説明

Fターム[5C178HC04]の内容

FAXの帯域、冗長度の圧縮 (10,198) | 適用システム (494) | 医療 (28)

Fターム[5C178HC04]に分類される特許

1 - 20 / 28


【課題】画素にノイズが多く含まれる環境下でのロスレス符号化方式の圧縮率を高める。
【解決手段】ランレングス符号化モードと、重み付け予測符号化モードと、それ以外の符号化モードを持ち、符号化モードの判定において符号化対象画素の周囲画素が含むノイズ量を判別し、ノイズ量に応じて符号化モードを適切に切り換え、ノイズ量は、周囲画素の分散、あるいは周波数変換後の係数の絶対値和を用いて測定する画像符号化方式を用いる。 (もっと読む)


【課題】複数枚の静止画像をロスレスに、かつデータ量を小さく圧縮する画像圧縮方法を実現する。
【解決手段】符号化装置は、複数の画像間で可逆Wavelet変換によるスライス間処理を行い(スライス間処理は任意)、原画像からパターン情報を分離し、原画像の符号化時にパターン情報を利用して複数の予測方法から一つの予測方法を選択することによって画素の予測精度を上げ、ロスレスに、かつデータ量を小さく画像を圧縮する。 (もっと読む)


【課題】空間領域において画像を8ビット画像に縮小せずに高ビット深度画像を符号化する方法を提供する。
【解決手段】画像の周波数領域表現が受信され、周波数領域表現は複数のビットプレーンを有する。周波数領域表現は、ビットプレーンの第1のセット及びビットプレーンの第2のセットに区画される。ここで、ビットプレーンの第1のセットはビットプレーンの第2のセットより上位のビットプレーンのセットである。ビットプレーンの第1のセット及びビットプレーンの第2のセットは、複数の区画に区画される。ビットプレーンの第2のセットからの少なくとも1つの区画は、ビットプレーンの第1のセットの複数の区画に挿入され、画像の複数の配置された区画を生成する。画像の配置された区画が格納される。 (もっと読む)


【課題】 本発明は,きわめて効率的に画像を圧縮できる画像圧縮方法を提供することを目的とする。本発明は,特に骨の部分,正常部分及び罹患部分を明瞭に区別できる医療画像の圧縮方法を提供することを目的とする。
【解決手段】 本発明は, 基本的には,複数種類の周波数でオーバーサンプリングした画像の共通データを可逆圧縮することで,きわめて効率的に画像を圧縮できる画像圧縮方法を提供できるという知見に基づくものである。本発明は,画像読み取り工程(S101)と,周波数解析工程(S102)と,周波数変換工程(S103)と,共通部分抽出工程(S104)と,第1の圧縮工程(S105)とを含む画像圧縮方法に関する。 (もっと読む)


【課題】高ビット深度画像のビット深度変換において、高ビット深度画像のロスレス表現を実現することができるようにする。
【解決手段】Nビット深度の画像を、Mビット深度の上位層と、それ以外の下位層とに変換する画像処理装置であって、Nビット深度の画像の各画素値の出現度数を示すヒストグラムを生成するヒストグラム生成部と、前記ヒストグラムの出現度数が1以上の画素を順番に並べたテーブルを生成するテーブル生成部と、テーブルを用いて、前記ヒストグラム内の値の配置を並び替える並び替え部と、テーブルとヒストグラムを更新する更新部と、Nビット深度のインデックス画像を生成するインデックス画像生成部とを備える。本開示は、例えば、画像処理装置に適用することができる。 (もっと読む)


【課題】符号量を低減させることができるようにする。
【解決手段】領域分割部は、3次元画素ブロックを複数の領域に区分する。スキャン順決定部は、各領域の各3D-DCT係数データに対して、各フォーカス面画像上の基準点からの距離Dを定め、スキャン順を距離Dの大きさ順に決定する。ランレベル変換部は、その3D-DCT係数データ列をランレベル変換するようにしてもよい。インデックス変換部は、そのランレベルを、識別番号であるインデックスに変換するようにしてもよい。本開示は、例えば、画像処理装置に適用することができる。 (もっと読む)


【課題】画像において、ユーザの関心が高い部分の画質の劣化を抑制しつつ、画像のデータ量を削減することを、容易に行う。
【解決手段】表示時間取得部41は、画像の所定の単位領域ごとの表示時間を取得する。圧縮制御部42は、表示時間取得部41が取得した表示時間に基づいて、単位領域ごとに、画像の圧縮を制御する。本発明は、例えば、顕微鏡を介して、病理組織の標本を撮影した画像等の、膨大なデータ量の画像を処理する場合に適用することができる。 (もっと読む)


【課題】圧縮処理に要する時間の短縮が可能な放射線画像撮影装置を提供する。
【解決手段】放射線画像撮影装置1において、内部メモリ(RAM領域23a)には圧縮処理のための圧縮コードのうちの一部を記憶する第1圧縮テーブルT1が格納され、外部メモリ(記憶手段40)には圧縮処理のための圧縮コードのうちの残りを記憶する第2圧縮テーブルT2が格納され、複数の放射線検出素子7から出力された各画像データについて、隣接する放射線検出素子7の画像データ同士の差分を算出して差分データを作成し、当該差分データに対して圧縮処理を行う圧縮用FPGA23は、作成した差分データごとに、当該差分データに基づいて第1圧縮テーブルT1および第2圧縮テーブルT2のうちの何れの圧縮テーブルを参照するか特定し、特定した圧縮テーブルを参照して当該差分データに対して対応する圧縮コードを割り当てることによって圧縮処理を行うことを特徴とする。 (もっと読む)


【課題】
データの圧縮処理を効率的に実行し圧縮処理に要する時間を短くすることである。
【解決手段】
実施形態のデータ処理装置は、時系列データを入力するデータ入力手段と、当該データ入力手段に入力された時系列データに非可逆処理を適用して第1の圧縮データを得る非可逆処理手段と、当該非可逆処理手段で得られた第1の圧縮データを保持するバッファと、当該バッファに保持された第1の圧縮データの一部あるいは全部を指定する範囲指定手段と、当該範囲指定手段で指定された第1の圧縮データに可逆処理を適用して第2の圧縮データを得る可逆処理手段と、当該可逆処理手段で得られた第2の圧縮データを出力するデータ出力手段とを備える。 (もっと読む)


【課題】放射線画像撮影で取得された画像データを圧縮する際の圧縮率を向上させることが可能な放射線画像撮影装置および放射線画像撮影システムを提供する。
【解決手段】放射線画像撮影装置1は、圧縮間引き画像用データを作成する場合、1画像分データに対して所定の割合で信号線方向に間引き処理を行うことにより間引き画像用データを作成し、当該間引き画像用データを構成する各画像データについて走査線方向の差分データを作成し、当該差分データに対して圧縮処理を行う。また、圧縮1画像分データを作成する場合、1画像分データを構成する各画像データについて信号線方向の差分データを作成し、当該差分データに対して圧縮処理を行う。また、圧縮残り画像用データを作成する、間引き処理後の残り画像用データを構成する各画像データについて信号線方向の差分データを作成し、当該差分データに対して圧縮処理を行う。 (もっと読む)


【課題】文字や絵などの図形が重畳された画像を、文字や絵などが判読可能となるように圧縮する画像処理装置を得る。
【解決手段】画像処理装置100は、文字列描画回路102とエンコード回路103とを備える。文字列描画回路102は、画像処理回路101から観察画像を取得して、観察画像に図形を重畳して重畳画像を作成する。図形は、文字等の様々な形状を含む。文字等は、患者の情報、画像処理パラメータ、内視鏡装置200のエラーメッセージ、施術者の情報、内視鏡装置200のシステム時間、及びストップウォッチ等の、観察に必要な情報や、観察対象に関連する情報を表す。エンコード回路103は、CPU221からの信号に応じて、文字列描画回路102から重畳画像を取得し、重畳画像を圧縮して圧縮画像を作成する。文字列描画回路102が観察画像に重畳する図形の表示形式は、重畳画像を圧縮するフォーマットに応じて決定される。 (もっと読む)


【課題】X線平面検出器からその外部機器へ画像データ転送する際に、ボトルネックの発生を抑制できる画像データ圧縮システムを提供する。
【解決手段】X線平面検出器とその外部装置との間で画像データの圧縮転送を行う画像データ圧縮システムであって、X線平面検出器4は、撮影したX線を画像データに変換するX線撮影部と、画像データを2次元データの元画像データPoとする画像蓄積部と、元画像データPoを1次元の元画像データ列Doにするシリアライズ部と、元画像データ列Doを可逆圧縮して圧縮画像データ列Dcとする可逆圧縮部と、圧縮画像データ列Dcを外部機器へと転送する転送部と、を備え、外部機器6は、圧縮画像データ列Dcを受信する受信部と、圧縮画像データ列Dcを1次元の画像データ列Ddにする復号部と、復号後の画像データ列Ddを2次元データである画像Pdとするデシリアライズ部とを備える。 (もっと読む)


【課題】画像の利便性の低減を抑制しながら、画像を符号化して得られる符号化データの保存に必要な容量を低減させることができるようにする。
【解決手段】バーチャル顕微鏡101は、1つの検体に対して複数の撮像画像からなるZスタック画像を生成する。3D-DCT符号化装置102は、Zスタック画像に対して3次元の離散コサイン変換を伴う符号化を行い、3D-DCT符号化データを生成し、ストレージ103に記憶させる。トランスコード装置104は、要求された画像を含む3D-DCT符号化データをストレージ103から取得し、必要な情報をJPEG符号化データに変換し、供給する。クライアント端末装置105は、そのJPEG符号化データを復号し、復号画像を観察画像として表示する。本発明は、例えば、画像処理装置に適用することができる。 (もっと読む)


【課題】 本発明は,きわめて効率的に画像を圧縮できる画像圧縮方法を提供することを目的とする。本発明は,特に骨の部分,正常部分及び罹患部分を明瞭に区別できる医療画像の圧縮方法を提供することを目的とする。
【解決手段】 本発明は, 基本的には,複数種類の周波数でオーバーサンプリングした画像の共通データを可逆圧縮することで,きわめて効率的に画像を圧縮できる画像圧縮方法を提供できるという知見に基づくものである。本発明は,画像読み取り工程(S101)と,周波数解析工程(S102)と,周波数変換工程(S103)と,共通部分抽出工程(S104)と,第1の圧縮工程(S105)とを含む画像圧縮方法に関する。 (もっと読む)


【課題】画素予測を好適に実行することにより、高い圧縮率を実現する。
【解決手段】符号化対象画像内の着目画素の画素値を、着目画素の近傍の所定の範囲内の複数の参照画素の画素値から予測して符号化する画像符号化方法であって、符号化対象画像から抽出される複数の特徴量に基づいて、着目画素の画素値の予測方法及び予測方法において用いられる予測パラメータを学習する手順と、学習された予測方法及び予測パラメータに基づいて、複数の参照画素から一つの参照画素を選択し、選択された参照画素の画素値を、着目画素の予測値として予測する手順と、予測された着目画素の予測値と、着目画素の画素値との差分を、予測誤差として算出する手順と、算出された予測誤差と、予測パラメータとを符号化する手順とを含む。 (もっと読む)


【課題】画像全体の符号化効率を向上させる。
【解決手段】符号化対象画像を、当該画像の各画素の画素値に応じて、少なくとも第一の画像と、第二の画像とに分離する第1手順と、分離された第一の画像の符号化コストを計算する第2手順と、分離された第二の画像の符号化コストを計算する第3手順と、第1手順、第2手順及び第3手順を、第1手順における分離方法を変更して繰り返し、分離方法毎に計算された第一の画像の符号化コスト及び第二の画像の符号化コストに基づき、使用すべき分離方法を決定する第4手順と、使用すべき分離方法に基づいて分離された第一の画像を符号化する第5手順と、使用すべき分離方法に基づいて分離された第二の画像を符号化する第6手順と、符号化された第一の画像と、符号化された第二の画像と、使用すべき分離方法の情報とに基づいて、符号化ストリームを生成する第7手順とを含む。 (もっと読む)


【課題】画像の符号化データのデータ量をより容易に低減させることができるようにする。
【解決手段】ハフマン復号部101は、JPEG規格に従い、ハフマン符号化されたJPEG画像を復号する。空白領域特定部102は、係数データから、復号画像に含まれる、注目領域でない空白領域を特定する。成分分離部103は、ハフマン復号結果に基づいてJPEG画像をAC成分符号とDC成分符号とに分離する。AC成分除去部104は、分離されたAC成分符号から、ROIマスクにおいて空白領域とされる領域のAC成分を除去する。トランスコード100は、DC成分符号と、空白領域のAC成分が除去されたAC成分符号とを合成し、トランスコードされたJPEG画像として出力する。本発明は、例えば、画像処理装置に適用することができる。 (もっと読む)


【課題】複数の画像に対して、複数の圧縮方式(特に、ロスレス圧縮方式とロッシー圧縮方式)を組み合わせて効率的に圧縮符号化又は復号できる。
【解決手段】入力された複数の画像を符号化する画像符号化装置である。この画像符号化装置は、入力された複数の画像の各々について、第1の領域と、第2の領域とを示す領域データを、複数の画像の相関を利用して計算する領域計算部と、計算された複数の画像の各々の領域データに基づいて、第1の領域を第1の符号化方式によって符号化し、第2の領域を第2の符号化方式によって符号化するフレームエンコーダと、計算された複数の画像の各々の領域データを、領域データの相関を利用して符号化する領域データエンコーダと、符号化された複数の画像の各々と符号化された領域データとを関連付けて出力する出力部と、を備える。 (もっと読む)


【課題】欠陥画素の影響を低減しつつデータ圧縮処理に関する情報の省サイズ化を図る。
【解決手段】複数の走査線および信号線により二次元状に配列された複数の放射線検出素子7と、信号線方向に隣接する放射線検出素子から差分データを作成する算出手段491と、データの圧縮処理を行う圧縮手段492と、データ転送を行う転送手段39と、差分データから出力異常を判定する出力異常判定手段491cとを備え、圧縮手段は、信号線方向に片側の放射線検出素子との差分データにより出力異常と判定された放射線検出素子に対してその逆側に隣接する放射線検出素子との差分データを圧縮処理の対象から除外し、逆側に隣接する放射線検出素子は出力異常の放射線検出素子の周囲の放射線検出素子との差分データを算出する。 (もっと読む)


【課題】かなりの視覚コンテントを有する大きなデジタル病理スライド画像を圧縮し、一方、高い視覚品質を維持することのできる最適化画像圧縮機構を提供する。
【解決手段】デジタル病理スライド画像の最適化画像圧縮を行う有用な新規の方法およびシステム。最適化画像圧縮機構は、デジタル病理スライドによって表される染色された組織の特殊な色特性を利用し、速度歪み性能が改善された画像圧縮アルゴリズムを実現する。最適化色変換は、各染色タイプごとの病理スライド画像スキャンデータのトレーニングセットを使用して事前に算出される。最適化色変換は、入力スライド画像スキャンを圧縮して画像ストリーミングの効率を高め、ユーザが、病院、衛星センター、家庭、または携帯電話のような接続された任意の位置から得た極めて大きなデジタルスライドスキャンを検討するのを可能にする。 (もっと読む)


1 - 20 / 28