説明

Fターム[5F152AA03]の内容

再結晶化技術 (53,633) | 目的、効果 (2,853) | 成長方向の制御 (553) | 横方向に成長(ラテラル) (489) | 一方向に成長 (282)

Fターム[5F152AA03]に分類される特許

61 - 80 / 282


【課題】電気特性を高め、かつ電気特性のばらつきを抑制した半導体薄膜の製造方法、薄膜トランジスタの製造方法、半導体薄膜、薄膜トランジスタ及び表示装置を提供する。
【解決手段】基板上に半導体薄膜を製造する方法であって、上記製造方法は、基板上に形成された非晶質珪素膜に対して、該非晶質珪素膜の膜面内の一方位に結晶化エネルギーを付与していくことにより、{101}面が膜面と平行でありかつ〈100〉方位が結晶化エネルギーを付与していく方位と平行である第一結晶粒、及び、{114}面が膜面と平行でありかつ〈122〉方位が結晶化エネルギーを付与していく方位と平行な第二結晶粒で構成された多結晶珪素膜を形成する結晶化工程と、上記多結晶珪素膜に結晶成長エネルギーを付与することにより、第一結晶粒を消失させ、第二結晶粒を大きくする結晶成長工程とを含む半導体薄膜の製造方法である。 (もっと読む)


【課題】ガラス基板等の支持基板上に単結晶半導体基板から分離した単結晶半導体層を形成する半導体基板の作成方法、及び半導体層が分離された後の単結晶半導体基板を再生処理の方法を提供する。
【解決手段】ガラス基板等の支持基板に、単結晶半導体層を接合するに際し、支持基板または単結晶半導体基板の一方若しくは双方に、酸化シリコン膜を用いる。本構成によれば、ガラス基板等の耐熱温度が700℃以下の基板でであっても接合部の接着力が強固なSOI層を得ることができる。また、単結晶半導体層が分離された単結晶半導体基板は、半導体層が分離された面側から単結晶半導体基板にレーザ光を照射して、単結晶半導体基板の表面を溶融させ、一領域あたりの溶融時間を0.5マイクロ秒乃至1ミリ秒とする再生処理を施した後、再利用する。 (もっと読む)


【課題】ダングリングボンドの発生を抑制することを課題とする。
【解決手段】半導体膜を形成し、前記半導体膜に、一導電性を有する不純物元素を添加して、前記半導体膜中に、不純物領域、及び、チャネル形成領域を形成し、前記島状半導体上に、ゲート絶縁膜及びゲート電極を形成し、前記半導体膜、ゲート絶縁膜、ゲート電極を覆って、フッ素を含む絶縁膜を形成し、前記半導体膜、前記フッ素を含む絶縁膜を加熱し、前記フッ素を含む絶縁膜を加熱した後に、前記フッ素を含む絶縁膜上に、前記不純物領域に電気的に接続される配線を形成する半導体装置の作製方法に関するものである。前記フッ素を含む絶縁膜は、フッ素を含む酸化珪素膜、フッ素と窒素を含む酸化珪素膜、フッ素を含む窒化珪素膜のいずれか1つである。 (もっと読む)


横方向に結晶化された薄膜上に作製される薄膜トランジスタデバイスにおいて高い均一性を生成する方法が述べられる。薄膜トランジスタ(TFT)は、結晶基板内に配設されるチャネルエリアを備え、前記結晶基板は、互いにほぼ平行であり、かつ、ほぼ等しい間隔だけ離間する結晶粒界を含む。チャネルエリアの形状は、複数の結晶粒界に実質的に垂直に配向する2つの対向する側部縁を有する非等角多角形を含み、多角形は、複数の結晶粒界に実質的に垂直に配向する2つの対向する側部縁を有する。多角形は、さらに、上側縁および下側縁を有する。上側および下側縁のそれぞれの少なくとも一部分は、結晶粒界に対してある傾斜角度で配向する。傾斜角度は、多角形によって覆われる結晶粒界の数が、結晶基板内のチャネルエリアのロケーションに無関係になるように選択される。 (もっと読む)


【課題】poly−Si層とa−Si層が積層されたボトムゲート型TFTによる内蔵型駆動回路を形成した表示装置の製造コストを低減する。
【解決手段】ゲート電極103およびゲート絶縁膜104の上にpoly−Si層107とa−Si層108が積層されてアクティブ領域が形成されている。poly−Siは全面に形成されたa−Siの一部をレーザアニールによってpoly−Siに変換している。poly−Siとa−Siを同時にドライエッチングし、エッチング速度の差によってa−Siのみ除去し、poly−Si層107を残留させる。これによってフォトリソグラフィ工程無しに、poly−Si層107のパターニングが出来、製造コストを低減できる。 (もっと読む)


【課題】レーザ結晶化時に発生する結晶粒界の位置を制御することが可能なレーザ照射装置及びレーザ照射方法を提供することを課題とする。
【解決手段】レーザ発振器101から射出したレーザ光を、位相シフトマスク103を介して長軸方向の強度分布を有するレーザ光へと変調し、シリンドリカルレンズ104及びレンズ105によって、絶縁基板上に設けられた非晶質半導体膜に転写し、レーザ光を走査して、非晶質半導体膜を結晶化する。 (もっと読む)


【課題】リーク電流の発生の抑制を行うゲッタリングの効果を良好に得ることが可能な薄膜トランジスタを提供する。
【解決手段】チャネル領域を挟んでソース領域とドレイン領域とを有する半導体層を備える薄膜トランジスタであって、上記ソース領域及びドレイン領域の少なくとも一方の領域は、チャネル領域よりも膜厚の薄い領域を有する薄膜トランジスタであり、好ましくは、上記ソース領域及びドレイン領域の少なくとも一方の領域は、該領域内で膜厚の厚い領域と膜厚の薄い領域とを有する薄膜トランジスタである。 (もっと読む)


【課題】 例えば結晶化装置に適用されて、結晶核の位置を制御することができ、ひいては結晶の形成領域を二次元的にほぼ制御することのできる位相シフトマスク。
【解決手段】 ほぼ直線状の境界線(10a)の両側に形成されて第1の位相差を有する第1領域(11)および第2領域(12)と、境界線に沿って第1領域および第2領域のうちの少なくとも一方の領域に形成された所定形状の微小領域(13)とを備え、微小領域が形成された第1領域または第2領域と微小領域との間に第2の位相差が付与されている。 (もっと読む)


【課題】 2本のレーザビームを斜め入射させる場合でも、高品質の多結晶膜を製造することが可能な多結晶膜の製造方法を提供する。
【解決手段】 表面にシリコン膜が形成された加工対象物(30)の該表面をxy面とするxyz直交座標系を定義したとき、該加工対象物の表面上のy方向に長い被照射領域に、該加工対象物の表面におけるパワー密度が相対的に大きく、かつy方向に関する光強度分布が均一化された第1のレーザビーム(L1)を、x軸の正の向きに傾けた方向に沿って入射させると同時に、該加工対象物の表面におけるパワー密度が相対的に小さく、かつy方向に関する光強度分布が均一化された第2のレーザビーム(L2)を、x軸の負の向きに傾けた方向に沿って入射させながら、前記加工対象物をx軸の正の向きに移動させることにより、前記シリコン膜を多結晶化させる。 (もっと読む)


【課題】最終結晶においてリッジ高さが高い結晶が含まれないように半導体薄膜を形成することが可能な半導体薄膜の製造装置を提供すること。
【解決手段】制御部8は、移動部7により被照射物80を相対的に移動させながら第1レーザ出力部4および第2レーザ出力部65に対して複数回の照射を行なわせることにより、重複する照射領域内で結晶の引継ぎ成長を行なわせる。このとき、あるスリットに対応する照射領域の両端部から成長する結晶が衝突しないように第1レーザ出力部4および第2レーザ出力部65の照射タイミングを制御した後、移動部7により被照射物を相対的に移動させ、他のスリットに対応する照射領域の両端部から成長する結晶が衝突するように第1レーザ出力部4および第2レーザ出力部65の照射タイミングを制御する。したがって、リッジ高さが高い結晶が含まれないように半導体薄膜を形成することが可能となる。 (もっと読む)


【課題】半導体膜を多結晶化させる際に半導体膜がその下層のパターンから受ける影響が半導体膜の電気的性能に及ぶのを抑制する。
【解決手段】半導体装置の製造方法は、基板11上に、電流経路予定部分に対応してパターン13を形成するパターン形成ステップと、パターン形成ステップで形成したパターン13を覆うように基板11上に半導体膜15を形成する半導体膜形成ステップと、半導体膜形成ステップで形成した半導体膜15の少なくとも電流経路予定部分に対し、その電流経路方向に垂直な方向にレーザー光Lを走査して半導体膜15を多結晶化させる多結晶化ステップと、を備える。 (もっと読む)


【課題】下部ゲート電極に影響を受けることなく半導体膜を結晶化できる半導体装置及びその作製方法を提供する。
【解決手段】本発明に係る半導体装置の作製方法は、基板上に剥離層を形成し、前記剥離層上に絶縁膜107を形成し、絶縁膜107上に下部ゲート絶縁膜103を形成し、下部ゲート絶縁膜103上に非晶質半導体膜を形成し、前記非晶質半導体膜を結晶化することにより下部ゲート絶縁膜103上に結晶質半導体膜を形成し、前記結晶質半導体膜上に上部ゲート絶縁膜105を形成し、上部ゲート絶縁膜105上に上部ゲート電極106a,106bを形成し、前記剥離層を絶縁膜107から剥離し、絶縁膜107を加工することにより下部ゲート絶縁膜103を露出させ、前記露出した下部ゲート絶縁膜103に接する下部ゲート電極115a、115bを形成することを特徴とする。 (もっと読む)


【課題】S値が小さくオン電流の低下が抑えられた応答性のよい半導体装置を作製する。
【解決手段】ソース領域又はドレイン領域の膜厚がチャネル形成領域の膜厚よりも厚い半導体層を形成する。このような半導体層を用いた半導体装置の作製方法としては、基板上に第1の半導体層を形成し、第1の半導体層上に第1の絶縁層と導電層とを形成し、導電層の側面に第2の絶縁層を形成し、第1の絶縁層と導電層と第2の絶縁層の上に第2の半導体層を形成し、部分的に設けたレジストをマスクとして第2の半導体層をエッチングし、第1の半導体層と第2の半導体層とを加熱処理することにより、凹凸形状を有する半導体層を形成する。 (もっと読む)


【課題】高性能で安価な半導体装置及びその作製方法を提供することを目的とする。
【解決手段】基板上に、単結晶半導体基板にイオンを打ち込み前記基板に貼り付けた後熱処理を加えることにより残存させた単結晶半導体層を有する第1の領域と、非単結晶半導体層を有する第2の領域と、を設ける。また、劈開単結晶半導体層に不活性雰囲気中においてレーザー光の照射を行い、非単結晶半導体層には、少なくとも一度、大気雰囲気中においてレーザー光の照射を行うとより好ましい。 (もっと読む)


【課題】高性能で安価な半導体装置及びその作製方法を提供することを目的とする。
【解決手段】基板上に、単結晶半導体基板にイオンを打ち込み前記基板に貼り付けた後熱処理を加えることにより残存させた単結晶半導体層を有する第1の領域と、非単結晶半導体層を有する第2の領域と、を設ける。また、劈開単結晶半導体層に不活性雰囲気中においてレーザー光の照射を行い、非単結晶半導体層には、少なくとも一度、大気雰囲気中においてレーザー光の照射を行うとより好ましい。 (もっと読む)


【解決手段】
通常、シリコンである原ウェハは、所望の端部PVウェハの形状を有する。原ウェハは、急速凝固またはCVDにより作製することができる。原ウェハは小さな粒子を有する。再結晶化される際にシリコンを収容および保護する清浄な薄膜内にカプセル封入され、より大きな粒子構造を形成する。カプセルは、酸素または蒸気の存在下でウェハを加熱して、外表面上に通常1〜2ミクロンの二酸化ケイ素を生成させることにより作製することができる。さらに加熱すると、ウェハが移動する空間内の溶融帯が形成されて、より大きな粒子径の再結晶が生じる。カプセルは再結晶化中に溶融材料を収容し、不純物から保護する。再結晶は大気中で行うことができる。支持板を介した熱転写が、応力および欠陥を最小限にとどめる。再結晶化後、カプセルが除去される。 (もっと読む)


【課題】 隣り合う2つのTFTの間に短絡が発生するのを確実に防止することができる多結晶半導体膜の形成方法。
【解決手段】 絶縁基板上において第1方向に沿って結晶成長した多結晶半導体膜を形成する本発明の方法では、第1方向に沿って第1の向き(Fas,Faf)に結晶成長した結晶粒(15a)と第1の向きとは逆の第2の向き(Fbs,Fbf)に結晶成長した結晶粒(15b)とが、第1方向と直交する第2方向に沿って間隔を隔てた複数の領域において他の領域よりも早く衝突するように、絶縁基板上における結晶成長を制御する。 (もっと読む)


【課題】半導体層の選択された領域に所望の結晶粒径の結晶化を実現すること。
【解決手段】移動ステージの基板とレーザ光源との間に、ビームプロファイル変調部を設置し、基板面におけるレーザ光のビームプロファイルを予め設定した目標と一致するように変調し、移動ステージを結晶領域に位置を合わせて動かしながら、この変調されたレーザ光を基板上の半導体層に照射して、結晶を横方向に成長させることにより、所望の結晶粒径に結晶化する。 (もっと読む)


【課題】絶縁材からなる基層上に、結晶性の優れた半導体薄膜を形成する。
【解決手段】光源であるエキシマレーザ1と、該エキシマレーザ1から発せられる光の光強度分布を均一化するホモジナイザ3と、ホモジナイザ3によって光強度分布が均一化された光の振幅が、光の非晶質基板9に対する相対運動の向きに増加するように振幅変調を行う振幅変調マスク5と、振幅変調マスク5によって振幅が変調された光を、非晶質基板9上に形成された非単結晶半導体層10上に、所定の照射エネルギーが得られるように投射する投射光学系6と、光の照射面内で温度の低い点を設ける位相シフトマスク8と、光と非晶質基板9とを相対的に動かすX、Y方向に走査可能な基板ステージを有する。 (もっと読む)


【課題】銅めっきをアンテナに用いた、集積回路とアンテナが一体形成された半導体装置において、銅の拡散による回路素子の電気特性への悪影響を防止し、また、集積回路とアンテナが一体形成された半導体装置において、アンテナと集積回路の接続不良に伴う半導体装置の不良を防止する装置を提供する。
【解決手段】半導体装置によると、同一の基板102上に集積回路100とアンテナ101とが一体形成された半導体装置において、銅めっき層108をアンテナ101の導体に用いた場合に、アンテナ101の下地層107に所定の金属の窒化膜を用いているので銅の回路素子への拡散を防ぎ、銅の拡散による回路素子の電気特性への悪影響を低減できる。また、アンテナの下地層の金属の窒化物の一つにニッケルの窒化物を用いることで、アンテナと集積回路の接続不良を低減することができる。 (もっと読む)


61 - 80 / 282