説明

Fターム[5F045DA53]の内容

気相成長(金属層を除く) (114,827) | 半導体成長層の構造 (3,415) | 半導体成長層の形状、構造 (2,125) | 多層成長層 (2,091) | バッファ層・中間層・遷移層を有するもの (1,084)

Fターム[5F045DA53]に分類される特許

41 - 60 / 1,084


【課題】電流の変動を抑制し、かつピンチオフ特性を確保することが可能な半導体装置、及び半導体装置の製造方法を提供する。
【解決手段】SiCからなる基板10と、基板10上に設けられ、AlNからなるバッファ層12と、バッファ層12上に設けられ、GaNからなるチャネル層14と、チャネル層14上に設けられ、AlGaNからなる電子供給層16と、電子供給層16上に設けられたソース電極20、ドレイン電極22及びゲート電極24と、を具備し、チャネル層14の電子供給層16側の領域14bにおけるCの濃度は、チャネル層14のバッファ層12側の領域14aにおけるCの濃度より高いHEMT100、及びその製造方法。 (もっと読む)


【課題】HEMT及びその他の高速スイッチングデバイスにおいて、意図しない不純物のドープはを防ぎ高性能なデバイスを提供する。
【解決手段】半導体構造は、基板、基板上方の遷移体、及び遷移体上方に底面を有するIII−V族中間体を備える。半導体構造はさらに、III−V族中間体の頂面上方にIII−V族デバイス層を備える。III−V族中間体213は、前記底面211において高く、前記頂面213において低くなる形で連続的に減少された不純物濃度を有する。 (もっと読む)


【課題】シリコンウェハ等のベース基板上方に窒化物半導体からなる半導体結晶層を形成する場合に、当該半導体結晶層の転位密度を低減する。
【解決手段】ベース基板、接着層、バッファ層および活性層を有し、前記ベース基板、前記接着層、前記バッファ層および前記活性層がこの順に位置し、前記ベース基板の前記接着層と接する領域にSiが存在し、前記接着層、前記バッファ層および前記活性層が、窒化物半導体からなる半導体基板であって、前記バッファ層が、第1結晶層と第2結晶層が交互に複数積層された積層構造体であり、前記第1結晶層が、AlGa1−mN、(但し0≦m≦1)で表される結晶からなり、前記第2結晶層が、AlGa1−nN、(但し0≦n≦1、m>n)で表される結晶からなり、前記第1結晶層の格子緩和度が、前記第2結晶層の格子緩和度より大きい半導体基板を提供する。 (もっと読む)


【課題】シリコンウェハ等のベース基板上方に窒化物半導体からなる半導体結晶層を形成する場合に、当該半導体結晶層の転位密度を低減する。
【解決手段】ベース基板、接着層、バッファ層および活性層がこの順に位置し、前記ベース基板の前記接着層と接する領域にSiが存在し、前記接着層、前記バッファ層および前記活性層が、窒化物半導体からなる半導体基板の製造方法であって、前記ベース基板をエピタキシャル結晶成長装置の成長室に設置した後に、前記ベース基板の温度を1000℃以上に維持しつつ前記ベース基板の表面をアンモニアガスとキャリアガスとの混合ガスに暴露するアンモニアガス暴露工程と、前記アンモニアガス暴露工程の後に、前記ベース基板の上に、前記接着層、前記バッファ層および前記活性層をエピタキシャル成長法により順次形成する層形成工程と、を有する半導体基板の製造方法を提供する。 (もっと読む)


【課題】歪み層形成に供されるウェーハで転位発生に対して耐性が高いエピタキシャルウェーハを提供する。
【解決手段】シリコンエピタキシャル層表面の酸素濃度が1.0×1017〜12×1017atoms/cmとされてなるエピタキシャルウェーハの製造方法であって、酸素濃度設定熱処理の処理温度Xと処理時間Yとが、処理温度Xが800℃〜1400℃の範囲、処理時間Yが180min以下で、かつ、
Y ≧ 1.21×1010 exp(−0.0176X)
の関係を満たすように設定される。 (もっと読む)


【課題】窒化物半導体デバイス用の半導体積層構造を成長させるために改善されたバッファ層構造を有する基板を提供する。
【解決手段】窒化物半導体層を成長させるためのバッファ層構造を有する基板であって、Si単結晶基板の(111)主面に形成された窒化ケイ素層を有し、この窒化ケイ素層上に順次積層されたAl層とAlN結晶層またはAlGaN結晶層とを有し、AlN結晶層またはAlGaN結晶層の表面は(0001)の面方位とIII族元素極性の表面を有している。 (もっと読む)


【課題】シリコン基板上に形成したクラックおよび転位が少ない高品位の窒化物半導体素子の製造方法を提供する。
【解決手段】実施態様によれば、シリコン基板上に下地層と積層中間層と機能層とが形成された後に、前記シリコン基板が除去された窒化物半導体素子が提供される。前記窒化物半導体素子は、前記下地層と、前記積層中間層と、前記積層中間層と、を備える。前記下地層は、AlNバッファ層とGaN下地層とを含む。前記積層中間層は、前記下地層と前記機能層との間に設けられる。前記積層中間層は、AlN中間層と、AlGaN中間層と、GaN中間層と、を含む。前記AlGaN中間層は、前記AlN中間層に接する第1ステップ層を含む。前記第1ステップ層におけるAl組成比は、前記AlN中間層から前記第1ステップ層に向かう方向において、ステップ状に減少している。 (もっと読む)


【課題】耐圧が高く、かつ、リーク電流が効果的に低減された窒化物半導体素子及びその製造方法を提供する。
【解決手段】ベース基板210と、ベース基板の上方に形成されたバッファ層280と、バッファ層280上に形成された活性層290と、活性層の上方に形成された少なくとも2つの電極292および294とを備え、バッファ層280は格子定数の異なる複数の窒化物半導体層を含む複合層を1層以上有し、複合層の少なくとも1層は、複数の窒化物半導体層のうち格子定数が最も大きい窒化物半導体層のキャリア領域に予め定められた濃度の炭素原子及び予め定められた濃度の酸素原子が意図的にドープされている窒化物半導体素子。 (もっと読む)


【課題】窒化物半導体デバイス用の半導体積層構造を成長させるために改善されたバッファ層構造を有する基板を製造する方法を提供する。
【解決手段】窒化物半導体層を成長させるためのバッファ層構造を有する基板の製造方法は、Si単結晶基板(1)の(111)主面上において600℃以上900℃以下の範囲内の基板温度で第1のAlNバッファ層(2a)を堆積させ、この第1のAlNバッファ層上において900℃を超える基板温度で第2のAlNバッファ層(2b)を堆積させることを含む。 (もっと読む)


【課題】シリコンウェハ等のベース基板上方に窒化物半導体からなる半導体結晶層を形成する場合に、当該半導体結晶層の転位密度を低減する。
【解決手段】ベース基板をエピタキシャル結晶成長装置の成長室に設置した後、ベース基板の上に、接着層、バッファ層および活性層をエピタキシャル成長法により順次形成する層形成工程を有し、接着層形成工程が、第1結晶層を形成する工程と第2結晶層を形成する工程と、を有し、第1結晶層の形成後であって第2結晶層の形成前の第1の段階、および、第2結晶層の形成後であってバッファ層の形成前の第2の段階、からなる群から選択された少なくとも1つの段階において、3族原料ガスの供給を停止するとともに成長室の内部を、アンモニアを含むガスの雰囲気に一定時間だけ維持する雰囲気維持工程を有する半導体基板の製造方法を提供する。 (もっと読む)


【課題】マイクロクリスタルシリコン薄膜と金属薄膜との過剰なシリサイド化反応を抑制して、マイクロクリスタルシリコン薄膜の膜剥れを防止する。
【解決手段】半導体装置20の配線として備えられ、マイクロクリスタルシリコン薄膜8と該薄膜上に形成された金属薄膜9とから成る積層配線であって、マイクロクリスタルシリコン薄膜8の結晶組織を構成している結晶粒には、半導体装置の製造時の熱処理で生じた金属薄膜9とのシリサイド化反応に起因して膜厚方向に成長した柱状の結晶粒が含まれ、マイクロクリスタルシリコン薄膜8の膜厚方向の長さがマイクロクリスタルシリコン薄膜8の膜厚の60%以上である柱状の結晶粒が、マイクロクリスタルシリコン薄膜8の結晶粒の全数の6%以上15%以下となるように形成されている。 (もっと読む)


【課題】シリコンウェハ等のベース基板上方に窒化物半導体からなる半導体結晶層を形成する場合に、当該半導体結晶層の転位密度を低減する。
【解決手段】ベース基板、接着層、バッファ層および活性層を有し、前記ベース基板、前記接着層、前記バッファ層および前記活性層がこの順に位置し、前記ベース基板の前記接着層と接する領域にSiが存在し、前記接着層、前記バッファ層および前記活性層が、窒化物半導体からなる半導体基板の製造方法であって、前記ベース基板をエピタキシャル結晶成長装置の成長室に設置した後、前記ベース基板の温度を1000℃以上1150℃以下に維持しつつ前記ベース基板の表面を水素ガスに暴露する水素ガス暴露工程と、前記水素ガス暴露工程の後、前記ベース基板の上に、前記接着層、前記バッファ層および前記活性層をエピタキシャル成長法により順次形成する層形成工程と、を有する半導体基板の製造方法を提供する。 (もっと読む)


【課題】パターン化された窒化ガリウムのテンプレートの上に酸化亜鉛の半導体エピ層を製作する方法を提供する。
【解決手段】この方法は以下の工程を含む:(1)サファイア基板101aを含む基板101上に窒化ガリウム層103を少なくとも1000℃の温度で成長させ;(2)SiO2マスク105を窒化ガリウム103上で配向した開口107にパターン化し;(3)成長温度と反応器を選択することによって結晶面を制御して(ELO)窒化ガリウム層のエピタキシャル横方向異常成長を行い、窒化ガリウム層103から開口107の配列を通して成長した窒化ガリウム層109(テンプレート)が形成され;(4)この窒化ガリウムテンプレート上に単結晶酸化亜鉛半導体層111を堆積させる。 (もっと読む)


【課題】基板の外周部においてクラックの発生が抑制される半導体結晶基板を提供する。
【解決手段】半導体結晶基板110と、基板110の表面に窒化物により形成された保護層120と、を有し、保護層120は、基板110の外周部となる周辺領域120aはアモルファス状態であり、基板110の周辺領域よりも内側の内部領域120bは結晶化している。 (もっと読む)


【課題】コストメリットがあり、かつ、特性の優れた高周波動作用の半導体素子を実現できるエピタキシャル基板を提供する。
【解決手段】導電性を有するSiCまたはSiからなる基材の上に、絶縁性を有する第1のIII族窒化物からなる下地層をMOCVD法によって、表面に実質的に非周期的な凹凸構造を有するようにかつ、表面の平均粗さが0.5μm以上1μm以下となるように、エピタキシャル形成し、下地層の上に、GaNからなるチャネル層をエピタキシャル形成し、チャネル層の上に、AlGa1−xN(0<x<1)からなる障壁層をエピタキシャル形成する。 (もっと読む)


【課題】GaとSiとの反応を抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、Si基板1と、Si基板1の表面に形成されたSi酸化層3と、Si酸化層3上に形成され、Si酸化層3の一部を露出する核形成層2と、Si酸化層3及び核形成層2上に形成された化合物半導体積層構造9と、が設けられている。 (もっと読む)


【課題】低抵抗(表面比抵抗が20Ω/□以下)であり、結晶性が良好(XRD半値幅が50秒以上100秒以下)な窒化物半導体テンプレート、及びそれを用いた発光ダイオードを提供する。
【解決手段】窒化物半導体テンプレート10は、基板11と、基板11上にO(酸素)が添加されたO添加層としてOドープGaN層13を形成し、OドープGaN層13上にSiが添加されたSi添加層としてのSiドープGaN層14を形成してなるIII族窒化物半導体層22とを備え、III族窒化物半導体層の全体の膜厚が4μm以上10μm以下であり、SiドープGaN層14におけるSiの平均キャリア濃度が1×1018cm-3以上5×1018cm-3以下である。 (もっと読む)


【課題】基板の両面に窒化物半導体層を形成するに際し、基板に被着した堆積物の除去が容易な窒化物半導体積層構造体の製造方法を提供する。
【解決手段】窒化物半導体積層構造体の製造方法では、第1および第2の面11a、11bと第1熱膨張係数α1を有する基板11の第2の面11bに、第1保護膜31を形成する。第1保護膜31が形成された基板11の第1の面11aに、第1熱膨張係数α1と異なる第2熱膨張係数α2を有する第1窒化物半導体層12を形成する。第1窒化物半導体層12に、第2保護膜34を形成する。第1保護膜31を除去し、基板11の第2の面11bを露出させる。露出した基板11の第2の面11bに、第2熱膨張係数α2に略等しい第3熱膨張係数α3を有する第2窒化物半導体層13を形成する。第2保護膜34を除去し、第1窒化物半導体層12を露出させる。 (もっと読む)


【課題】意図しない不純物の混入を抑制した金属塩化物ガス発生装置、ハイドライド気相成長装置、及び窒化物半導体テンプレートを提供する。
【解決手段】金属塩化物ガス発生装置としてのHVPE装置1は、Ga(金属)7aを収容するタンク(収容部)7を上流側に有し、成長用の基板11が配置される成長部3bを下流側に有する筒状の反応炉2と、ガス導入口64aを有する上流側端部64からタンク7を経由して成長部3bに至るように配置され、上流側端部64からガスを導入してタンク7に供給し、ガスとタンク7内のGaとが反応して生成された金属塩化物ガスを成長部3bに供給する透光性のガス導入管60と、反応炉2内に配置され、ガス導入管60の上流側端部64を成長部3bから熱的に遮断する熱遮蔽板9A、9Bとを備え、ガス導入管60は、上流側端部64と熱遮蔽板9Bとの間で屈曲された構造を有する。 (もっと読む)


【課題】反応チャンバにおいて反応体メモリーを防止しながら、複数工程複数チャンバ化学気相堆積を行う方法を提供する。
【解決手段】第一気相堆積チャンバ24において気相堆積を用いて基板上に半導体材料の層を堆積させる工程、次いで、堆積成長後及び前記チャンバ24を開ける前に、前記第一堆積チャンバ24中に残留している気相堆積原料ガスを減少させるために成長チャンバ24から排気する工程を含む。第二堆積チャンバ26から第一堆積チャンバ24を分離して第一堆積チャンバ24中に存在する反応体が第二堆積チャンバ26における堆積に影響を及ぼさないようにしながら、また、成長停止効果を最小限に抑えるか又は排除する環境を維持しながら、基板を第二堆積チャンバ26へと搬送する。搬送工程の後、異なる半導体材料の追加の層を、第二チャンバ26において、気相堆積によって第一堆積層の上に堆積させる。 (もっと読む)


41 - 60 / 1,084