説明

Fターム[5F140AC22]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | 動作、用途、素子構造 (4,642) | 横型IGBT (117)

Fターム[5F140AC22]に分類される特許

1 - 20 / 117


【課題】耐圧バラツキを抑制し、歩留りを向上させることが可能となる横型素子を有する半導体装置を提供する。
【解決手段】横型FWDなどの横型素子に備えられるSRFP21について、の不純物濃度を1×1018cm-3以上となるようにする。このように、横型FWD7などに備えられるSRFP21について、の不純物濃度を1×1018cm-3以上とすることにより、耐圧バラツキを抑制することが可能となり、的確に目標とする耐圧を得ることができる製品とすることが可能になる。したがって、製品の歩留りを向上させることが可能となる。 (もっと読む)


【課題】チップ面積を増大させずにスナップバック現象を抑制することのできる、IGBTと他の半導体素子とが一体化して配置された半導体装置を提供する。
【解決手段】IGBTとドリフト層を有する他の半導体素子とを備えた半導体装置であって、IGBTのドリフト層と他の半導体素子のドリフト層とが互いに接しており、IGBTのエミッタ層と他の半導体素子のドリフト電界を発生させる電圧が印加される一方の極性層とが互いに導電的に接続されており、IGBTのコレクタ層と他の半導体素子の他方の極性層とが互いに導電的に接続されており、IGBTのドリフト層の他の半導体素子のドリフト層との境界から離れた領域に絶縁層を介して対向する領域をドリフト方向に沿って延伸し、Nチャネル型IGBTではコレクタ側からエミッタ側に向けて電流が流され、Pチャネル型IGBTではエミッタ側からコレクタ側に向けて電流が流される配線部が設けられている。 (もっと読む)


【課題】既存のCMOS製造工程に対して工程の追加や変更を行うことなく、素子に要求される耐圧に応じて横型半導体装置が有するLocos酸化膜を最適に制御することができる、横型半導体装置の製造方法を提供する。
【解決手段】半導体基板(100、101)上のLocos形成領域に、遮蔽部及び開口部が所定の幅及び間隔で設けられたパターン(113a、113b)を有するマスク(113)を形成する(工程3a、3b)。マスク(113)を用いた熱酸化処理を施してLocos形成領域を酸化させ、半導体基板(100、101)のドリフト領域上に厚さが異なる(115a、155b)Locos酸化膜(105a、105b)を同時に形成する(工程4a、4b)。 (もっと読む)


【課題】オン電圧の低減と、破壊耐量確保、高速スイッチングを同時に実現できる横型IGBTを提供する。
【解決手段】エミッタ側にn型バリア層15を形成することで、ホールのバリアとして機能させ、コレクタ側から注入されたホールがエミッタ側のチャネルpウェル層6に流れ出てホール濃度が低下することを防止する。これにより、エミッタ近傍のn-型ドリフト層2内のキャリア濃度を上げることが可能となり、オン電圧の低減が可能となる。また、コレクタ側において、コレクタ電極12のうちp+型層4aと接触している部分をオーミック接触、p型層4bと接触している部分をショットキー接触とする。このショットキー接触とされた部分において、コレクタ側からのホールの注入が抑制され、蓄積キャリアを低減して、寄生バイポーラトランジスタがオンし難くなるようにできる。よって、低オン電圧を維持しながらスイッチング耐圧を確保することが可能となる。 (もっと読む)


【課題】不純物イオンの注入による悪影響を防止しつつ水平方向の耐圧を向上できる半導体装置およびその製造方法を提供する。
【解決手段】半導体装置は、素子を構成し、電流が流れる一対の不純物領域が、半導体基板の第1主面の表層に形成されたものであり、水平方向の耐圧を確保するため、フィールドプレート33を有している。これに加えて、この半導体装置は、半導体基板の表面から、素子の電流経路となる第1不純物領域37および第2不純物領域38よりも深い所定の深さおいて、少なくとも第1不純物領域および第2不純物領域の間の領域に半導体基板と同一成分の非晶質層24を有する。この非晶質層は、単結晶および多結晶よりも高抵抗の層であり、擬似的なフィールドプレートとして機能する。そして、この非晶質層は、不活性元素のイオン注入により形成される。 (もっと読む)


【課題】アバランシェ降伏電流が流れている状態において寄生トランジスタのターンオンを抑制することにより、十分なアバランシェ耐量を確保することのできる半導体装置を提供する。
【解決手段】基板の表面ではn型領域とベース領域とが隣接している。エミッタ/ソース領域はベース領域内でn型領域から離れている。ゲート絶縁膜はn型領域とエミッタ/ソース領域との間でベース領域を覆い、その上にゲート電極が形成されている。ドレイン領域とコレクタ領域とはn型領域内でベース領域から離れている。コレクタ接続領域はn型領域内で、ベース領域、ドレイン領域、及びコレクタ領域のいずれからも離れている。ドレイン電極はドレイン領域に接続されている。コレクタ電極はコレクタ領域とコレクタ接続領域とに接続されている。ゲートターンオフ状態でドレイン電極にアバランシェ降伏電流が流れるとき、コレクタ電極の電位がドレイン電極の電位よりも低い。 (もっと読む)


【課題】微細CMOSと中高耐圧MOSFETとの混載を前提とする集積回路(半導体装置)において、中高耐圧MOSFETのチャネル長やしきい値電圧のばらつきを抑制して、設計仕様どおりの安定した回路動作の実現や出力電流密度の向上を図ることができる技術を提供する。
【解決手段】本発明における特徴は、チャネル領域CHの幅(チャネル長)を小さくしたことにある。具体的には、ゲート電極Gと平面的に重なるチャネル領域CHの幅をLとし、ゲート電極Gの厚さをtとした場合、チャネル領域CHの幅Lが、ゲート電極Gの厚さtの1/5倍以上1倍以下になるようにチャネル領域CHを形成する。これにより、チャネル領域CHの幅Lを小さくすることができ、しきい値電圧のばらつきを小さくすることができる。 (もっと読む)


【課題】界面準位密度およびフラットバンド電圧がともに良好な界面特性を有する半導体装置の製造方法を提供すること。
【解決手段】まず、炭化珪素基板1の表面を洗浄する(ステップS1)。つぎに、原料ガスをECRプラズマ化し、原料ガスに含まれる原子を炭化珪素基板1に照射することで、炭化珪素基板1の表面にシリコン窒化膜2を成長させる(ステップS2)。つぎに、ECRプラズマ化学気相成長法により、シリコン窒化膜2の表面にシリコン酸化膜3を堆積する(ステップS3)。つぎに、窒素雰囲気中で、シリコン窒化膜2およびシリコン酸化膜3が形成された炭化珪素基板1のアニール処理を行う(ステップS4)。 (もっと読む)


【課題】半導体基板の表面に導入された不純物を、前記表面の浅い領域に高精度かつ高濃度で分布させ、不純物が半導体基板の深い領域に拡散することを防ぐことで、半導体装置の歩留まりおよび性能を向上させ、装置の微細化を容易にする。
【解決手段】N型MISトランジスタにおいて、半導体基板300に打ち込まれた炭素が、同じ領域に打ち込まれたホウ素を引き寄せる性質を利用し、ホウ素をN型の不純物として注入したハロー領域306に炭素を共注入して炭素注入層307を形成する。これにより、ホウ素が増速拡散することを防ぎ、ハロー領域306を高い精度で形成することを可能とすることで、微細化された半導体素子の短チャネル効果の発生を抑制する。 (もっと読む)


【課題】III−V族トランジスタとIV族ダイオードからなる積層複合デバイスを提供する。
【解決手段】積層複合デバイスはIV族ダイオードと該IV族ダイオードの上に積層されたIII−V族トランジスタとを備える。IV族ダイオードのカソードがIII−V族トランジスタのソースと接触され、IV族ダイオードのアノードがIII−V族トランジスタのゲートに結合されて前記複合デバイスパッケージの底面上の複合アノードを与え、III−V族トランジスタのドレインが複合デバイスパッケージの底面に対向する上面上の複合カソードを与える。 (もっと読む)


【課題】低いオン抵抗を有するドリフト経路/ドリフト領域を有する、パワー半導体素子を提供する。
【解決手段】半導体基材内に第1の伝導型のドリフト領域2と、半導体基材内にドリフト領域2に隣接して配置され半導体材料からなるドリフト制御領域3と、ドリフト領域2とドリフト制御領域3の間に配置された蓄積誘電体4と、基材領域8と、基材領域8から分離され蓄積誘電体4に隣接するドレイン領域5と、基材領域8によりドリフト領域2から分離されるソース領域9と、ゲート誘電体16により半導体基材から絶縁されソース領域9からドリフト領域2に到るまで基材領域8に隣接して伸びたゲート電極15と、ドレイン領域5と接したドレイン電極11と、ドレイン領域5と相補的にドープされた半導体領域27とを含み、半導体領域27はドレイン電極11とドリフト領域2の間に配置されドレイン電極11に隣接する。 (もっと読む)


【課題】 出力ポートの絶縁破壊電圧より低い絶縁破壊電圧を有することが可能な静電放電保護素子を備える半導体装置を提供する。
【解決手段】 半導体装置は、第1LDMOS素子1を含む出力ポートと、出力ポートを静電放電から保護し、第2LDMOS素子4及びバイポーラトランジスタ3から構成される静電放電保護素子2と、を備える。第1LDMOS素子1および第2LDMOS素子4は、それぞれゲート、第1導電型のドレイン領域、第2導電型のボディ領域、及び第1導電型のドレイン領域と第2導電型のボディ領域との間に形成された素子分離領域を備える。このとき、第2LDMOS素子4の絶縁破壊電圧は、第1LDMOS素子1の絶縁破壊電圧より低い。これにより、第1LDMOS素子1の静電破壊を防止することができる。 (もっと読む)


【課題】高速スイッチング動作を行う場合でも、アバランシェブレークダウンを抑制でき、スイッチング損失低減や素子破壊を抑制することが可能な構成とする。
【解決手段】横型FWD7などの横型素子において、SRFP21の全抵抗Rの抵抗値を90kΩ〜90MΩ、好ましくは270kΩ〜27MΩ、より好ましくは900kΩ〜9MΩとすることにより、2ndピーク時のアノード電流IAなどの電流が大きくなることを抑制できる。これにより、高速スイッチング動作を行う場合でもアバランシェブレークダウンを抑制でき、横型FWD7のスイッチング損失低減や素子破壊を抑制することが可能となる。 (もっと読む)


【課題】3次元構造のパワーMOSトランジスタやIBGTの破壊耐量を改善する。
【解決手段】一つの実施形態の半導体装置には、N基板1に溝21が設けられ、溝21に積層形成されるN層2、N層3、P層4、及びN層5が溝21を覆うように設けられる。N層5に、N基板1に対して垂直方向では一部がN層5を貫通してP層4表面が露呈され、N基板1に対して水平方向では一部がN層5を貫通してP層4側面が露呈するように溝22が設けられ、溝22にP層6が溝22を覆うように設けられる。N基板1に対して垂直方向では、N層5を貫通してP層4表面が露呈され、N基板1に対して水平方向では、P層4を貫通して一端でN層3側面が露呈し、他端でN層5側面が露呈し、P層6の間及び側面と離間して配置形成される溝23が設けられる。溝23に、トレンチゲート11が溝23を覆うように設けられる。 (もっと読む)


【課題】MOSFET動作からIGBT動作に切り替わるときのコレクタ電圧を上昇させずに、アバランシェ耐量を向上させる半導体装置を提供する。
【解決手段】P-型基板の表面部に形成されたN型リサーフ領域と、P型ベース領域と、N+型エミッタ/ソース領域105と、ゲート絶縁膜と、N型リサーフ領域内に形成されたN+型ドレイン領域109及びP+型コレクタ領域108と、ゲート絶縁膜上に形成されたゲート電極107と、P+型コレクタ領域108及びN+型ドレイン領域109に電気接続されたコレクタ/ドレイン電極と、N+型エミッタ/ソース領域105に電気接続されたエミッタ/ソース電極と、N型リサーフ領域内であってP型ベース領域及びN+型ドレイン領域109とは離隔しP+型コレクタ領域108の側面と対向して形成された、N型リサーフ領域よりも高いキャリア濃度のバッファ領域114とを備える半導体装置。 (もっと読む)


【課題】リカバリ損失の低減が図れ、かつ、ノイズによるセルフターンオンが生じ難い構造の半導体装置を提供する。
【解決手段】ゲート電極8を深さの異なる第1、第2ゲート電極8a、8bを備えたダブルゲート構造とする。このような構造では、第1、第2ゲート電極8a、8bのうちの第1ゲート電極8aのみをオンさせることで、p型ベース領域3に対して反転層を形成しながらも、その反転層がn-型ドリフト層2とn+型不純物領域4とを繋ぐ深さまでは形成されないようにすることができる。この第1ゲート電極8aを過剰キャリア注入抑制ゲートとして機能させる。 (もっと読む)


【課題】これまでのMOSFETと同等の集積性を維持しながら、MOSFETに比べて優れたスイッチング特性をもつ、すなわち、室温においてS値が60mV/桁より小さな値をもつ半導体素子を提供する。
【解決手段】MOSFETと、トンネル接合を有するトンネルバイポーラトランジスタを組み合わせることにより、低電圧であっても、ゲート電位変化に対してドレイン電流が急峻な変化(S値が60mV/桁よりも小さい)を示す半導体素子を構成する。 (もっと読む)


【課題】オン電圧の低減と、破壊耐量確保、高速スイッチングを同時に実現できる横型IGBTを提供する。
【解決手段】n型バリア層15を形成することでエミッタ側のキャリア濃度を高くしてオン電圧の低減を図りつつ、n型バリア層15を隣り合うエミッタ間に形成しないようにすることで、ターンオフ時間の改善を図る。また、このような構造により、スイッチング時の破壊耐量の向上も図ることも可能となる。したがって、オン電圧の低減と、破壊耐量確保、高速スイッチングを同時に実現できる横型IGBTとすることが可能となる。 (もっと読む)


【課題】炭化珪素半導体装置のチャネル移動度の向上を図る。
【解決手段】ゲート酸化膜形成工程の降温時に、ウェット雰囲気を維持したまま、終端・脱離温度(650〜850℃)以下まで降温させる。これにより、ゲート酸化膜とチャネル領域を構成するp型ベース層の界面のダングリングボンドをHもしくはOHの元素で終端させることが可能となる。このため、高いチャネル移動度の反転型ラテラルMOSFETとすることが可能となる。 (もっと読む)


【課題】寄生サイリスタの動作による破壊が生じない半導体装置及びその製造方法を提供する。
【解決手段】少なくともドレイン側p+層及びn+層のうちの、ボディ領域の導電型と同一型の層の下方において当該層と対向して半導体層の内部に形成された調整層を含む半導体装置。少なくともドレイン側p+層及びn+層のうちの、ボディ領域の導電型と同一型の層の下方において当該層と対向して半導体層の内部に調整層を形成する調整層形成ステップを含む半導体装置製造方法。 (もっと読む)


1 - 20 / 117