説明

Fターム[5F152EE06]の内容

再結晶化技術 (53,633) | 結晶化装置 (2,197) | 光学系 (1,013) | 干渉の制御 (67)

Fターム[5F152EE06]に分類される特許

1 - 20 / 67


【課題】TFTの特性ばらつきに起因する、画素間における発光素子の輝度のばらつきを低減し、信頼性が高く、画質の優れた表示装置を提供することを目的とする。
【解決手段】発光素子に接続するTFTを複数個、少なくとも2つ設け、それぞれのTFTの活性層を形成する半導体領域の結晶性を異ならせるものである。
当該半導体領域は、非晶質半導体膜をレーザーアニールにより結晶化させたものが適用されるが、結晶性を異ならせるために、連続発振レーザービームの走査方向を変えて、結晶成長の方向を互いに異ならせる方法を適用する。或いは、連続発振レーザービームの走査方向は同じとしても、個々の半導体領域間でTFTのチャネル長方向を変えて、結晶の成長方向と電流の流れる方向を異ならせる方法を適用する。 (もっと読む)


【課題】ラインビームとして成形されたレーザとの相互作用に対して膜を位置決めし、かつ例えばアモルファスシリコン膜を溶融させて例えば薄膜トランジスタ(TFT)を製造するために膜を結晶化するように成形ラインビームのパラメータを制御するためのシステム及び方法を提供する。
【解決手段】基板上に堆積されたアモルファスシリコンのような膜を選択的に溶融させるためのレーザ結晶化装置及び方法。装置は、膜を溶融させる際に使用される伸張レーザパルスを生成するための光学システムを含むことができる。本発明の実施形態の更に別の態様では、レーザパルスを伸張するためのシステム及び方法を提供する。別の態様では、ビーム経路に沿ったある位置でパルスレーザビーム(伸張又は非伸張)の発散を予め決められた範囲に維持するためのシステムを提供する。 (もっと読む)


【課題】容易に、結晶化の溶融状態、結晶粒径及び粒径バラツキを所望の状態にしたシリコン膜を形成することができるレーザ照射方法を提供する。
【解決手段】レーザ照射方法は、マルチモードのレーザ光を発振させる発振ステップ(S102)と、レーザ光を光ファイバーで伝送する伝送ステップ(S104)と、光ファイバーから出射したレーザ光を重畳し細長い形状に整形する整形ステップ(S106)と、整形されたレーザ光を短軸方向に走査しながらアモルファスシリコン膜に照射することで、ポリシリコン膜に結晶化する照射ステップ(S108)とを含み、照射ステップ(S108)では、走査速度V(mm/s)と照射パワー密度P(KW/cm2)との関係をK=P/√Vとし、K>4の条件を満足する走査速度と照射パワー密度とで照射することで、レーザ照射領域に所定の溶融状態での結晶を形成させる。 (もっと読む)


【課題】小型のレーザ照射装置で光干渉がなく、連続した結晶成長を実現することである。
【解決手段】メガヘルツレーザビームを用い、分割したレーザビームを半導体膜に照射して、半導体膜を結晶化する。その際に分割ビームに光路差を設けて光干渉を抑える。光路差はメガヘルツレーザビームのパルス幅に相当する長さ以上、パルス発振間隔に相当する長さ未満に設定され、非常に短い光路差で光干渉を抑えることができる。そのためレーザのエネルギー劣化がなく効率的に且つ連続的にレーザビームを照射することができる。 (もっと読む)


【課題】半導体薄膜を低熱負荷で均一に改質することのできる熱処理装置を提供する。
【解決手段】熱処理装置100の光学系は、一対の透明基板10A、10Bと、透明基板10A、10Bのそれぞれに設けられた透明電極11A、11Bと、透明電極11A、11Bに挟まれた液晶材12と、透明基板10A、10B、透明電極11A、11Bおよび液晶材12を挟む一対の偏光板13A、13Bとを備えたライトバルブアレイ4を有している。透明電極11Bは、ライトバルブアレイ領域14内でマトリクス状に細分化され、それぞれの透明電極11Bには、駆動回路15の選択スイッチを介して独立に電圧が印加される。 (もっと読む)


【課題】レーザ光のエネルギー強度の弱い部分を遮断し、かつ光の回折による縞を発生させることなく、線状レーザ光を照射面に照射することができる、照射面上に均一強度の線状ビームを照射するレーザアニール方法及びレーザアニール装置の提供。
【解決手段】レーザ発振器101から射出されたレーザ光をスリット102を通過させて強度の弱い部分を遮断し、ミラー103で偏向させ、スリットにできた像を凸型シリンドリカルレンズ104によって照射面106に投影して照射面上に均一強度の線状ビームを照射することでレーザアニールを行う。 (もっと読む)


【課題】ビームスポットの面積を飛躍的に広げ、結晶性の劣る領域の占める割合を低減することができるレーザ照射装置の提供を課題とする。また連続発振のレーザ光を用いつつ、スループットをも高めることができる、レーザ照射装置の提供を課題とする。さらに本発明は、該レーザ照射装置を用いたレーザ照射方法及び半導体装置の作製方法の提供を課題とする。
【解決手段】高調波のパルス発振の第1のレーザ光により溶融した領域に、連続発振の第2のレーザ光を照射する。具体的に第1のレーザ光は、可視光線と同程度かそれより短い波長(890nm以下程度)を有する。第1のレーザ光によって半導体膜が溶融することで、第2のレーザ光の半導体膜への吸収係数が飛躍的に高まり、第2のレーザ光が半導体膜に吸収されやすくなる。 (もっと読む)


【課題】被照射物内に厚さのばらつきが存在する場合であっても、被照射物に対してレーザ光の照射を均一に行うレーザ光の照射方法を提供する。
【解決手段】厚さのばらつきが存在する被照射物にレーザ光を照射する際に、オートフォーカス機構を用いることによって、被照射物の表面にレーザ光を集光するレンズと被照射物間との距離を一定に保ちながらレーザ光の照射を行う。特に、レーザ光に対して被照射物を被照射物の表面に形成されたビームスポットの第1の方向および第2の方向に相対的に移動させて、被照射物にレーザ光の照射を行う場合に、第1の方向および第2の方向のいずれかの方向に移動させる前にオートフォーカス機構によってレンズと被照射物間との距離を制御する。 (もっと読む)


【課題】非晶質シリコンに結晶化差が発生することが抑制されるレーザマスク、及びこれを利用した逐次的横方向結晶化方法を提供する。
【解決手段】レーザマスクは、光透過部、及び光透過部を介在して相互離隔する光遮断部を含むマスク基板と、光遮断部に対応してマスク基板に位置し、凹凸形状を有する凹凸部とを含む。 (もっと読む)


基板平面(14)内に配置した基板を処理するための光ビームを生成する光学システムであって、光ビームは、光ビームの伝播方向(Z)に対して垂直な第1次元(X)内のビーム長(L)と第1次元(X)及び光伝播方向(Z)に対して垂直な第2次元(Y)内の光ビーム幅(B)とを有する、光学システムは、第1次元及び第2次元の少なくとも一方における光ビームを相互に重畳して基板平面(14)に入射する複数の光路(24a〜24c)に分割する少なくとも1つの混合光学構成体(18)を備える。少なくとも1つのコヒーレンスに影響する光学構成体が、光ビームのビーム経路内に存在し、少なくとも1つの他の光路からの1つの光路の少なくとも1つの光路間隔に関する光のコヒーレンス度を少なくとも低減するよう光ビームに作用する。 (もっと読む)


基板平面(14)内に配置した基板を処理するための光ビームを生成する光学システムであって、光ビームは、光ビームの伝播方向(Z)に対して垂直な第1次元(X)内のビーム長(L)と第1次元(X)及び光伝播方向(Z)に対して垂直な第2次元(Y)内の光ビーム幅(B)とを有し、ビーム長(L)はビーム幅(B)よりも大きい、光学システムは、複数の光チャネル(26;28)を画定する第1光学構成体を備え、複数の光チャネルは第1次元(X)内で相互に並んで配置されて第1次元(X)内の光ビームを複数の部分視野(30,32,34)に分割し、部分視野(30,32,34)記第1次元(X)内で相互に重畳して基板平面(14)に入射する。第2光学構成体(20)が、光伝播方向で第1光学構成体(18)の上流に配置され、第2光学構成体の第1次元(X)内の範囲と、第1次元(X)内記第2光学構成体(18)に入射する光ビームの角度スペクトルの広がりとは、第1次元(X)内の第2光学構成体(20)のエテンデューが第1次元(X)内の光学システムの全エテンデューの50%〜100%となることで、記第1光学構成体(18)の光チャネル(26;28)のほぼ全部が光で均一に照明されるようなものであることを特徴とする、光学システム。 (もっと読む)


【課題】半導体装置の作製工程において、高調波のCWレーザを半導体膜上に相対的に走査させながら照射すると、走査方向に延びた長い結晶粒がいくつも形成される。このようにして形成された半導体膜は前記走査方向においては実質的に単結晶に近い特性のものとなるが、高調波のCWレーザの出力が小さくアニールの効率が悪い。
【解決手段】第2高調波に変換されたCWレーザと同時に基本波のCWレーザを半導体膜の同一部分に照射することで、出力の補助を行う。通常、基本波は1μmあたりの波長域に入り、この波長域では半導体膜に対する吸収が低い。しかしながら、可視光線以下の高調波を基本波と同時に半導体膜に照射すると、高調波により溶かされた半導体膜に基本波はよく吸収されるため、アニールの効率が著しく上がる。 (もっと読む)


【課題】アモルファスシリコン層を改質して多結晶シリコン層を形成するための手段として用いられるレーザアニール装置を用いる場合、レーザ光の干渉により、一部の領域が明るくなる。この状態でレーザアニールを行うと、一部の領域に対応する多結晶シリコン層の特性が線状の分布を持つ。そのため、肉眼で検出され易い線状の欠陥が発生するという課題がある。
【解決手段】レーザアニール装置の光学系内に、循環ポンプ211を用いて液体212中に粒子213を浮遊させ、循環させる光散乱装置200を配置する。粒子213の存在により、レーザ光は散乱されるため、レーザ光の可干渉性を抑えると共に、時間の経過と共に粒子213を移動させることで、干渉縞が発生する位置を変え、視覚的に認識し易い線状欠陥の発生を抑えることを可能とするレーザアニール装置を提供することが可能となる。 (もっと読む)


【課題】アニール特性を悪化させることなく、同心円縞(ニュートンリング)を低減できるレーザアニール用ステージ部材とその製造方法並びにレーザアニール方法を提供する。
【解決手段】レーザアニール用ステージ部材11において、被処理体7を載せる上面11aを、サンドブラスト処理、フッ酸処理、機械研磨等により、その表面が白濁する程度の表面粗さ、例えば、Raで0.1μm以上の表面粗さとすることにより、ステージ部材11の上面11aで反射した光2と、被処理体の基板底面8aで反射した光2aとの干渉が低減されるので、反射光に起因する同心円縞を低減できる。 (もっと読む)


【課題】安定で均一なビーム形状と強度をもち、干渉性が低く、小型で高効率なレーザ光源装置を提供する。
【解決手段】横マルチモードの光を出射する励起光源1と、共振器を構成し、少なくとも一部から異なる波長の光を外部に出力する共振器ミラー5,8,12と、励起光源1から出射される横マルチモードパターンの光で励起されるレーザ媒質6と、レーザ媒質6での発振により得られる横マルチモードの線状の基本波が照射されて、線状の変換波を出力する波長変換素子10と、を含む。 (もっと読む)


【課題】半導体装置の特性を向上させることができる連続発振のレーザ装置を用いた半導体装置の作製方法の提供を課題とする。
【解決手段】絶縁表面上に半導体膜を形成し、半導体膜に希ガスを添加し、希ガス雰囲気中で希ガスが添加された半導体膜にレーザ光を照射し、レーザ光の照射の際に半導体膜に磁場を印加し、半導体膜は数μs以上数十μs以下の間溶融している半導体装置の作製方法を提供する。なお、レーザ光は基本波と高調波を合わせることで効率よく半導体膜を結晶化できる。 (もっと読む)


【課題】半導体装置の特性を向上させることができる連続発振のレーザー装置を用いた半導体装置の作製方法の提供を課題とする。
【解決手段】基板上に半導体膜を形成し、半導体膜を複数のレーザ光により結晶化する。複数のレーザ光は基板の垂直方向から斜めに同じ入射角度φで入射することで高性能の半導体装置を提供する。特に、ビーム幅をWとし、基板の厚みをdとすると、φ≧arcsin(W/2d)という関係式を満たすことにより高性能の半導体装置を提供する。 (もっと読む)


【課題】半導体装置の特性を向上させることができる連続発振のレーザー装置を用いた半導体装置の作製方法の提供を課題とする。
【解決手段】半導体膜のうち、パターニング後に基板上に残される部分をマスクに従って把握する。そして、少なくともパターニングすることで得られる部分を結晶化することができるようにレーザー光の走査部分を定め、該走査部分にビームスポットがあたるようにし、半導体膜を部分的に結晶化する。チャネル方向とレーザーの走査方向を揃えることにより高性能の半導体装置を提供する。 (もっと読む)


【課題】基板上に形成された2層のアモルファスシリコン層のレーザアニール時の干渉を低減する方法を提供する。
【解決手段】基板1上の第1のアモルファスシリコン層をパターニングし第1の活性層を基板1上に形成する。次いで、第1の絶縁層4が前記第1の活性層及び前記第1の活性層で覆われていない基板1の一部の上に形成される。次に、第2のアモルファスシリコン層が前記第1の絶縁層4の上に形成される。レーザーアニール工程が遂行され、第1のアモルファスシリコン層を微細結晶シリコン層7に結晶化させ、第2のアモルファスシリコン層をポリシリコン層6に結晶化させる。ポリシリコン層をパターニングすることにより、第1の活性層で覆われていない基板1の一部上に第2の活性層が形成される。良好な結晶の均一性を有する微細結晶シリコン層7は、OLEDディスプレイにディスプレイ領域にTFTの活性層として機能する。 (もっと読む)


【課題】ガラス基板上に形成されたアモルファスシリコン膜をレーザ等の光で加熱溶融した後に結晶化させて多結晶シリコン膜を得る際に、ガラス基板背面からレーザを照射するものとするとともに背面からの照射を効率的に行なう。
【解決手段】ガラス基板5は、アモルファスシリコン膜51を下にして配置される。上から加熱用レーザ2が対物用光学装置6を介してガラス基板5に上面側から照射されて、アモルファスシリコン膜51で結像する。また、結像するための焦点合わせのために高さセンサ1でアモルファスシリコン膜51の位置が測定される。測定用レーザは、ガラス基板5の上側から照射され、ガラス基板5の上面と下面で反射する。位置の測定には、共焦点測定方式が用いられ、ガラス基板5の下面で反射する光を用いてアモルファスシリコン膜51の位置が測定され、当該位置に基いて照射される光の焦点が合わされる。 (もっと読む)


1 - 20 / 67