説明

Fターム[5F102GJ03]の内容

接合型電界効果トランジスタ (42,929) | 基板 (5,097) | 半導体材料(半絶縁性材料も含む) (3,925) | 4族 (2,421) | Si (1,156)

Fターム[5F102GJ03]に分類される特許

1,141 - 1,156 / 1,156


電磁放射線を用いた一回の露光プロセスでT−ゲートを製造する方法が開示される。
(もっと読む)


共通のダイ内で形成された少なくとも2つのIII族−窒化物ベースの半導体デバイスを含む、III族−窒化物をベースとする集積半導体デバイス。
(もっと読む)


【課題】電力用デバイスにおいて双方向に電圧をブロックできるようにする。
【解決手段】大電流を搬送するチャンネルを得るAlGaN/GaNインターフェースを備えたIII族窒化物双方向スイッチであり、この双方向スイッチは、この双方向スイッチのために、電流を搬送するチャンネルを形成するための二次元電子ガスの発生を阻止したり、または可能にする少なくとも1つのゲートにより作動する。 (もっと読む)


【課題】 本発明は、ショットキ・コンタクト(16)を形成するために半導体(14)上に導電性炭素材料(17)を堆積する方法に関する。
【解決手段】 本発明の方法は、半導体(14)をプロセス・チャンバ(10)内に導入するステップと、プロセス・チャンバ(10)の内部(10')を所定温度に加熱するス
テップと、プロセス・チャンバ(10)を第1所定圧力以下に減圧するステップと、プロセス・チャンバ(10)の内部(10')を第2所定温度に加熱するステップと、少なく
とも炭素を含むガス(12)を、第1所定圧力よりも高い第2所定圧力に達するまで導入するステップと、少なくとも炭素を含むガス(12)から、半導体(14)上に導電性炭素材料(17)を堆積することにより、半導体(14)上に堆積した炭素材料(17)がショットキ・コンタクト(16)を形成するステップを備えている。 (もっと読む)


基板の支持表面上に形成された、横方向に隣接した導電性半導体領域により構成された横方向に延びているスタックを備える半導体デバイスおよびそのデバイスを作製する方法。
(もっと読む)


窒化物ベースの半導体チャネル層上に窒化物ベースの半導体バリア層を形成すること、および窒化物ベースの半導体バリア層のゲート領域上に保護層を形成することによって、トランジスタが製作される。パターニングされたオーム性接触金属領域が、バリア層上に形成され、第1および第2のオーム性接触を形成するためにアニールされる。アニールは、保護層をゲート領域上に載せたままで実施される。バリア層のゲート領域上に、ゲート接点も形成される。ゲート領域内に保護層を有するトランジスタも形成され、バリア層の成長させたままのシート抵抗と実質的に同じシート抵抗をもつバリア層を有するトランジスタも同様である。
(もっと読む)


III族窒化物スイッチは、凹型のゲートコンタクトを含み、ノミナリーオフの、すなわち、エンハンスメント型のデバイスを提供する。凹型のゲートコンタクトを提供することにより、ゲート電極が不活性状態である場合には、2つのIII族窒化物材料の界面に形成された伝導チャンネルが遮断され、デバイス中の電流の流れを防止する。ゲート電極は、ショットキコンタクト又は絶縁金属コンタクトである可能性がある。2つのゲート電極が提供され、ノミナリーオフ特性の双方向スイッチを形成することが可能である。ゲート電極と共に形成された凹部は、傾斜した側壁を持つ可能性がある。デバイスの電流伝達電極に関連して、多くの形状にてゲート電極を形成することが可能である。
(もっと読む)


本発明は、ヘテロ構造を有した電界効果トランジスタに関する。当該ヘテロ構造では、キャリア材料上に歪み単結晶半導体層(4)が形成されている。当該キャリア材料は、最上層として、第1の半導体材料(Si)からなる緩和単結晶半導体層(3)を備えている。上記緩和単結晶半導体層は半導体合金(GeSi1−x)を含んでいて、第2の半導体材料の比率xは自由に設定できる。さらに、上記歪み半導体層(4)上に、ゲート絶縁層(5)およびゲート層(6)が形成される。この場合、非ドープチャネル領域(K)を構成するために、少なくとも歪み半導体層(4)において、ドレイン/ソース領域(D、S)が上記ゲート層に対して横向きに形成される。Ge比率xを自由に設定できる可能性によって、閾値電圧を任意に設定でき、これによって最新の論理半導体部品を実現することができる。
(もっと読む)


窒化ガリウム材料デバイスおよびその形成方法を提供する。該デバイスは、電極規定層を包含する。電極規定層は典型的にはその内部に形成されたビアを有し、該ビア内に電極が(少なくとも部分的に)形成される。したがって、ビアは、電極の寸法を(少なくとも部分的に)規定する。いくつかの場合において、電極規定層は、窒化ガリウム材料領域上に形成された不動態化層である。 (もっと読む)


【課題】
【解決手段】III族窒化物半導体素子およびその製造方法の実施形態は、高温処理中にIII族窒化物材料に損傷を与えずに、素子のコンタクトを形成することを可能にする低抵抗の不動態化層を備えてよい。不動態化層は、素子全体を不動態化するために用いられてよい。不動態化層は、さらに、素子のコンタクトと活性層との間に設けられて、導電のための低抵抗の電流路を提供してもよい。この不動態化処理は、FET、整流器、ショットキダイオードなど、任意の種類の素子に用いて、破壊電圧を改善すると共に、コンタクトの接合部付近の電界集中効果を防止してよい。不動態化層は、外部拡散に関してIII族窒化物素子に影響を与えない低温アニールで活性化されてよい。 (もっと読む)


電源制御装置システム(25)は、電源制御装置システム(25)のスタートアップ動作を制御するために2つの別個の電流を使用する。2つの電流は、電源制御装置システム(25)の動作を抑止するために接地に分流され、2つの電流のうちの1つは電力消散を最小限にするためにディセーブルにされる。2つの独立した制御電流は、2つの別個の制御信号(23、24)に応答して、マルチ出力電流高電圧装置(12)によって生成される。
(もっと読む)


活性層との電気的コンタクトで形成された金属のソースおよびドレインコンタクト(20,22)を有する活性半導体層を備えるトランジスタ構造。ゲートコンタクト(26)が、活性層内の電界を変調するためにソースコンタクトとドレインコンタクトとの間に形成されている。スペーサ層(24)が、活性層の上に形成されている。導電性フィールドプレート(28)がスペーサ層の上に形成され、ゲートコンタクトの端からドレインコンタクトに向かって距離L延びている。フィールドプレートは、ゲートコンタクトに電気的に接続されている。

(もっと読む)


HEMTは、シリコン基板(1)、窒化物半導体から成るバッファ領域(2)、窒化物半導体領域(3)、ソース電極(4)、ドレイン電極(5)、ゲート電極(6)、絶縁膜(7)、導体膜(8)及びコンタクト電極(9)を有している。バッファ領域(2)はシリコン基板(1)の上に複数回繰返して成長されたAINから成る第1の層(13)とGaNから成る第2の層(14)とから成る。半導体領域(3)は電子走行層(15)と電子供給層(16)とを有している。バッファ領域(2)及び半導体領域(3)の側面(17)は傾斜している。この傾斜側面(17)に絶縁膜(7)を介して導体膜(8)が対向している。導体膜(8)はコンタクト電極(9)を介してシリコン基板(1)に接続され、側面(17)における漏れ電流の低減に寄与する。 (もっと読む)


電界効果型トランジスタの表面に、誘電性材料の堆積/成長させ、誘電性材料をエッチングし、および、メタルを蒸着させる、連続的なステップを用いる、シングルゲートまたはマルチゲートプレートの製造プロセス。本製造プロセスのは、誘電性材料の堆積/成長が、典型的には、非常によく制御できるプロセスなので、フィールドプレート動作を厳しく制御できる。さらに、デバイス表面に堆積された誘電性材料は、デバイスの真性領域から除去される必要はない。このため、乾式または湿式のエッチングプロセスで受けるダメージの少ない材料を用いることなく、フィールドプレートされたデバイスを、実現することができる。マルチゲートフィールドプレートを使うと、マルチ接続を使用するので、ゲート抵抗を減らすこともでき、こうして、大周辺デバイスおよび/またはサブミクロンゲートデバイスの性能を向上することができる。
(もっと読む)


ソース領域(9)、ドレイン領域およびソースとドレイン領域を互いに接続するチャネル層(11)を含む電界効果トランジスタを製造する方法。該方法は半導体材料(1)の一部にソース領域(9)などの半導体材料(1)中の移植物の縁部を確定するためにその縁部が使用される犠牲層(4)を提供する手順を含み、犠牲層(4)の縁部(4c)はその後ゲート(16)の縁部を画定するために使用される。

(もっと読む)


過渡現象遮断用の組み合わせデバイス。過渡現象が入力端子 40に印加されると、トランジスタ 44のボディ電位がデプレッションモードJFET型遮断トランジスタ 71のゲート 81を駆動するように、パストランジスタ44が配置されている。同時に、チャネル77を空乏化するために、電位差 Vdが外部ゲート 52の両端に印加される。このように、外部端子上に現れる過渡現象は、非常に急速に伝播されて、チャネル 77および85を空乏化するので、出力端子42に接続されたデバイスが故障する前に、入力端子 40を出力端子 42から効果的に分離する。一旦過渡現象がおさまると、デバイス 37はその通常の導通状態に戻る。 (もっと読む)


1,141 - 1,156 / 1,156