説明

Fターム[5F058BF74]の内容

絶縁膜の形成 (41,121) | 無機絶縁膜の形成法 (10,542) | 基板、処理対象等の直接変換 (1,722) | プラズマ処理 (498) | 窒化 (254)

Fターム[5F058BF74]に分類される特許

241 - 254 / 254


【課題】 基板と隣接する界面部位における窒素濃度を減少させた複合誘電膜を前記基板上に形成する方法を提供すること。
【解決手段】 半導体基板上に高誘電率物質から構成される第1誘電膜とシリコンを含む予備誘電膜を形成する。前記予備誘電膜を選択的にプラズマ窒化処理して前記予備誘電膜から窒素を含む第2誘電膜を修得する。前記プラズマ窒化処理を行う期間、窒素はイオンエネルギーによって前記第1誘電膜よりは前記予備誘電膜に含まれたシリコンと結合するので、前記半導体基板と前記複合誘電膜との間の界面部位にて窒素濃度を減少させることができる。 (もっと読む)


【課題】 サイドウォールの酸化膜・シリコン界面の窒化による界面準位の発生を抑制することにより、トランジスタの性能劣化を防止する。
【解決手段】 基板101上に形成されたゲート電極104と、ゲート電極104の側壁に形成された第1のサイドウォールである酸化膜105と第2のサイドウォールである窒化膜106と、ゲート電極104の側方に位置する基板101の領域の中に形成された低濃度不純物拡散領域107と高濃度不純物拡散領域109とを備え、第1のサイドウォールである酸化膜105と低濃度不純物拡散領域107との界面における窒素濃度が1×1020cm-3以下である。これにより低濃度不純物拡散領域107と第1のサイドウォールである酸化膜105の界面における界面準位の発生量が少なくなり、界面準位による低濃度不純物拡散領域への空乏層の形成を抑制し、トランジスタ性能の劣化を防止する。 (もっと読む)


【課題】 本発明は、プラズマ窒化法を用いたシリコン酸化膜の窒化処理においてシリコン基板界面近傍に窒素を偏析させることなく、シリコン酸化膜表面近傍のみに高濃度の窒素を導入し、信頼性の高いゲート絶縁膜を形成することを目的とする。
【解決手段】 本発明の絶縁膜の形成方法は半導体基板上にシリコン酸化薄膜を有する基体表面を高真空に保持された真空容器内で真空紫外光を照射する工程と、真空紫外光照射後に基体を大気に暴露することなく、高真空状態に保持された真空容器内で窒化或いは酸窒化いずれかの処理を行う工程とを有することを特徴とする。 (もっと読む)


本発明の実施形態は、基板上に配置された誘電層上にキャッピング層を堆積するための方法を提供する。一例では、プロセスは、基板を堆積プロセスに曝して、この上に誘電層を形成するステップと、該基板をシリコン前駆体および酸化ガスの順次パルスに曝して、堆積プロセス中にシリコン含有層を該誘電層上に形成するステップと、該基板を窒化プロセスに曝して、この上にキャッピング層を形成するステップと、所定の時間該基板をアニーリングプロセスに曝すステップとを含む。該キャッピング層は約5Å以下の厚さを有していてもよい。一例では、該酸化ガスが、触媒を含有する水蒸気生成器によって処理された水素源ガスおよび酸素源ガスから生じた水蒸気を含有する。別の例では、該堆積、窒化およびアニーリングプロセスが同じプロセスチャンバで生じる。 (もっと読む)


本発明の実施形態は、原子層堆積法(ALD)などの気相堆積プロセス中に基板上に誘電材料を堆積するための方法を提供する。一例では、方法は、基板をハフニウム前駆体および酸化ガスに順次暴露して、その上に酸化ハフニウム材料を堆積するステップを含む。別の例では、ケイ酸ハフニウム材料が、基板を該酸化ガスと、ハフニウム前駆体およびシリコン前駆体を含有するプロセスガスとに順次暴露することによって堆積される。該酸化ガスは、水素源ガスおよび酸素源ガスを水蒸気発生器を介して流すことによって形成された水蒸気を含有する。 (もっと読む)


SiOゲート誘電体及びシリコン基板上に酸化シリコン膜を備えている構造物を、NHを含む雰囲気中で加熱し、その後、該構造物を窒素源を含むプラズマに曝すことによってSiOゲート誘電体を形成する方法が提供される。一態様においては、構造物は窒素源を含むプラズマにさらされた後にアニールされる。他の態様においては、SiOゲート誘電体は、総合処理システムにおいて、シリコン基板上に酸化シリコン膜を備えている構造物を総合処理システムの一チャンバ内でNHを含む雰囲気中で加熱し、その後、該構造物を総合処理システムの他のチャンバ内で窒素源を含むプラズマに曝すことにより形成される。 (もっと読む)


処理容器内部を真空引きした状態で運転を停止していた場合などにおいて、運転を再開しようとしても、プラズマが容易に着火しない現象が生じる問題を解決する。
処理容器(21)中に酸素を含むガスを流通させ、前記処理容器(21)内部を排気しながら前記酸素を含むガスに紫外光を照射する。その後、リモートプラズマ源(26)を駆動して、プラズマを着火させる。 (もっと読む)


【課題】半導体基板(12)に形成され、シリコン酸化物およびそれの異なる程度の窒化(18Dと18E)で構成されたPFETゲート誘電体層(16)およびNFETゲート誘電体層(14)でそれぞれ覆われたPFET領域およびNFET領域を有するCMOS半導体(10)材料を形成する方法を提供すること
【解決手段】シリコン基板(12)にPFET領域(16)およびNFET領域(14)を設け、その上にPFETおよびNFETゲート酸化物層を形成する。PFET領域の上のPFETゲート酸化物層の窒化を行って、PFET領域の上のPFETゲート酸化物層に、第1の濃度レベルの窒素原子を有する、PFET領域の上のPFETゲート誘電体層(42)を形成する。NFETゲート酸化物層の窒化を行って、第1の濃度レベルと異なる濃度レベルの窒素原子を有する、NFET領域の上のNFETゲート誘電体層(40)を形成する。NFETゲート誘電体層(40)およびPFETゲート誘電体層(42)は、同じ厚さを有することができる。 (もっと読む)


【課題】 ウェハ内における相対的に均一な厚さ及び窒素濃度を有するSiO層を製造する方法を提供すること。
【解決手段】 基板を準備するステップと、該基板の上面に二酸化シリコン層を形成するステップと、還元雰囲気内でプラズマ窒化を実行し、該二酸化シリコン層を酸窒化シリコン層に変換するステップとを含む、ゲート誘電体層を製造する方法である。このように形成された誘電体層を、MOSFETの製造において用いることができる。 (もっと読む)


後の堆積、特に原子層堆積(ALD)によるゲート絶縁体堆積のための調製において、ゲルマニウム表面(200)を処理するための方法が提供される。堆積の前に、該ゲルマニウム表面(200)は、プラズマプロダクトを用いて反応されるか、又は気相反応物を用いて熱的に反応される。表面処理の例は、ALD反応物により容易の吸着する酸素ブリッジ、窒素ブリッジ、−OH、−NH、及び/又は−NH末端を残す。該表面処理は、該反応物の該ゲルマニウムバルクへの深い浸透を回避するが、核形成を改良する。

(もっと読む)


【課題】 自己制限的界面酸化による超極薄酸化物層および酸窒化物層の形成の提供。
【解決手段】 超極薄酸化物層および酸窒化物層は、基板の自己制限的酸化を達成するように、および超極薄酸化物並びに酸窒化物を提供するように、低圧プロセスを利用して形成される。被処理基板は、酸化物層、酸窒化物層、窒化物層、およびhigh−k層のような初期の誘電体層を含むことができるか、あるいは、初期の誘電体層をなくすことができる。プロセスは、バッチ型処理チャンバを使用するか、あるいは、単一のウェーハ処理チャンバを使用することによって、実行されることができる。本発明の一実施例は、厚さ約15ÅのSiO層をもたらす、Si基板の自己制限的酸化を提供し、そこにおいて、SiO層の厚さは、基板にわたって約1Å未満で変化する。 (もっと読む)


Si(100)基板の表面にシリコン酸化膜を形成した後、このシリコン酸化膜をプラズマ窒化して酸窒化シリコン膜にする。その後NOガス雰囲気中で770乃至970℃の温度条件下で熱処理することにより、ゲート絶縁膜における基板との界面部分の窒素濃度を1乃至10原子%にすると共に、基板と酸窒化シリコン膜との界面に存在する界面Si結合欠陥の結合手の方位角分布が、基板の[100]方位に対して25°以上の角度にピークをもつようにする。 (もっと読む)


窒化ゲート誘電体層を形成するための方法及び装置。この方法は、電子温度スパイクを減少するために、滑らかに変化する変調のRF電源により処理チャンバー内に窒素含有プラズマを発生することを含む。電源が滑らかに変化する変調のものであるときには、方形波変調のものに比して、電界効果トランジスタのチャンネル移動度及びゲート漏洩電流の結果が改善される。 (もっと読む)


窒素を含む誘電体膜を形成するための方法。この方法は、プラズマ窒化プロセスを使用して誘電体膜に窒素を組み込んで、酸窒化シリコン膜を形成するステップを含む。該酸窒化シリコン膜はまず、約700℃〜1100℃の温度で不活性または還元雰囲気においてアニーリングされる。該酸窒化シリコン膜は、約900度〜1100℃の温度で酸化雰囲気において2回目のアニーリングがなされる。 (もっと読む)


241 - 254 / 254