説明

Fターム[5F102GC01]の内容

接合型電界効果トランジスタ (42,929) | ゲート配置 (2,808) | 横型FETの上部ゲート (2,283)

Fターム[5F102GC01]に分類される特許

101 - 120 / 2,283


【課題】スイッチングノイズ発生を抑制できるノーマリオフ形の窒化物半導体装置の提供。
【解決手段】本発明の実施形態の窒化物半導体装置は、AlGa1−xN(0≦x<1)からなる第1の半導体層4と、AlGa1−yN(0<y≦1、x<y)からなる第2の半導体層5と、導電性基板2と、第1の電極6と、第2の電極8と、制御電極7と、を備える。第2の半導体層は第1の半導体層に直接接合する。第1の半導体層は、導電性基板に電気的に接続される。第1の電極及び第2の電極は、第2の半導体層の表面に電気的に接続される。制御電極は、第1の電極と第2の電極との間の第2の半導体層の前記表面上に設けられる。第1の電極は、Si−MOSFET102のドレイン電極8aに電気的に接続される。制御電極は、前記MOSFETのソース電極6aに電気的に接続される。導電性基板は、前記MOSFETのゲート電極7aに電気的に接続される。 (もっと読む)


【課題】多様な構造を実現することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】化合物半導体装置の一態様には、基板1と、基板1の上方に形成された化合物半導体層2と、が設けられている。化合物半導体層2には、第1の不純物の活性化により発生した第1導電型のキャリアを含む第1の領域2aと、第1の不純物と同一種類の第2の不純物の活性化により発生したキャリアを、第1の領域2aよりも低濃度で含有する第2の領域2bと、が設けられている。 (もっと読む)


【課題】 本実施形態は、面積効率に優れた半導体装置を実現することを目的としている。
【解決手段】 本実施形態の半導体装置は、半導体基板と、半導体基板上に形成された電界効果トランジスタと、前記電界効果トランジスタの形成領域に隣接するダイオード形成領域とを備え、前記ダイオード形成領域は前記トランジスタの形成領域と前記半導体基板上で絶縁され、前記ダイオード形成領域内は櫛状に並んだアノード電極とカソード電極から形成され、前記アノード電極とカソード電極は、電界効果トランジスタを構成する櫛状にならんだゲート電極、ソース電極およびドレイン電極とは電極方向とは異なる方向となるように形成されることを特徴とする。 (もっと読む)


【課題】高耐圧性をより確実に実現することができる電界効果トランジスタを提供すること。
【解決手段】窒化物系化合物半導体からなる電界効果トランジスタであって、基板上に形成されたキャリア走行層と、前記キャリア走行層上に形成され、前記キャリア走行層とは反対の導電型を有し、前記キャリア走行層内部に到る深さまで形成されたリセス部によって分離したキャリア供給層と、前記分離した各キャリア供給層上に前記リセス部を挟んで形成されたソース電極およびドレイン電極と、前記分離した各キャリア供給層上にわたって前記リセス部内における前記キャリア走行層の表面を覆うように形成されたゲート絶縁膜と、前記リセス部において前記ゲート絶縁膜上に形成されたゲート電極と、を備え、前記リセス部の前記キャリア供給層上面からの深さが、前記キャリア供給層の層厚より大きく200nm以下である。 (もっと読む)


【課題】半導体装置について、小型化を図りつつ、ドレイン耐圧を向上する。
【解決手段】ゲート電極20と、ゲート電極20と離間するソース電極24と、平面視でゲート電極20からみてソース電極24の反対側に位置し、かつゲート電極20と離間するドレイン電極22と、平面視でゲート電極20とドレイン電極22の間に位置し、絶縁膜26を介して半導体基板10上に設けられ、かつゲート電極20、ソース電極24およびドレイン電極22と離間する少なくとも一つのフィールドプレート電極30と、絶縁膜26中に設けられ、かつフィールドプレート電極30と半導体基板10を接続する少なくとも一つのフィールドプレートコンタクト40と、を備え、平面視でフィールドプレート電極30は、フィールドプレートコンタクト40からソース電極24側またはドレイン電極22側の少なくとも一方に延伸している。 (もっと読む)


【課題】窒化ガリウム系半導体で形成された半導体層を有する半導体素子において、消費電力を増大させず、かつ、大型化することなく、半導体素子の電極に電圧をかけたときに発生する電流コラプス現象を抑制する。
【解決手段】窒化ガリウム系半導体が積層されて形成された半導体素子と、半導体素子に対して積層方向に形成され、外部からのエネルギーの入力なしで半導体素子に光を照射する自己発光体とを備える半導体装置を提供する。 (もっと読む)


【課題】貫通する開口を備える保護層を基板上に形成し、さらにこの開口の中にゲート電極を形成することによって、トランジスタを作製する。
【解決手段】ゲート電極の第1の部分は、開口の外側に存在する保護層の表面部分で横方向に延在し、ゲート電極の第2の部分は、保護層から間隔を空けて配置され、第1の部分を越えて横方向に延在する。関連したデバイスおよび作製方法も述べられる。 (もっと読む)


【課題】電極端部への電界集中を抑えるとともに、ゲート電極の変形や、ゲート−フィールドプレート間に生じる容量による特性劣化を抑える。
【解決手段】半導体装置において、第1の基板と、第1の基板表面に形成された素子領域と、素子領域と接続され、第1の基板上に形成されたゲート電極、ソース電極及びドレイン電極と、第1の基板と、第1の面で積層される第2の基板と、第2の基板を貫通し、電極上に配置されるビアホールと、ビアホール内に形成され、電極と接続される金属層と、第2の基板に設けられ、ゲート電極、ソース電極及びドレイン電極のいずれかと接続されるフィールドプレート電極と、を備える。 (もっと読む)


【課題】ゲート電極とソース電極との間に印加される電圧がソース電極パッドの電気抵抗による電圧降下で低下することを防止でき、安定した動作を実現できる電界効果トランジスタを提供する。
【解決手段】このGaN HFETによれば、ボンディング部16Bの第2のパッド部16B‐2は、電極接続部16Aが含有する複数の接続部分19のうちの第2の方向(ソース電極12とドレイン電極11が対向している方向)の一端に配置された接続部分19の上記第2の方向の外端を電極延在方向へ延長した仮想延長線L1に関して第1のパッド部16B‐1とは反対側に位置している。第2のパッド部16B‐2に接続された第2のソース配線24のボンディング箇所の第2の方向の位置を電極接続部16Aのソース電極12との接続部分19の第2の方向の位置と重ならないようにして、ソース電極12からの電流が第2のソース配線24に流れにくくできる。 (もっと読む)


【課題】高周波特性の悪化を防ぎ、耐湿性を向上させる。
【解決手段】半導体基板1の主表面上の素子領域内に、ドレイン電極2が設けられている。一端がドレイン電極2に接続されたドレイン配線5が主表面上に設けられている。主表面上の素子領域外に、ドレイン配線5とは離間したドレイン電極パッド12が設けられている。Auメッキ層9が主表面上に設けられ、主表面との間に空隙10が形成されている。空隙10はドレイン配線5の一端とドレイン電極2を内包する。硬化されたポリイミド膜14が空隙10の開口部11を閉塞し、ドレイン電極パッド12を覆うことなく、ドレイン配線5の他端を覆っている。空隙10の内面に撥液膜15が設けられている。硬化されたポリイミド膜14に設けられた開口16を介してAuメッキ層18により、ドレイン配線5の他端とドレイン電極パッド12が接続されている。ドレイン配線5の他端はポリイミド膜14から出ていない。 (もっと読む)


【課題】ゲート電極に臨む領域の半導体層へのダメージ層の形成を抑制して、ノーマリオフ動作を実現することができるヘテロ接合電界効果型トランジスタを備える半導体装置およびその製造方法を提供する。
【解決手段】チャネル層23とヘテロ接合を形成するバリア層24のうち、ゲート電極29に臨む領域を除く他の領域に、バリア層24の伝導帯から、チャネル層23とバリア層24とのヘテロ界面のバンド不連続量ΔEcと、バリア層24に発生する分極によるバリア層24のゲート電極29側とヘテロ界面側とのエネルギー差ΔEpとを足し合わせたエネルギー(ΔEc+ΔEp)までのエネルギー深さのバンドギャップ中に準位を形成する不純物をドーピングして、不純物ドーピング領域26を形成する。 (もっと読む)


【課題】低オン抵抗であって、かつ、ノーマリーオフの電界効果型トランジスタを提供する。
【解決手段】基板10の上に形成された電子走行層11と、電子走行層11の上に、電子走行層11よりもバンドギャップの広い半導体により形成された電子供給層12と、電子供給層12の上に、電子供給層よりもバンドギャップの狭い半導体により形成されたバリア形成層13と、バリア形成層13の上に、不純物のドープされた半導体により形成された上部チャネル層14と、バリア形成層13及び上部チャネル層14を除去することにより形成されたバリア形成層13及び上部チャネル層14の側面と、側面に形成された絶縁膜20と、絶縁膜20を介し形成されたゲート電極21と、上部チャネル層14と接続されるソース電極22と、電子供給層12または電子走行層11と接続されるドレイン電極23と、を有する。 (もっと読む)


【課題】高電子移動度トランジスタにおいて、ゲート部のドレイン側端部における電界集中を緩和する。
【解決手段】高電子移動度トランジスタ10は、導電体部23と第1抵抗部R1と第2抵抗部R2を備えている。導電体部23は、ドレイン電極21とゲート部26の間に設けられている。第1抵抗部R1は、一端がドレイン電極21に電気的に接続されており、他端が導電体部23に電気的に接続されている。第2抵抗部R2は、一端がソース電極28に電気的に接続されており、他端が導電体部23に電気的に接続されている。 (もっと読む)


【課題】製造が容易であり、デバイス特性の変動を抑制できるワイドバンドギャップ半導体デバイスを得る。
【解決手段】SiC基板1上にAlN格子緩和層2、GaNチャネル層3、及びAlGaN電子供給層4が順に設けられている。これらは、1.42eVより広いバンドギャップを持つ半導体材料からなる。AlGaN電子供給層4に、トランジスタを含む活性領域9が設けられている。SiC基板1は、光学的な不純物又は格子欠陥により着色され、可視光領域の光を吸収する。従って、このデバイスは波長360nm〜830nmの可視光領域の光に対して不透明である。 (もっと読む)


【課題】ゲート電極とチャネル層との間の障壁層に低抵抗領域を備えた構成において、ゲートリーク電流を防止することによりドレイン電流の最大値の向上を図ることが可能な半導体装置を提供する。
【解決手段】化合物半導体で構成されたチャネル層14と、チャネル層14上に設けられた上部障壁層15とを備え、上部障壁層15における表面層には、不純物を含有することにより周囲よりも低抵抗に保たれた低抵抗領域15gが設けられている。また、この低抵抗領域15gを挟んだ位置において上部障壁層15に接続されたソース電極17sおよびドレイン電極17dを備えている。さらに、低抵抗領域15g上に設けられたゲート絶縁膜18と、このゲート絶縁膜18を介して低抵抗領域15g上に設けられたゲート電極19とを備えている。 (もっと読む)


【課題】コンタクトホールを形成するために用いられたレジスト膜を、硫酸を含むエッチング液を利用して除去することが可能なオーミック電極の形成方法を提供する。
【解決手段】積層電極部2を形成する積層電極部形成工程と、積層電極部2を熱処理するアニール工程と、熱処理後の積層電極部2を被覆部3で被覆して被覆電極部4を形成する被覆電極部形成工程と、被覆電極部4を覆うように半導体層1の表面に絶縁体膜5を形成する絶縁体膜形成工程と、被覆電極部4に対応して開口7が形成されているレジスト膜6を絶縁体膜5の表面にパターニングするレジスト膜形成工程と、レジスト膜6の開口7から露出する絶縁体膜5を除去して被覆電極部4を露出させる露出工程と、硫酸を含むエッチング液を用いてレジスト膜6を除去するレジスト膜除去工程を備えている。被覆部3の材料は、金又は白金である。 (もっと読む)


【課題】シリコン基板上に高電子移動度トランジスタを成長させた構造及びその方法の提供。
【解決手段】本シリコン基板上に高電子移動度トランジスタを成長させた構造及びその方法は、半導体産業において半導体装置製造に用いられる。本発明によると、UHVCVDシステムを使用してGeフィルムをSi基板上に成長させ、その後、高電子移動度トランジスタを該Geフィルム上に成長させることで、バッファ層の厚さとコストを低減する。該Geフィルムの機能は、Si基板上にMOCVDによりIII-V MHEMT構造を成長させるときに、シリコン酸化物の形成を防止することである。本発明においてMHEMTを使用する理由は、MHEMT構造中の変成バッファ層がGeとSi基板間の非常に大きな格子不整合度のために形成される貫通転位をブロックし得ることにある。 (もっと読む)


【課題】バッファ層を有する半導体素子において、チャネルの基準電位を固定する半導体素子及びその製造方法を提供する。
【解決手段】基板10と、基板上に設けられ、エネルギーギャップの異なる複数種類の窒化物半導体が積層された積層体を少なくとも1層有するバッファ層20と、バッファ層上に設けられた窒化物半導体のチャネル層30と、バッファ層の側面に電気的に接続された側面電極60と、チャネル層の上方に形成され、チャネル層と電気的に接続されたチャネル電極52,56とを備える半導体素子。 (もっと読む)


【課題】高電圧が印加されても、故障しにくい複合半導体装置を提供する。
【解決手段】複合半導体装置200は、ダイオード210及び絶縁層204を含むSOI基板(semiconductor on insulator)を備える。複合半導体装置200は、ダイオード210の上に形成された遷移体220及び遷移体220の上に形成されたトランジスタ230も含む。ダイオード210は半導体貫通ビア、外部電気接続部又はその両方の組み合わせを用いてトランジスタ230の両端間に接続される。 (もっと読む)


【課題】材料の熱膨張係数の差に起因するクラック等を抑制することができる化合物半導体装置及びその製造方法を提供する。
【解決手段】基板1と、基板1上方に形成されたGaN系化合物半導体積層構造3と、基板1とGaN系化合物半導体積層構造3との間に設けられたAlN系の応力緩和層2と、が設けられている。応力緩和層2のGaN系化合物半導体積層構造3と接する面に、深さが5nm以上の窪み2aが2×1010cm-2以上の個数密度で形成されている。 (もっと読む)


101 - 120 / 2,283