄膜とトンネル障壁薄膜を整合性よく接合することができ、それにより、接合の不具合による特性の低下が生じることを防ぐことができる磁気抵抗素子を提供する。
【解決手段】磁気抵抗素子10は、GaNにおいてGaの一部がMnに置換された(Ga, Mn)N薄膜11と、Ga2O3においてGaの一部がMnに置換された(Ga, Mn)2O3薄膜12の間に、Ga2O3から成るトンネル障壁薄膜13を配置したものである。(Ga, Mn)N薄膜11と(Ga, Mn)2O3薄膜12は共にp型半導体であって強磁性を示す。(Ga, Mn)N薄膜11は、トンネル障壁薄膜13を基板としてエピタキシャル成長させることによりトンネル障壁薄膜13と整合性よく接合することができる。また、(Ga, Mn)2O3薄膜12は、トンネル障壁薄膜13と基本的に同じ結晶構造を有するため、トンネル障壁薄膜13と整合性よく接合することができる。 (もっと読む)


【課題】TMR素子における出力電圧を大きくする。
【解決手段】単結晶MgO(001)基板11を準備し、50nm厚のエピタキシャルFe(001)下部電極(第1電極)17をMgO(001)シード層15上に室温で成長し、次いで、超高真空(2×10−8Pa)において、350℃でアニールを行う。2nm厚のMgO(001)バリア層21をFe(001)下部電極(第1電極)17上に室温でエピタキシャル成長する。この際、MgOの電子ビーム蒸着を用いた。MgO(001)バリア層21上に室温で、厚さ10nmのFe(001)上部電極(第2電極)23を形成した。連続して、10nm厚さのCo層21をFe(001)上部電極(第2電極)23上に堆積した。次いで、上記の作成試料を微細加工してFe(001)/MgO(001)/Fe(001)TMR素子を形成する。これによりMRAMの出力電圧値を高めることができる。 (もっと読む)


マイクロエレクトロニクス・トランジスタおよび製作方法の性能および製造可能性を強化するための新たな技術を提供する。
【課題】
【解決手段】トランジスタ装置およびそれを形成する方法であって、基板と、基板上の第1のゲート電極と、基板上の第2のゲート電極と、第2のゲート電極に重なり合うフランジ付き端部の対を備えるランディング・パッドとを備え、第2のゲート電極の構造は、ランディング・パッドの構造と不連続である。 (もっと読む)


1 - 20 / 26