説明

Fターム[5F102GC01]の内容

接合型電界効果トランジスタ (42,929) | ゲート配置 (2,808) | 横型FETの上部ゲート (2,283)

Fターム[5F102GC01]に分類される特許

201 - 220 / 2,283


【課題】高温で動作可能な高電子移動度トランジスタを提供する。
【解決手段】バッファ層16と、バッファ層16上のIII−V族層18と、III−V族層18上のソース接点20およびドレイン接点22と、III−V族層18上で、ソース接点20およびドレイン接点22間の再成長ショットキー層10と、成長ショットキー層10上のゲート接点24、を備える装置、および装置を用いたシステムを含む。さらに、装置とシステムの製造方法も含む。 (もっと読む)


【課題】高い抵抗率(例えば、1×10Ωcm以上、1×1012Ωcm以下)、良好な抵抗率の均一性(例えば、ウエハ表面積の80%に相当するウエハ内周側の位置での抵抗率のバラツキが±30%以下)、及び良好な結晶性(例えば、X線(004)回折の半値幅が30〜300秒)を有する半絶縁性窒化物半導体ウエハ、半絶縁性窒化物半導体自立基板及びトランジスタ、並びに半絶縁性窒化物半導体層の成長方法及び成長装置を提供する。
【解決手段】窒化物半導体層の成長方法は、基板上にIII族原料GaClを連続的又は断続的に供給するとともに、窒素原料NHと半絶縁性を付与する半絶縁性ドーパント原料CpFeとを交互に供給して基板上に半絶縁性窒化物半導体層を成長させる。 (もっと読む)


【課題】スイッチ素子のオン抵抗をより一層小さく抑えることができるスイッチ装置を提供する。
【解決手段】スイッチ素子10は、半導体基板104に直接接合された注入用電極14を具備するホール注入部140を有している。駆動回路20の注入駆動部22は、スイッチ素子10の注入用電極14およびソース電極13に接続されており、注入用電極14−ソース電極13間に注入電圧Vinを印加する。注入駆動部22は、閾値を超える注入電圧Vinをスイッチ素子10に印加することによって、ホール注入部140から半導体基板104のヘテロ接合界面にホールを注入する。注入されたホールは、ヘテロ接合界面に同量の電子を引き寄せるので、チャネル領域として2次元電子ガスの濃度が高くなり、スイッチ素子10のオン抵抗は小さくなる。 (もっと読む)


【課題】P型、N型(I型)結晶を別々に形成する2チャンバ方式により、Mgのドーピングに伴う遅延効果およびメモリ効果を抑制し、エピタキシャル成長時間を短縮したMOCVD装置およびその成長方法、上記のMOCVD装置を適用して形成した半導体装置およびその製造方法を提供する。
【解決手段】水冷機構を備えるコールドウォール構造を備え、ガスの流れはウェハ8の表面に対して水平方向であり、P型層成長とN型(I型)層成長ではそれぞれ別のN型(I型)層成長用チャンバ14・P型層成長用チャンバ16で成長するように構成され、ウェハ8を保持するサセプタも別々のN型層成長用サセプタ3・P型層成長用サセプタ5を使用するMOCVD装置およびその成長方法、上記のMOCVD装置を適用して形成した半導体装置およびその製造方法。 (もっと読む)


【課題】オン抵抗が低く、かつ、Vth(閾値電圧)が高い窒化物半導体装置の提供。
【解決手段】アクセプタになるアクセプタ元素を含み、窒化物半導体で形成されたバックバリア層106と、バックバリア層106上に窒化物半導体で形成されたチャネル層108と、チャネル層108の上方に、チャネル層よりバンドギャップが大きい窒化物半導体で形成された電子供給層112と、チャネル層108と電気的に接続された第1主電極116、118と、チャネル層108の上方に形成された制御電極120と、を備え、バックバリア層106は、制御電極120の下側の領域の少なくとも一部に、アクセプタの濃度がバックバリア層の他の一部の領域より高い高アクセプタ領域126を有する窒化物半導体装置100。 (もっと読む)


【課題】
高周波信号遮断後の回復が早く、素子分離特性のよい化合物半導体エピタキシャル基板を提供する。
【解決手段】
半導体エピタキシャル基板は、単結晶基板と、単結晶基板上にエピタキシャル成長されたAlN層と、AlN層の上にエピタキシャル成長された窒化物半導体層とを有し、単結晶基板とAlN層間界面より、AlN層と窒化物半導体層間界面の方が凹凸が大きい、ことを特徴とする。 (もっと読む)


【課題】実用上十分なプロセスマージンを備える状態で、リーク電流の増大およびキャリア濃度の低下を招くことなく、ゲート電極とチャネル層との距離が短縮できるようにする。
【解決手段】InPからなる基板101の上に形成された電子供給層102と、電子供給層102の上に形成されたスペーサ層103と、スペーサ層103の上に形成されたチャネル層104と、チャネル層104の上に形成された障壁層105とを備え、障壁層105は、GaおよびAlの少なくとも1つと、Inと、Pとを含んだアンドープの化合物半導体から構成し、InPよりショットキー障壁高さが高いものとされている。 (もっと読む)


【課題】冷却効率を向上させることができる半導体装置を提供すること。
【解決手段】実施形態に係る半導体装置10は、裏面に複数の凹部16を有するシリコン基板11と、この基板11の表面上に形成された半導体層12と、半導体層12の表面上に、互いに離間して形成されたドレイン電極13およびソース電極14と、ドレイン電極13とソース電極14との間の半導体層12上に形成されたゲート電極15と、複数の凹部16の内部を含むシリコン基板11の裏面全体に形成された裏面金属17と、を具備する。 (もっと読む)


【課題】スイッチ素子のオン抵抗をより一層小さく抑えることができるスイッチ装置を提供する。
【解決手段】スイッチ素子10は、半導体基板104に絶縁膜15を介して接合された電界印加電極14を有している。駆動回路20の電界制御部22は、スイッチ素子10の電界印加電極14およびソース電極13に接続されており、電界印加電極14−ソース電極13間にバイアス電圧Veを印加する。電界制御部22は、閾値を超えるバイアス電圧Veをスイッチ素子10に印加することによって、電界印加電極14から半導体基板104のヘテロ接合界面に電界を印加する。要するに、スイッチ素子10がオン状態で、電界印加電極14から半導体基板104に印加される電界は、電界効果によってチャネル領域の電子濃度を高くし、スイッチ素子10のオン抵抗を小さくするように作用する。 (もっと読む)


【課題】チャネルとなるナノワイアの周囲をゲート電極が取り巻いて形成されているFETが、より容易に高い精度で製造できるようにする。
【解決手段】被覆ナノワイア103を配置した基板121のゲート電極形成領域の上に、被覆ナノワイア103に交差して下部ゲート電極122に重なる上部ゲート電極124を形成する。上部ゲート電極124の形成は、公知のリソグラフィー技術とリフトオフとにより行えばよい。例えば、被覆ナノワイア103が下部ゲート電極122と交差して配置されている基板121の上に、電子ビーム露光により電極形成部に開口を備えるレジストパターンを形成し、この上に、電極材料を堆積する。この後、先に形成してあるレジストパターンを除去すれば、上部ゲート電極124が形成できる。 (もっと読む)


【課題】転位密度を低減させるバッファ層を有する半導体素子を提供する。
【解決手段】基板と、基板の上方に形成されたバッファ領域と、バッファ領域上に形成された活性層と、活性層上に形成された少なくとも2つの電極とを備え、バッファ領域は、第1の格子定数を有する第1半導体層と、第1の格子定数と異なる第2の格子定数を有する第2半導体層と、第1の格子定数と第2の格子定数との間の第3の格子定数を有する第3半導体層とが順に積層した複合層を少なくとも一層有する半導体素子。 (もっと読む)


【課題】リーク電流が低減された窒化物系半導体素子及びその製造方法を提供する。
【解決手段】基板10と、基板10の上方に形成されたバッファ領域30と、バッファ領域30上に形成された活性層70と、活性層上に形成された少なくとも2つの電極72、74、76とを備え、バッファ領域30は、格子定数の異なる複数の半導体層31、32、33を含み、バッファ領域30の表面に、基板10の裏面より低い電位を与え、基板10の裏面とバッファ領域30の表面との間の電圧をバッファ領域30の膜厚に応じた範囲で変化させたときの基板10の裏面およびバッファ領域30の表面との間の静電容量が略一定である半導体素子100を提供する。 (もっと読む)


【課題】バッファリーク電流およびゲートリーク電流が抑制された高性能のHEMTを提供する。
【解決手段】本GaN薄膜貼り合わせ基板の製造方法は、GaNバルク結晶10の主表面から0.1μm以上100μm以下の深さの面10iへの平均注入量が1×1014cm-2以上3×1017cm-2以下の水素イオン注入工程と、水素イオン注入されたGaNバルク結晶10の上記主表面へのGaNと化学組成が異なる異組成基板20の貼り合わせ工程と、GaNバルク結晶10の熱処理によりGaNバルク結晶10を水素イオンが注入された深さの面10iにおいて分離することによる異組成基板20上に貼り合わされたGaN薄膜10aの形成工程と、を含む。GaN系HEMTの製造方法は、上記GaN薄膜貼り合わせ基板1のGaN薄膜10a上への少なくとも1層のGaN系半導体層30の成長工程を含む。 (もっと読む)


【課題】シリコン基板上に形成したクラックが少ない高品位の窒化物半導体素子、窒化物半導体ウェーハ及び窒化物半導体層の製造方法を提供する。
【解決手段】実施形態によれば、シリコン基板の上に形成されたAlNバッファ層の上に形成された機能層を備える窒化物半導体素子が提供される。機能層は、交互に積層された、複数の機能部低濃度層と、複数の機能部高濃度層と、を含む。機能部低濃度層は、窒化物半導体を含み、Si濃度が5×1018cm−3未満である。機能部高濃度層は、Si濃度が5×1018cm−3以上である。複数の機能部高濃度層のそれぞれの厚さは、機能部低濃度層のそれぞれの厚さよりも薄い。複数の機能部高濃度層のそれぞれの厚さは、0.1ナノメートル以上50ナノメートル以下である。複数の機能部低濃度層のそれぞれの厚さは、500ナノメートル以下である。 (もっと読む)


【課題】高電圧を印加しても短絡破壊を生じないトランジスタとして動作する半導体装置を提供する。
【解決手段】半導体装置1は、基板10(シリコン基板10a)の上に形成されたバッファ層21と、バッファ層21の上に形成されたチャネル層22と、チャネル層22の上に形成され、チャネル層22とヘテロ接合を構成する障壁層23とを備える。バッファ層21およびチャネル層22は、窒化物半導体で形成されている。チャネル層22は、膜厚を1μm以上2μm以下とされ、炭素濃度を5×1016cm-3以下とされている。 (もっと読む)


【課題】厚膜化が可能で、反りが小さく、かつリーク電流が小さい半導体素子を提供する。
【解決手段】基板と、基板の上方に形成された第1のバッファ領域と、第1のバッファ領域上に形成された第2のバッファ領域と、第2のバッファ領域上に形成された活性層と、活性層上に形成された少なくとも2つの電極とを備え、第1のバッファ領域は、第1半導体層と、第2半導体層とが順に積層した複合層を少なくとも一層有し、第2のバッファ領域は、第3半導体層と、第4半導体層と、第5半導体層とが順に積層した複合層を少なくとも一層有し、第4半導体層の格子定数は、第3半導体層と第5半導体層の間の格子定数を有する半導体素子。 (もっと読む)


【課題】薄膜抵抗又は基板抵抗によって数kΩから数十kΩの抵抗値を持つゲート抵抗のサイズが基板長さ、基板幅に比べて大きい。
【解決手段】能動層10を有する半導体基板11と、半導体基板の能動層10にオーミック接触するソース電極13及びドレイン電極14と、能動層10の上方に設けられたゲート電極15と、半導体基板11に設けられた非活性領域16と、非活性領域16上にゲート電極15の一部が引出されて接触する導体17と、非活性領域16上で直流電圧が印加されるパッド電極18と、パッド電極18及び導体17にオーミック接触し、非活性領域16に設けられたゲート抵抗領域19とを備え、ゲート抵抗領域19は半導体基板11へボロンイオンを注入することによって形成され、ボロンイオンの注入量によりゲート抵抗領域19上のシート抵抗値を高めたことを備えたことを特徴とする半導体素子の構造が提供される。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、2次元電子ガス除去領域260Bが、ドレイン電極211の長手方向の一方の端211Aから短手方向に伸ばした仮想線M71よりも長手方向外方に位置すると共にソース電極212の一端部212Aに対して短手方向に隣接する領域の下のGaN系積層体205に形成されている。また、2次元電子ガス除去領域260Aは、2次元電子ガス除去領域260Bの長手方向外方に隣接すると共にソース電極212の一端部212Aからソース電極接続部214に沿って短手方向に延在している。2次元電子ガス除去領域260A,260Bの存在によって、スイッチング時の動的な電界変動によってソース電極212の端部212Aからドレイン電極211の端部211Aへ向かって電子流が集中することを回避できる。 (もっと読む)


【課題】ワイドバンドギャップ材料内に、接合温度低下、動作中の高電力密度化、及び定格電力密度における信頼性向上を達成する高電力デバイスを形成する。
【解決手段】SiC層10にSiO層を形成し、次いで、熱伝導率を高めるためにダイアモンド層11を形成する。そして、SiC層10の厚さを低減し、ダイアモンド層11及びSiC層10の向きを逆にしてダイアモンド11を基板とする。次いで、SiC層10上に、バッファ層16、ヘテロ構造層14及び15を形成する。 (もっと読む)


【課題】動的な耐圧であるダイナミック耐圧の低下を抑制できるGaN系のHFETを提供する。
【解決手段】このGaN系のHFETでは、各ソース電極12の長手方向の長さL2と各ドレイン電極11の長手方向の長さL1とが同じ長さである。また、ソース電極12の長手方向の端12A,12Bの長手方向の位置は、ドレイン電極11の長手方向の端11A,11Bの長手方向の位置と一致している。ソース電極12の長手方向の両端12A,12Bがドレイン電極11の長手方向の両端11A,11Bよりも長手方向外方へ突出していない構成により、ソース電極12の端12A,12Bからドレイン電極11の端11A,11Bへ向かって電子流が集中することを回避できる。 (もっと読む)


201 - 220 / 2,283