説明

Fターム[5F102GC01]の内容

接合型電界効果トランジスタ (42,929) | ゲート配置 (2,808) | 横型FETの上部ゲート (2,283)

Fターム[5F102GC01]に分類される特許

161 - 180 / 2,283


【課題】ヘテロ接合を有する半導体装置において、リーク電流と電流コラプスのトレードオフ関係を打破し、リーク電流と電流コラプスの双方を抑制すること。
【解決手段】半導体装置1の電子走行層4は、炭素が導入されている高抵抗領域4aを含んでいる。電子走行層4と電子供給層5のヘテロ接合5aと平行な断面において、高抵抗領域4aの炭素の濃度分布が、ドレイン電極12とソース電極18の少なくともいずれか一方の下方で相対的に濃く、ドレイン電極12と絶縁ゲート部16の間で相対的に薄くなるような断面が存在している。 (もっと読む)


【課題】電極メタルがSiN絶縁膜に拡散することを抑制でき、電流コラプスの抑制とリーク電流の低減とを両立できるGaN系半導体素子の製造方法を提供する。
【解決手段】このGaN系HFETの製造方法によれば、GaN系積層体5上に形成したSiN保護膜7を熱処理により改質してから、Ti/Al電極15,16をGaN系積層体5上に形成し、Ti/Al電極15,16を熱処理してオーミック電極としてのソース電極15,ドレイン電極16とする。SiN保護膜7を熱処理した後に、Ti/Al電極15,16を熱処理(オーミックアニール)し、オーミック電極としてソース電極15,ドレイン電極16を形成することによって、電極メタルがSiN保護膜7に拡散することを抑制できる。 (もっと読む)


【課題】ダイオード等の保護素子の外付けによる部品点数の増加及び占有面積の増大を抑えた、双方向に高いアバランシュエネルギー耐量を有する窒化物半導体装置を提供する。
【解決手段】半導体基板10は、第1のn型領域12A、第2のn型領域12Bとともにトランジスタ11を構成する。半導体基板10の裏面には、裏面電極13が接合され、また、半導体基板10の上には、HFET21が形成されている。HFET21は、AlGaN層23A及びGaN層23Bを備える半導体層積層体23と、第1のオーミック電極24A、第2のオーミック電極24B、第1のゲート電極25A、第2のゲート電極25Bにより構成されている。第1のオーミック電極24Aと第1のn型領域12A、第2のオーミック電極24Bと第2のn型領域12Bはそれぞれ電気的に接続されている。 (もっと読む)


【課題】本発明は、ノーマリーオフ動作が可能なパワー素子およびその製造方法を提供する。
【解決手段】本発明のパワー素子は、第1窒化物層を形成した後ゲート電極下部に第2窒化物層をさらに形成することによってゲート電極に対応する部分には2次元の電子ガス層が形成されないため、ノーマリーオフ動作が可能である。これによって、本発明の一実施形態に係るパワー素子は、ゲートの電圧に応じて2次元の電子ガス層の生成を調整することができ、ノーマリーオフ動作が可能であるため、消費電力を減少させ得る。また、ゲート電極に対応する第2窒化物層を形成するため、第1窒化物層を形成した後ゲート電極に対応する部分のみを再成長させたり、ゲート電極に対応する部分を除いた残り部分をエッチングする方法を用いることによって、リセス工程を省略することができることから素子の再現性を確保することが化膿であり、工程を単純化させることができる。 (もっと読む)


【課題】電界効果トランジスタにおける電流コラプスの発生の有無を迅速に判定する。
【解決手段】電界効果トランジスタ101をオン状態にするとともに、電界効果トランジスタ101のドレインに第1電圧を印加した状態において、電界効果トランジスタ101の第1オン抵抗を算出する第1の工程と、電界効果トランジスタ101をオフ状態にし、前記第1電圧よりも大きい第2電圧を、電界効果トランジスタ101のドレインに印加する第2の工程と、電界効果トランジスタ101をオン状態にするとともに、電界効果トランジスタ101のドレインに前記第2電圧を印加した状態において、電界効果トランジスタ101の第2オン抵抗を算出する。 (もっと読む)


【課題】単一基板上にソース・ドレインを同一工程で同時形成したIII−V族半導体のnMISFETおよびIV族半導体のpMISFETのソース・ドレイン領域抵抗または接触抵抗を小さくする。
【解決手段】第1半導体結晶層104に形成された第1チャネル型の第1MISFET120の第1ソース124および第1ドレイン126が、第1半導体結晶層104を構成する原子と、ニッケル原子との化合物、または、コバルト原子との化合物、またはニッケル原子とコバルト原子との化合物からなり、第2半導体結晶層106に形成された第2チャネル型の第2MISFET130の第2ソース134および第2ドレイン136が、第2半導体結晶層106を構成する原子と、ニッケル原子との化合物、または、コバルト原子との化合物、または、ニッケル原子とコバルト原子との化合物からなる。 (もっと読む)


【課題】
高周波信号遮断後の回復が早く、素子分離特性のよい化合物半導体エピタキシャル基板を提供する。
【解決手段】
半導体エピタキシャル基板は、単結晶基板と、単結晶基板上にエピタキシャル成長されたAlN層と、AlN層の上にエピタキシャル成長された窒化物半導体層とを有し、単結晶基板とAlN層間界面より、AlN層と窒化物半導体層間界面の方が凹凸が大きい、ことを特徴とする。 (もっと読む)


【課題】半導体装置においてオーミック特性を良好にし、かつ、酸・アルカリによる腐食に対し高い耐性を有することが可能な技術を提供することを目的とする。
【解決手段】半導体装置は、不純物が添加された高濃度不純物領域2を有する窒化物半導体層1と、高濃度不純物領域2上に順に積層された下地電極層3及び主電極層4を含む電極11とを備える。主電極層4は、窒化物半導体層1に対して下地電極層3よりも仕事関数が近い第1金属と、水素よりもイオン化傾向が小さい第2金属とからなる合金を主成分として含む。下地電極層3は、主電極層4よりも窒素との反応性が高い金属を主成分として含み、かつ、第1金属を含む。 (もっと読む)


【課題】GaN系トランジスタを簡便な構造で適切に保護することができる半導体装置及びその製造方法を提供する。
【解決手段】ゲート電極110gと保護ダイオード用電極115pとが互いに接続されている。絶縁膜113は、所定値以上の電圧がゲート電極110gに印加された場合にリーク電流を保護ダイオード用電極115pと電子走行層104及び電子供給層103との間に流し、所定値は、HEMTがオン動作する電圧より高く、ゲート絶縁膜109gの耐圧よりも低い。 (もっと読む)


【課題】精密なエッチング制御を必要とすることなく、ビアホール構造を形成することを可能とするとともに、エッチング後の洗浄を容易にする。
【解決手段】半導体装置において、第1の基板11と、第1の基板表面に形成された素子領域12,13と、素子領域と接続され、第1の基板11上に形成された電極14,15,16と、第1の基板11と積層される第2の基板17と、第2の基板17を貫通し、電極上に配置されるビアホール18a,18b,18cと、ビアホール内に形成される金属層19a,19b,19cと、を備える。 (もっと読む)


【課題】n型不純物としてTeを用いたノンアロイ層を有していても、ベース電流、コレクタ電流のリーク電流が少ないトランジスタ素子を提供する。
【解決手段】基板11と、基板11上に設けられた高電子移動度トランジスタ構造層28と、高電子移動度トランジスタ構造層28上に設けられたヘテロバイポーラトランジスタ構造層29とを備えたトランジスタ素子10において、ヘテロバイポーラトランジスタ構造層29のノンアロイ層26,27は、n型不純物としてTeがドーピングされており、n型不純物濃度が1.0×1019cm-3以上2.0×1019cm-3以下にされているものである。 (もっと読む)


【課題】リーク電流を低減でき、かつ、良好な電流コラプス特性が得られる窒化物半導体装置を提供する。
【解決手段】Si基板1上に順に積層されたチャネルGaN層5およびそのチャネルGaN層5とヘテロ界面を形成するバリアAlGaN層6を含む窒化物半導体層を備える。上記バリアAlGaN層6は、炭素濃度を5×1017/cm以上とする。また、チャネルGaN層5は、炭素濃度を6×1016/cm未満とし、かつ、膜厚を500nm以上とする。 (もっと読む)


【課題】より高いしきい値電圧と電流コラプス改善を両立できる、ノーマリーオフ型の高耐圧デバイスに好適な窒化物半導体基板及びその製造方法を提供する。
【解決手段】基板1と、前記基板1の一主面上に形成されるバッファー層2と、前記バッファー層2上に形成される中間層3と、前記中間層3上に形成される電子走行層4と、前記電子走行層4上に形成される電子供給層5とを含む窒化物半導体基板10において、前記中間層3を厚さ200nm以上1500nm以下、炭素濃度5×1016atoms/cm3以上1×1018atoms/cm3以下のAlxGa1-xN(0.05≦x≦0.24)とし、前記電子走行層4が厚さ5nm以上200nm以下のAlyGa1-yN(0≦y≦0.04)とする。 (もっと読む)


【課題】ワイドバンドギャップ半導体層とメタル電極のコンタクト抵抗を低減することができる半導体装置の製造方法を得る。
【解決手段】まず、シリコンに比べてバンドギャップが大きいIII−V族化合物半導体又はIV−IV族化合物半導体からなるp型窒化ガリウム層1の表面に、3−ヘリウム又は4−ヘリウムのイオンを照射してイオン照射領域2を形成する。イオン照射領域2を形成した後に、p型窒化ガリウム層1の表面にオーミックコンタクトしたメタル電極3を形成する。 (もっと読む)


【課題】高耐圧なIII−窒化物デバイスを提供する。
【解決手段】半導体基板1、基板1上の活性層のスタックであって、それぞれの層はIII−窒化物材料を含むスタック2−5、スタック2−5上のゲート8、ソース9およびドレインコンタクト10、および基板1の裏側(活性層のスタックに接する側に対向する側)から基板1に接する活性層のスタックの下層まで基板中を延びるトレンチであって、トレンチはドレイン領域を完全に囲み、ドレインに向かうゲート領域の端と、ゲートに向かうドレイン領域の端との間に配置され、基板のドレイン領域は本質的に半導体材料から形成されるような幅を有するトレンチを含むIII−窒化物デバイス。 (もっと読む)


【課題】銅を回路層に用いても、信頼性の高い半導体装置を提供する。
【解決手段】半導体素子は、GaN系の半導体材料でできている本体21および少なくとも1つの電極構造物23を含む。電極構造物23は、本体21に形成されるオーミック接触層231、本体21の反対側のオーミック接触層231上に形成されるバッファ層232、および、銅系の材料でできており、オーミック接触層231の反対側のバッファ層232に形成される回路層233を含む。オーミック接触層231は、チタン、アルミニウム、ニッケルおよびそれらの合金から選択される材料でできている。バッファ層232は、オーミック接触層231の材料とは異なっており、かつ、チタン、タングステン、窒化チタン、タングステン窒化およびそれらの組み合わせから選択される材料でできている。 (もっと読む)


【課題】設計された形状およびサイズのゲート電極を形成することが可能な半導体装置の製造方法を提供すること。
【解決手段】本実施形態に係る半導体装置の製造方法は、半導体層12の表面上のうち、互いに離間した位置に、チタン層17a、18a、アルミニウム層17b、18b、ニッケル層17c、18c、金層17d、18dがこの順で積層した積層体17、18を形成し、これらを、アルミニウムの融点より高い温度で加熱して複数の金属体17´、18´を形成するするとともに、これらの複数の金属体17´、18´を半導体層12にオーミック接触させる。この後、複数の金属体17´、18´を薄膜化して複数の合金層13a、14aを形成し、合金層13a、14aを含むドレイン電極13およびソース電極14を形成する。次に、ドレイン電極13とソース電極14との間のレジスト層19に開口部20し、この開口部20内にゲート電極15を形成する。 (もっと読む)


【課題】窒化物半導体層とオーミック電極とのコンタクト抵抗を低減できる窒化物半導体装置を提供する。
【解決手段】Si基板10上に形成されたアンドープGaN層1,アンドープAlGaN層2と、アンドープGaN層1,アンドープAlGaN層2上に形成されたTi/Al/TiNからなるオーミック電極(ソース電極11,ドレイン電極12)とを備える。上記オーミック電極中の酸素濃度を1×1016cm−3以上かつ1×1020cm−3以下とする。 (もっと読む)


【課題】高抵抗なダメージ層を形成しない窒化物半導体層のエッチング方法と、これを用いた低抵抗なオーミック電極を備える窒化物半導体装置の製造方法の提供を目的とする。
【解決手段】本発明の窒化物半導体層のエッチング方法は、(a)窒化物半導体層に不純物イオンを注入し、その表面から所定深さまで不純物領域を形成する工程と、(b)前記不純物領域を熱処理する工程と、(c)前記不純物領域の前記表面側の所定領域をウェットエッチングで除去する工程とを備える。 (もっと読む)


【課題】窒化物半導体装置の、ソース・ドレイン間のオン抵抗を低減する。
【解決手段】ソース・ドレイン間を走行する窒化物半導体層と下地となる窒化物半導体層の間に、両窒化物半導体層より電子親和力が大きく、下地となる窒化物半導体よりも格子定数の大きい材料を形成する。その結果、ゲート電圧の印加によりゲート絶縁膜の下方に形成されるチャネルと、ゲート部以外で形成される二次元電子ガスを、深さ方向において近づけることができ、オン抵抗の低減が可能となる。 (もっと読む)


161 - 180 / 2,283