説明

Fターム[5F041CA71]の内容

発光ダイオード (162,814) | LED形式 (36,241) | 製造方法 (9,002) | イオン注入 (118)

Fターム[5F041CA71]に分類される特許

1 - 20 / 118


【課題】中間層の一部および支持基板の一部の少なくともいずれかが露出している複合基板であっても、半導体デバイスを歩留まりよく製造することができる複合基板の製造方法を提供する。
【解決手段】本複合基板の製造方法は、支持基板10と、その主面の少なくとも一部上に配置された中間層20と、その主面の少なくとも一部上に配置されたIII族窒化物層30aとを含み、III族窒化物層30aの主面と、中間層20の主面の一部および支持基板10の主面の一部の少なくともいずれかと、が露出している第1の複合基板1を準備する工程と、第1の複合基板1の中間層20の露出部分を選択的にエッチングにより除去することにより第2の複合基板2を得る工程と、第2の複合基板2の支持基板10の主面の露出部分を所定の深さまで選択的にエッチングにより除去することにより第3の複合基板3を得る工程と、を含む。 (もっと読む)


【課題】
高抵抗領域と低抵抗領域が隣接して形成されると、境界部に電流集中が生じる。
【解決手段】
窒化物半導体発光素子は、基板と、基板上に配置され、p型層、活性層、n型層を含む窒化物半導体積層と、p型層と基板との間に形成されたp側電極と、n型層上の限定された領域に形成されたn側電極と、n側電極に対向する領域を含んで、p型層内、またはp型層表面に形成され、実質的に電流を流さない高抵抗領域と、高抵抗領域外側のp型層に形成され、p側電極との間に電流を流す低抵抗領域と、高抵抗領域と低抵抗領域の間に形成され、制限された電流を流すグレーデッド領域と、を有する。 (もっと読む)


【課題】エピタキシャル層に残存する転位の数を少なくする。
【解決手段】第2エピタキシャル層200は、第1エピタキシャル層100上にエピタキシャル成長している。第1エピタキシャル層100は、エピタキシャル成長層110及び欠陥層120を有している。欠陥層120は、エピタキシャル成長層110の上、かつ、第1エピタキシャル層100の表層に位置している。欠陥層120の欠陥密度は、5×1017cm−2以上である。欠陥層120を突き抜けた欠陥は、第2エピタキシャル層200の内部でループを形成している。 (もっと読む)


【課題】光透過率が高く、かつ電極との接触抵抗が低いβ−Ga系基板、そのβ−Ga系基板を含むLED素子、及びLED素子の製造方法を提供する。
【解決手段】ドナー含有β−Ga系単結晶からなる低ドナー濃度層2aと、低ドナー濃度層2a上に積層された、ドナー含有β−Ga系単結晶からなる、第1電極3を接続するための高ドナー濃度層2bとを含むβ−Ga系基板2を提供する。高ドナー濃度層2bは、厚さが1μm以下であり、低ドナー濃度層2aよりも薄く、低ドナー濃度層2aよりもドナー濃度が高い。 (もっと読む)


【課題】高温NH3雰囲気下においても耐久性が高い透明かつ導電性の中間膜を有し、半導体デバイスの製造に好適に用いられる複合基板およびその製造方法、ならびにかかる複合基板を用いた半導体デバイスおよびその製造方法を提供する。
【解決手段】本複合基板1は、多結晶III族窒化物支持基板10と、多結晶III族窒化物支持基板10上に配置された中間GaN系膜30と、中間GaN系膜30上に配置された単結晶GaN系層21と、を含む。本半導体デバイス2は、複合基板1と、複合基板1の単結晶GaN系層21上に配置された少なくとも1層のGaN系半導体層40と、を含む。 (もっと読む)


【課題】高効率で発光し、薄型に適した発光素子を提供することを目的とする。
【解決手段】発光素子1は、紫外光放射部15と蛍光体層21とからなり、ZnOをベースとし、Ga、Pが添加された半導体材料で形成された紫外発光層11と、ZnOをベースとするp型半導体層12とがpn接合され、紫外発光層11に第1電極13が、p型半導体層12に第2電極14が接続されている。第1電極13と第2電極との間に電圧を印加することによって、紫外発光層11からピーク波長が400nm以下の紫外光が放射される。蛍光体層21は、紫外光放射部15から放射される紫外光を吸収し可視光に変換する。この可視光は基板22を透過して外部に出射される。 (もっと読む)


【課題】成長用基板に形成された窒化物半導体層を容易に剥離できる窒化物半導体発光素子の製造方法を提供する。
【解決手段】窒化物半導体発光素子の製造方法では、第1のサイズd1を有する第1基板31に窒化物半導体層11を形成する。窒化物半導体層11上に第1のサイズd1より小さい第2のサイズd2を有する第1接着層12aを形成し、第2基板32上に第2接着層12b形成する。第1および第2接着層12a、12bを重ね合わせ、第1および第2基板31、32を張り合わせる。第2のサイズd2より大きいまたは等しい第3のサイズd3を有する凹部31aを生じるように第1基板31を除去する。凹部31aに薬液を注入し、窒化物半導体層11が露出するまで第1基板31をエッチングする。薬液で、露出した窒化物半導体層11を更にエッチングし、窒化物半導体層11の露出面を粗面化する。 (もっと読む)


【課題】特性が高いGaN系半導体デバイスを歩留まりよく製造することができるGaN系半導体デバイスの製造方法を提供する。
【解決手段】本GaN系半導体デバイス5の製造方法は、イオン注入分離法を用いて、GaNの熱膨張係数に対する比が0.8以上1.2以下の熱膨張係数を有する支持基板10と、支持基板10に貼り合わされたGaN層21と、を含む複合基板1を準備する工程と、複合基板1のGaN層21上に少なくとも1層のGaN系半導体層40を成長させる工程と、複合基板1の支持基板10を溶解することにより除去する工程と、を含む。 (もっと読む)


【課題】製造過程でエピタキシャル層の表面部に形成されるエッチピットに起因するリーク電流を抑えること。
【解決手段】ダイオードの製造方法は、エピタキシャル層の表面にキャップ層を形成するキャップ層形成工程(S3)と、キャップ層が形成されている状態でドーパントを活性化させるアニール工程(S4)と、キャップ層を除去するキャップ層除去工程(S5)と、エッチング技術を利用してエピタキシャル層の表面を洗浄する洗浄工程(S6)と、エピタキシャル層の表面に第2エピタキシャル層を結晶成長させる工程と(S7)と、エピタキシャル層の表面に形成されている第2エピタキシャル層を研磨する研磨工程(S8)と、を備えている。 (もっと読む)


【課題】結晶性の高い半導体層を有するn−down型の半導体デバイスおよびその製造方法を提供する。
【解決手段】本半導体デバイス5は、支持基板60と、支持基板60上に配置された導電層50と、導電層50上に配置された少なくとも1層のIII族窒化物半導体層200とを含み、III族窒化物半導体層200のうち導電層50に隣接する導電層隣接III族窒化物半導体層200cは、n型導電性を有し、転位密度が1×107cm-2以下であり、酸素濃度が5×1018cm-3以下である。 (もっと読む)


【課題】中間層の一部が露出している支持基板であっても、それに適切な処理を加えることにより、半導体デバイスを歩留まりよく製造することができる半導体デバイスの製造方法およびエピタキシャル成長用の支持基板を提供する。
【解決手段】本半導体デバイスの製造方法は、少なくとも1層のIII族窒化物半導体層40をエピタキシャル成長させることができる下地基板10と、下地基板10上に全面的に配置された中間層20と、中間層20上に部分的に配置されたGaN層30aとを含み、GaN層30aと中間層20の一部とが露出している支持基板2を形成する工程と、支持基板2の中間層20が露出している部分20p,20q,20rを選択的に除去することにより、下地基板10の一部を露出させる工程と、GaN層30a上に、III族窒化物半導体層をエピタキシャル成長させる工程と、を備える。 (もっと読む)


【課題】支持基板と半導体層とを分離するために照射される光について、支持基板と半導体層との間に形成される中間層の光熱変換層で吸収されずに中間層外に透過する率を低減する半導体デバイスの製造方法を提供する。
【解決手段】本半導体デバイスの製造方法は、光熱変換層21と光透過抑制構造層27とを含む中間層20を有する積層支持基板1の作製工程と、積層貼り合わせ基板2の作製工程と、エピ成長用積層支持基板3の作製工程と、デバイス用積層支持基板4の作製工程と、デバイス用積層ウエハ5の作製工程と、透明半導体積層ウエハ6を含む半導体デバイス7の作製工程と、を備える。 (もっと読む)


【課題】高速応答性と高出力性とを兼ね備えた赤色光及び/又は赤外光を発光する発光ダイオード、発光ダイオードランプ及び照明装置を提供することである。
【解決手段】本発明に係る発光ダイオードは、組成式(AlX1Ga1−X1)As(0≦X1≦1)の化合物半導体からなる井戸層及びバリア層を交互に積層した量子井戸構造の活性層と、該活性層を挟む第1のクラッド層と第2のクラッド層とを有する発光部と、前記発光部上に形成された電流拡散層と、前記電流拡散層に接合された機能性基板とを備え、前記第1及び第2のクラッド層を組成式(AlX2Ga1−X2Y1In1−Y1P(0≦X2≦1,0<Y1≦1)の化合物半導体からなり、前記井戸層及びバリア層のペア数が5以下であることを特徴とする。 (もっと読む)


【課題】交流電源を直接使用し、高発光率を実現させることを可能にする発光装置及びその製造方法を提供する。
【解決手段】基板上に形成されている交流駆動回路ユニットは、第一ダイオード301、第二ダイオード302、第三ダイオード303、第四ダイオード30を有している。第一ダイオード301および第四ダイオード304は直列に接続され、第一支流を構成する。第二ダイオード302および第三ダイオード303は直列に接続され、第二支流を構成する。第一支流および第二支流は並列に接続され、交流を直流に変換させるブリッジ式整流回路を構成し、発光区101に直列に接続されている。交流電源に接続された場合、一方の支流を経由して、発光区101にあるLEDに給電され、発光する。電流の向きが逆になった場合、他方の支流を経由して電流が流れるため、LEDユニットは常時発光することとなり、LEDユニットの利用効率が向上する。 (もっと読む)


【課題】蛍光体の熱劣化が少なく、光混合性がよく、色むらが少なく、さらに発光強度が強い白色発光ダイオード、それに用いられる発光ダイオード用基板及びその製造方法を提供する。
【解決手段】発光ダイオード素子が形成可能な単結晶層と、単一金属酸化物及び複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、酸化物相のうち少なくとも1つは蛍光を発する金属元素酸化物を含有する光変換用セラミックス複合体層とが直接接合され、前記単結晶層の厚みが0.100mm〜0.0005mmであることを特徴とする発光ダイオード用基板である。 (もっと読む)


【課題】シリコン基板などの支持基板上に窒化物半導体膜を形成し、その窒化物半導体膜上にエピタキシャル層を形成した半導体ウェハを提供する。
【解決手段】支持基板と、上記支持基板の表面に設けられた窒化物半導体薄膜と、上記窒化物半導体薄膜上に気相成長され形成された窒化物半導体エピタキシャル層と、を備える半導体ウェハにおいて、上記窒化物半導体薄膜は、GaN基板に設けられたイオン注入層を境として上記GaN基板から剥離されたGaN薄膜であって、上記GaN薄膜は(000−1)窒素面側を上記支持基板側に有し、(0001)Ga面側を上記窒化物半導体エピタキシャル層の気相成長面として有する。 (もっと読む)


【課題】電気的に隔離された発光ダイオードを提供する。
【解決手段】半導体発光ダイオードは、半導体基板51と、基板上にあるn型III群窒化物のエピタキシャル層52と、n型エピタキシャル層上にあり当該n型層と共にp−n接合部を形成する、III群窒化物のp型エピタキシャル層53と、n型エピタキシャル層上にありp型エピタキシャル層に隣接し、p−n接合部58の一部を電気的に隔離する抵抗性窒化ガリウム領域54とを含む。p型エピタキシャル層上に金属接点層55を形成する。方法の実施形態では、p型エピタキシャル領域上に打ち込みマスクを形成し、p型エピタキシャル領域の部分にイオンを打ち込んでp型エピタキシャル領域の部分を半絶縁性にすることによって、抵抗性窒化ガリウム境界を形成する。フォトレジスト・マスク又は十分に厚い金属層を、打ち込みマスクとして用いることができる。 (もっと読む)


【課題】ダイヤモンド薄膜内に存在する結晶欠陥、不純物等を減少させ、高品質なダイヤモンド薄膜を作製可能なダイヤモンド薄膜作製方法を提供すること。
【解決手段】ダイヤモンドが安定な高圧力下でアニールを行う。これにより、結晶中に含まれる格子欠陥等が回復、除去され、ダイヤモンド結晶薄膜を高品質化する事ができる。「(ダイヤモンドが)安定な、安定に」とは、ダイヤモンドがグラファイト化せずにダイヤモンドの状態を保つ状態を指す。ダイヤモンドが安定にアニール出来る領域内でアニールを行う温度(アニール温度、とも呼ぶ)Tおよびアニールを行う圧力(アニール圧力、とも呼ぶ)Pが決定される。この領域は、図21に示される、P>0.71+0.0027TまたはP=0.71+0.0027Tを満たし、なおかつP≧1.5GPaの領域である。このような領域は、図21中の斜線部分である。 (もっと読む)


【課題】イオン注入したダイヤモンドの高温高圧アニールにより起こるダイヤモンド表面のエッチングを防ぎ、従来の方法では得られない高品質P型、N型ダイヤモンド半導体を得るダイヤモンド半導体の作製方法を提供すること。
【解決手段】ダイヤモンド基板5−11を用意し、そのダイヤモンド基板5−11上にマイクロ波プラズマCVD装置を用い、メタンを反応ガスとして基板温度700℃でダイヤモンド薄膜5−12を1μm積層する。上記ダイヤモンド薄膜5−12にイオン注入装置を用い、加速電圧60kV、ドーズ量1×1014cm−2でドーパントを打ち込む。その後、イオン注入ダイヤモンド薄膜5−13上に保護層(白金)5−14を形成する。表面に保護層5−14が形成されたイオン注入ダイヤモンド薄膜5−13を、超高温高圧焼成炉内に配置し、3.5GPa以上、600℃以上の圧力、温度下でアニールする。 (もっと読む)


【課題】光抽出が向上したLEDを提供する。
【解決手段】関連したpコンタクトを有するp型材料層(10)と、関連したnコンタクトを有するn型材料層と、p型層とn型層との間の活性領域(18)とを有するLED(10)は、p型材料層またはn型材料層のいずれかの中に形成された閉じ込め構造(20)を備える。閉じ込め構造(20)は、LED(10)の主放射上面のコンタクト(22)とほぼ一列に並んでおり、閉じ込め構造(20)および上面コンタクト(22)の面積と一致する活性領域(18)の面積からの光の放射を実質的に妨げる。LED(10)は、さらに光抽出を向上させるために、粗面処理された放射側面(25)を備えてもよい。 (もっと読む)


1 - 20 / 118