説明

Fターム[5F152CF02]の内容

再結晶化技術 (53,633) | 被結晶化層の上方の層 (1,379) | 目的(結晶化のためのもの) (259) | 光反射性、光透過性、光吸収性 (109)

Fターム[5F152CF02]に分類される特許

1 - 20 / 109


【課題】チャネル保護型の薄膜トランジスタにおいて、オフ特性及び信頼性に優れた薄膜半導体装置の製造方法を提供する。
【解決手段】基板1を準備する第1工程と、基板1上にゲート電極2を形成する第2工程と、ゲート電極2上に第1絶縁膜としてゲート絶縁膜3を形成する第3工程と、ゲート絶縁膜3上に非結晶質の半導体薄膜4aを形成する第4工程と、非結晶質の半導体薄膜4a上に第2絶縁膜としてチャネル保護膜5を形成する第5工程と、チャネル保護膜5の上方からレーザー光を照射することにより、非結晶質の半導体薄膜4aを結晶化させて結晶化領域を形成する第6工程と、結晶化領域の上方にソース電極7S及びドレイン電極7Dを形成する第7工程と、を含み、第5工程において、チャネル保護膜5は、前記レーザー光に対して透明となるように形成される。 (もっと読む)


【課題】金属酸化物を用いた絶縁膜を低温プロセスで結晶化することが可能で、これによりガラス基板やプラスチック基板上に特性の向上が図られた素子を設けることが可能な半導体装置を提供する。
【解決手段】基板上に、金属酸化物を用いた絶縁膜と半導体薄膜とが積層形成された半導体装置であって、絶縁膜はゲート絶縁膜として用いられ、ゲート絶縁膜に接する側にゲート電極が積層形成され、絶縁膜および半導体薄膜は結晶化され、かつ、ゲート電極と重なる部分の結晶性が他の部分の結晶性よりも高いものである。 (もっと読む)


【課題】高品質な半導体薄膜を製造する薄膜製造方法を提供する。
【解決手段】薄膜製造方法は、a−Si膜等の半導体薄膜を第1の基板上に堆積する工程S1と、第1の基板をエッチングして第1の基板と半導体薄膜との間に中空部を形成する工程S2と、半導体薄膜に第2の基板を接触させる工程S3と、半導体薄膜に第2の基板を押し付け、または半導体薄膜が溶融する強度を有するレーザ光を半導体薄膜に照射する工程S4と、第1の基板を半導体薄膜から引き離す工程S5とを備える。 (もっと読む)


【課題】管理コストを低減し、さらに、製造工程を削減して製造原価のコストダウンを図ることの可能な半導体デバイス及び薄膜トランジスタ、並びに、それらの製造方法の提案を目的とする。
【解決手段】所定の材料からなり、活性層41となる半導体と、所定の材料と同じ組成の材料からなり、ソース電極51、ドレイン電極53及び画素電極55の少なくとも一つとなる導電体とを備えた薄膜トランジスタ2の製造方法であって、非晶質の所定の材料からなる被処理体及び導電体(ソース電極51、ソース配線52、ドレイン電極53、ドレイン配線54及び画素電極55)を一括成膜し、さらに一括形成する工程と、形成された被処理体を結晶化させて活性層41とする工程とを有する方法としてある。 (もっと読む)


【課題】特性の優れた半導体膜を簡便に得ることができる微結晶半導体膜の結晶化方法と、これを応用した薄膜トランジスタ、半導体装置、及び薄膜トランジスタの製造方法を提供すること。
【解決手段】本発明にかかる薄膜トランジスタは、基板1上に形成されたゲート電極2と、ゲート電極2を覆うゲート絶縁膜3と、ゲート絶縁膜3を介してゲート電極2の対面に形成され、ソース領域となる第1非晶質領域41、ドレイン領域となる第2非晶質領域42、及び第1非晶質領域41と第2非晶質領域42との間に配置されたチャネル領域となる結晶性領域43を有する半導体膜4と、半導体膜4上に結晶性領域43と直接接触することなく形成され、ソース領域及びドレイン領域とそれぞれ電気的に接続されたソース電極81及びドレイン電極82と、を備えるものである。 (もっと読む)


【課題】半導体薄膜の結晶の不均一性を緩和し、薄膜トランジスタの動作特性を向上させることが可能な半導体膜の製造方法を提供する。
【解決手段】
基板10上に非晶質シリコン膜15Aおよび光熱変換層16をこの順に形成する。光熱変換層16を介して非晶質シリコン膜15Aに第1ビームL1を照射することにより非晶質シリコン膜15Aに高温過熱領域11を形成する。同時に、第2ビームL2を照射することにより高温過熱領域11の走査方向の前後に低温過熱領域12(昇温領域12Aおよび徐冷領域12B)を形成する。非晶質シリコン15Aでは、第1レーザL1の照射により結晶成長が始まり、第2レーザL2の照射により昇温、徐冷されるため、非晶質シリコン15Aの結晶化が緩やかに進行し、結晶粒径の不均一性が緩和される。 (もっと読む)


【課題】製造工程を簡略化しつつソース電極及びドレイン電極の導電性を向上させた薄膜トランジスタ及びその製造方法を提供する。
【解決手段】本発明の薄膜トランジスタの製造方法は、基板101上にゲート電極103を形成する工程と、ゲート電極103上にゲート絶縁層104を形成する工程と、ゲート絶縁層104上にアモルファスシリコン層105を形成する工程と、アモルファスシリコン層105上にアルミニウム層111を形成し、アルミニウム層111上にモリブデンタングステン層112を形成し、アルミニウム層111及びモリブデンタングステン層112を少なくとも含む積層体から構成されるソース電極109及びドレイン電極110を形成する工程と、ソース電極109及びドレイン電極110をマスクとしアモルファスシリコン層105にレーザを照射することでアモルファスシリコン層105の一部を結晶化させチャネル領域を形成する工程とを含む。 (もっと読む)


【課題】高性能なフレキシブル半導体装置を提供すること。
【解決手段】金属箔から成る支持層、支持層の上に形成された半導体構造部、および半導体構造部の上に形成された樹脂フィルムを有して成るフレキシブル半導体装置。かかるフレキシブル半導体装置では、樹脂フィルムには開口部が形成されており、その開口部に半導体構造部の表面と接触する導電部材が形成されており、半導体構造部が半導体層および半導体層の表面に形成された絶縁層を有して成る。 (もっと読む)


【課題】近接配置される半導体膜の一方のみを精度良く選択的に結晶化することができ、アモルファスTFTと微結晶シリコンTFTを同じ透明絶縁性基板上に同時に形成することや、非晶質シリコンと微結晶シリコンが一つの半導体層内で混在したTFTを得ることが可能となる。
【解決手段】本発明の非晶質半導体膜の結晶化方法においては、透明絶縁性基板上にゲート電極と、ゲート絶縁膜と、非晶質半導体膜と、透光性絶縁膜を順次形成する工程と、開口を有したメタル膜をこの透光性絶縁膜上にパターニング形成する工程と、メタル膜を遮光マスクとして機能させてレーザーを照射することにより、開口により露出する領域においてのみ非晶質半導体膜を結晶性半導体膜に変換するレーザーアニール工程とを備えるものである。 (もっと読む)


【課題】レーザアニールによる結晶化を利用した半導体薄膜の形成において、その結晶化度を従来よりも高精度に評価することが可能な半導体薄膜の形成方法を提供する。
【解決手段】p−Si膜23の結晶化度の検査処理の際に、p−Si膜23およびa−Si膜230へ向けて照射光Loutを照射し、p−Si膜23およびa−Si膜230の透過画像を取得する。画像処理用コンピュータ15において、p−Si膜23(結晶化領域51)の透過輝度とa−Si膜230(未結晶化領域50)の透過輝度との透過コントラストを求める。この際、予め形成された基準マーク6を用いて、結晶化領域51内および未結晶化領域50内におけるコントラスト算出用領域60,61を特定し、これらのコントラスト算出用領域60,61を用いて透過コントラストを求める。そして、求めた透過コントラストに基づいて、p−Si膜23に対する選別を行う。 (もっと読む)


【課題】半導体膜の表面に優れた光閉じ込め効果を有する凹凸形状を形成して光電変換素子の感度を向上させる。
【解決手段】多結晶半導体膜10は、基板1上に形成されており、ラテラル結晶を含む。多結晶半導体膜の表面に自己組織化的に形成されたテクスチャ構造を有し、その表面の二乗平均粗さが4nm以上である。 (もっと読む)


【課題】本発明は、アニール処理後の結晶化の状態について、非接触で精度よく、しかも効率的に、評価を行えるようにする。
【解決手段】アニール処理後の半導体層を有する多層構造体210を搭載するステージ201と、前記半導体層に対して光を照射する光源202と、前記光源202による光の照射によって得られるラマン散乱光を受光する受光部205と、前記受光部205が受光した前記ラマン散乱光を用いて前記半導体層の結晶化度を検査する検査部207とを備えた半導体検査装置200において、前記検査部207は、前記ラマン散乱光のラマンスペクトルによって特定される領域を波数についての所定閾値で領域分割する領域分割部と、前記領域分割をする前の領域全体と前記領域分割をした後の前記所定閾値を超える領域部分との面積比を算出し、その算出結果を前記半導体層の結晶化度とする結晶化度算出部とを備える。 (もっと読む)


【課題】均一性の極めて高いアニール処理結果を実現しつつ、その場合であっても生産性が損なわれてしまうことなく高スループット化を実現できるようにする。
【解決手段】基板上に少なくとも非晶質シリコン膜14と光吸収層16とが積層されてなる多層構造体に対して、前記光吸収層16の側から光を照射して当該光による局所加熱を行い、前記非晶質シリコン膜14を微結晶シリコン膜または多結晶シリコン膜に改質するアニール処理工程を備え、前記アニール処理工程では、前記局所加熱にあたり同一走査ライン上に複数の光ビームを配置するとともに、前記光吸収層16の熱伝導率をk、密度をρ、比熱をc、走査すべきライン長/走査速度をtpとした場合に、前記複数の光ビームを少なくとも間隔L=2×{k・tp/(ρ・c)}1/2だけ隔てて配置する。 (もっと読む)


【課題】薄膜トランジスタにおけるオン電流の向上とリーク電流の低減を図る。
【解決手段】微結晶シリコン領域51の両端側が非晶質シリコン領域52となっている半導体膜5bを備えるスイッチトランジスタ5において、チャネル保護膜5dが、半導体膜5bにおける微結晶シリコン領域51を覆いつつ、そのチャネル保護膜5dの両端側で、微結晶シリコン領域51側の非晶質シリコン領域52の一部を覆い、また、ソース・ドレイン領域となる不純物半導体膜5f,5gが、微結晶シリコン領域51と直接接触せず、半導体膜5bにおける非晶質シリコン領域52と接することで、ドレイン電極5hとソース電極5iとが不純物半導体膜5f,5gを介して半導体膜5bと電気的に接続することで、微結晶シリコンに起因するホールエレクトロンペアの発生を抑えて、リーク電流の低減を図った。 (もっと読む)


【課題】より均質な強度分布を有するレーザビームを安定して照射可能な照射装置を提供する。
【解決手段】レーザ光源11と、レーザ光源11からの射出レーザ光をP偏光(第1の直線偏光)とS偏光(第2の直線偏光)とに分離する偏光ビームスプリッタ13(偏光分離手段)と、第1もしくは第2の直線偏光を複数の光束に分割するシリンドリカルレンズアレイ対14(光束分割手段)と、光束を右旋回円偏光に変換する第1の1/4波長板15Aと、光束を左旋回円偏光に変換する第2の1/4波長板15Bとが光軸Zと直交するX軸方向(第1の方向)において交互に配列されてなる1/4波長板アレイ15と、右旋回円偏光および左旋回円偏光を集光し、表面3S(被照射面)へ向けて照射するコンデンサレンズ16(投影光学系)とを備える。 (もっと読む)


【課題】
信頼性試験中に、キャリアが界面準位にトラップされることによって生じる電気的特性の変動を抑制することができる薄膜トランジスタを提供する。
【解決手段】薄膜トランジスタのゲート絶縁膜50に含まれる酸化シリコン膜40、チャネル層61となるシリコン膜60、ソース/ドレイン層81a、81bを形成するときのエッチングストッパ層71となる酸化シリコン膜70を、大気に晒すことなく連続して成膜する。このように、酸化シリコン膜40、シリコン膜60および酸化シリコン膜70を大気に晒すことなく連続して成膜するので、製造プロセス時にそれらの界面に付着する不純物が少なくなり、界面準位の密度が低くなる。このため、信頼性試験中に、キャリアが界面準位にトラップされることによって生じる固定電荷が少なくなる。 (もっと読む)


【課題】a−Siプロセスと、ポリ−Siプロセスとを組み合わせることが可能なプロセスを提供することである。
【解決手段】プロセス800は、アモルファスシリコン又はアモルファスシリコンに適合可能なプロセスを用いて、ディスプレイパネル用のポリ−最終構造を形成する(ブロック810)。ポリ−最終構造は、チャネルシリコン前駆体を有する。次に、プロセス800は、ポリシリコン固有のプロセスを用いて、ポリ−最終構造からディスプレイパネルを形成する(ブロック820)。 (もっと読む)


【課題】強度測定器具の間の誤差やレーザ光学系の熱的不安定さに起因して生じるレーザ光学系の照射ビーム間の強度の偏差等を吸収して、均一性の極めて高いアニール処理結果を実現できるようにする。
【解決手段】半導体装置を構成する半導体層14について、非晶質シリコン膜を微結晶シリコン膜または多結晶シリコン膜に改質する結晶化にあたり、当該結晶化を行うためのアニール処理工程として、プレアニール処理およびアニール処理といった、複数回のアニール処理を行う。 (もっと読む)


【課題】 薄膜トランジスタを形成する領域のみ、アモルファスシリコン薄膜を結晶化させることができるレーザー結晶化法を提供する。
【解決手段】 基板1上に成膜したアモルファスシリコン薄膜2にレーザー光を照射して結晶化する結晶化法であって、アモルファスシリコン薄膜2の所望の局所領域に吸収剤層3を印刷する吸収剤印刷工程と、吸収剤層3への吸収があってアモルファスシリコン薄膜2への吸収が無い波長を有する半導体レーザー光Lを、前記局所領域を含むアモルファスシリコン薄膜4に向けて照射し、吸収剤層3を加熱することにより、アモルファスシリコン薄膜2の前記局所領域を結晶化させるレーザーアニール工程と、を含む。 (もっと読む)


【課題】結像レンズがレーザー光を吸収して熱膨張することによる焦点位置の位置ずれを補正する。
【解決手段】基板の高さ変化量を換算して求めた結像レンズの位置ずれ量と、レーザー光の照射積算時間に基づいて求めた結像レンズの焦点の位置ずれ量とを加算して、結像レンズの熱膨張によるビーム集光位置の変動を補正するための補正移動量を算出し、この補正移動量を用いて結像レンズ移動部を駆動して結像レンズを移動することによって焦点位置の位置ずれを補正する。 (もっと読む)


1 - 20 / 109