説明

Fターム[5H323BB01]の内容

温度の制御 (3,112) | 目的 (340) | 精度の向上 (60)

Fターム[5H323BB01]の下位に属するFターム

Fターム[5H323BB01]に分類される特許

1 - 20 / 41


【課題】連続した部材によって外部と区画された区画領域内に、電界効果トランジスタ、マイクロコンピュータ等の動作時に発熱する電子機器及び/又は素子とともに温度計測手段が設けられた温度コントロールユニットにおいて、それらの発熱の影響によらず区画領域外の温度を正確に推定できる温度コントロールユニットを提供すること。
【解決手段】温度コントロールユニットの区画領域内に、温度計測手段が相互に異なる位置に複数個設けられ、複数の温度計測手段によって計測された温度に基づいて区画領域外の温度を推定し、推定された外部の温度に基づいて前記区画領域外に設けられたヒータの出力を制御する。 (もっと読む)


【課題】光学素子の中心部分の温度を精度よく制御できる温度制御装置を提供する。
【解決手段】第1の主面及び第1の主面と対向する第2の主面を有する光学素子の温度制御装置であって、第1の主面に一定の接触熱抵抗で接する第1の筐体と、第1の筐体と第1の主面とが接する面積と等しい面積で、第2の主面に一定の接触熱抵抗で接する第2の筐体と、第1の筐体の温度を調整する温度調整素子と、第1の筐体の温度を測定する第1の温度測定素子と、第2の筐体の温度を測定する第2の温度測定素子と、第1の温度測定素子により測定された第1の筐体の測定温度と第2の温度測定素子により測定された第2の筐体の測定温度との平均値を光学素子の温度として、平均値が予め設定された設定値であるように温度調整素子を制御して第1の筐体の温度を調整させる制御装置とを備える。 (もっと読む)


【課題】容器内の上流側に配置された電池と下流側に配置された電池との間の温度差を解消する。
【解決手段】容器30内に第一電池31A〜D及び第二電池31E〜Hを収容してなる組電池10の温度調節装置であって、容器30に接続され容器30内の第一電池31A〜Dに空気を供給する第一流路21aと第二電池31E〜Hに空気を供給する第二流路21bとに分岐形成された供給流路21と、容器30に接続され容器30の第二電池31E〜H側から空気を排出する排出流路22と、第一電池31A〜Dの第一温度及び第二電池31E〜Hの第二温度をそれぞれ検出する温度センサ33と、温度センサ33で検出された第一温度及び第二温度に応じて、第一流路21a及び第二流路21bを流通する各空気の流量を変更する流量変更手段33と、を備える。 (もっと読む)


【課題】加熱処理および冷却処理の必要な製造プロセスにおいて、温度制御を清楚よく行うことのできるプロセス温度制御方法を提供する。
【解決手段】溶融した材料の製造過程において、冷却器および加熱器を備えた容器の当該冷却器への冷却水の供給を一定に保てる最低流量に応じた流量バルブへの最低制御出力を予め決定し、溶融した前記材料の製造過程で測定した当該材料の実測温度と予め決めた目標温度の偏差を求め、当該偏差が目標温度の近傍にあるとき、最低制御出力によって最低流量の冷却水を前記冷却器に供給しつつ、前記加熱器による加熱を調整して前記容器内の溶融した材料の温度を制御する。 (もっと読む)


【課題】電磁油圧制御手段に通電する電流を制御する電流制御ユニットと放熱部材との接触状態を判定することができる自動変速機用油圧制御装置の検査方法を提供する。
【解決手段】 自動変速機用油圧制御装置の検査方法では、最初に指令電流値と実油圧値との関係を示す規範マップを作成する(S101)。次にTCUが電流を発生している状態において、TCUの温度をサーミスタで検出する(S103)。TCUにはTCUで発生する熱を放出する放熱板が接触している。TCUで発生する熱が放熱板を通って外部に放出される場合、TCUの温度は測定許容範囲内で安定するため、TCUと放熱板との接触状態は正常であると判定する(S104)。このとき、規範マップを補正するデータを収集する(S105)。一方、TCUで発生する熱が放熱板を通って外部に放出されない場合、TCUの温度は測定許容範囲を超えるため、接触状態は異常と判定して検査を中止する。 (もっと読む)


【課題】従来に比べて精度よく処理対象物の温度を制御することができる温度制御システムを提供すること。
【解決手段】上面に処理対象物を載置可能とし、内部に温調媒体の流路が形成されたサセプタと、サセプタの上面に載置された処理対象物の温度を測定する温度測定手段と、流路を流れる温調媒体を温調する第1の温調手段と、サセプタと第1の温調手段との間に介在し、温度測定手段による測定結果に基づいて、温調媒体を温調する第2の温調手段と、を備える。 (もっと読む)


【課題】永久磁石による安定で均一な静磁場を得ることができる、永久磁石を有する装置の温度制御方法及び装置を提供する。
【解決手段】永久磁石を有する装置の温度制御装置であって、永久磁石のN極又はS極の温度を測定する磁石温度測定手段と、永久磁石のN極を加熱するN極加熱手段と、永久磁石のS極を加熱するS極加熱手段と、磁石温度測定手段により測定された温度が、永久磁石に対する設定温度となるように、N極加熱手段及びS極加熱手段による加熱を制御する温度制御部とを有する。 (もっと読む)


【課題】鋼板等の加熱対象物が低放射率である等の理由により温度計による所望精度での温度測定が見込めず、かつ所望精度でのモデル化も困難な加熱プロセスにおいても高精度な温度制御を行うことが可能な温度制御方法および温度制御装置の提供。
【解決手段】鋼板1の必要昇温量ΔTからモデル計算によりヒータ3の出力値を推定するための所要パワー計算モデル10と、ヒータ3による鋼板1の加熱後の温度を放射温度計4により測定し、この測定結果と温度目標値との偏差からヒータ3の出力値を算出する温度FB制御手段11と、モデル計算値をヒータ3へ出力指令するに際し、モデル計算値を温度FB制御出力値により補正する補正手段とを含む温度制御装置5である。 (もっと読む)


【課題】連続的に鋼板の表面処理後の加熱処理を行うプロセスにおいて、鋼板の繋ぎ目に起因する鋼板表面の反射率の変化に関わらず、適切な加熱パワーによる加熱処理を行うことが可能な温度制御方法および温度制御装置の提供。
【解決手段】加熱処理された鋼板1の温度を放射温度計5により測定し、加熱処理における加熱パワーを鋼板1の温度に基づいて温度制御コントローラ10によりフィードバック制御するに際し、鋼板1の繋ぎ目前後の所定区間においては、パワー平均回路11により加熱パワーを鋼板1の繋ぎ目直前の所定期間の平均加熱パワーで固定する。 (もっと読む)


【課題】集積回路の温度の変化を緩やかにすべく調整すること。
【解決手段】集積回路において回路が配置されていない空きエリアに配置される複数の発熱部と、空きエリアに配置され、集積回路の温度の変化に応じて各発熱部が発熱又は発熱を停止するよう個別に制御する制御部とを備え、制御部は、集積回路の温度を取得する温度取得部と、発熱部が発熱又は発熱を停止すべき閾値となる集積回路の温度の設定を受け付ける制御温度設定受付部と、温度取得部が取得した取得温度と、制御温度設定受付部が受け付けた設定温度とを比較する制御温度比較部と、制御温度比較部が比較した結果に基づいて、各発熱部が発熱又は発熱を停止するよう個別に制御する制御信号を生成する制御信号生成部と、制御信号生成部が生成した制御信号を、各発熱部に個別に出力する制御信号出力部とを有する。 (もっと読む)


【課題】ザゼンソウ型制御アルゴリズムと、従来の汎用制御アルゴリズムとを融合させ、広範囲な制御対象に対して適応した物理量制御アルゴリズムを提供する。
【解決手段】温度制御装置は、遅延器1、温度センサー3、第1のザゼンソウ型制御部、第2のPID制御部11、エネルギー発生器4,ヒーター5、混合器21を備え、第1のザゼンソウ型制御部は現在温度と前回温度との時間変化勾配をパラメータとし、第2のPID制御部11は現在温度と目標温度との差をパラメータとし、第1のザゼンソウ型制御部と第2のPID制御部11が並列に接続されることを特徴とする。 (もっと読む)


【課題】熟練作業者がいなくても、目標温度で熱処理すべきウェーハ領域の全領域に渡って、短時間かつ正確に誤差の少ない均熱調整を行うことができ、コンピュータシステムにより自動化も可能な温度制御方法を提供する。
【解決手段】所定位置での検出温度をその目標温度とするよう、少なくとも2つの加熱ゾーンを有する加熱装置を制御する温度制御方法であって、前記加熱ゾーンの数よりも多く、且つ各加熱ゾーンにおいて少なくとも一つの所定位置での温度を検出し、検出された複数の所定位置における検出温度と、前記目標温度との差を、縮小するように前記加熱装置を制御することを特徴とする。 (もっと読む)


【課題】安定かつ高精度な温度制御に好適な技術を提供する。
【解決手段】温度を制御する温度制御装置200は、加熱部30と、温度を検出する温度検出部36と、目標温度と前記温度検出部によって検出された温度との偏差Eに基づいて操作量MVrを演算する演算部100と、操作量MVrに応じて電圧又は電流が調整された電力を加熱部30に供給する電力調整器28とを備える。演算部100は、比例要素、積分要素および微分要素のうち少なくとも比例要素を偏差Eに乗じる第1演算部32と、平方根を演算する第2演算部34とを含み、第1演算部32と第2演算部34とが直列に接続されている。 (もっと読む)


【課題】非干渉化による制御性能の悪化を抑制できるようにすることを目的とする。
【解決手段】非干渉化部4で非干渉化に用いる干渉行列Gpの逆行列Gp−1に、不所望な値の項が生じているか否かを判定部7で判定し、生じているときには、補正部8で逆行列Gp−1を補正し、この補正した逆行列を用いて非干渉化するので、前記不所望な項、例えば、絶対値が非常に大きな項に起因する操作量の発振や定常偏差を抑制して制御性能を改善する。 (もっと読む)


【課題】制御部が制御する制御対象の特性と制御部が想定する制御対象との特性を一致させることにより、高精度な制御を可能にする。
【解決手段】制御対象を一次遅れ系として制御するPID制御部3と、制御対象2の分布定数系の特性を一次遅れ系の特性に変換する変換部4とを備えており、変換部4では、制御対象2の分布定数系のモデルの逆モデル5によって制御対象2の分布定数系の特性を打ち消す一方、制御対象2の一次遅れ系のモデル6に置き換えており、これによって、PID制御3は、制御対象2、制御対象2の分布定数系のモデルの逆モデル5、および、制御対象2の一次遅れ系のモデル6からなる一次遅れ系の拡大制御対象7を制御する。 (もっと読む)


ディスクドライブ試験用スロット熱制御システムは、筐体(508、550)であって、外部表面(530、559)と、この筐体によって画定されかつ試験のためにディスクドライブ(600)を運ぶディスクドライブ運搬装置(400)を受けて支持するための試験区画(526、560)を具える内部空洞(517、556)と、この筐体の外部表面から内部空洞へと延在する注入口開口部(528、551)とを有する筐体(508、550)を具える試験用スロット(500、500a、500b、540)を具える。このディスクドライブ試験用スロット熱制御システムはまた、冷却導管(710)と、この冷却導管に取り付けられた熱電素子(742)とを具える。この熱電素子は、注入口開口部を通って内部空洞に入る空気の流れを冷却または加熱するように構成されている。
(もっと読む)


【課題】抵抗ヒータの温度制御において、消費電力を抑えるようにすることと、抵抗ヒータの電圧等の測定に関して分解能の低下や誤差の増大を抑えるようにする。
【解決手段】温度制御装置5は、温度依存性抵抗ヒータ11と、PWMコントローラ71と、PWMスイッチSW1と、差動増幅器55と、ADC56と、を備える。PWMコントローラ71のPWM信号がオン状態である場合に、PWMスイッチSW1によって電流が温度依存性抵抗ヒータ11に流れる。PWMコントローラ71のPWM信号がオフ状態である場合、PWMスイッチSW1によって温度依存性抵抗ヒータ11に電流が流れない。PWMコントローラ71は、PWM信号がオン状態の場合における差動増幅器55及びADC56の信号に基づき、温度依存性抵抗ヒータ11の温度を設定温度に近づけるようにPWM信号のデューティ比を新たに設定する。 (もっと読む)


【課題】操作量が飽和するのを回避して、被処理物を、所望の状態で処理するための調整作業を容易に行えるようにする。
【解決手段】目標温度SPを変化させたときの操作量MV、ウェハの温度WAF、および、熱板の検出温度PVの各変化に基づいて、目標温度SPと操作量MVとの関係を示す第1の行列、および、ウェハの温度WAFと目標温度SPとの関係を示す第2の行列を取得し、第1,第2の行列を用いて、操作量MVを制限した範囲内で、ウェハの面内の温度のばらつきを最小化する目標温度SPの補正値を求めるようにしている。 (もっと読む)


【課題】抵抗ヒータの温度制御における消費電力を抑え、抵抗ヒータの電圧等の測定に関して分解能の低下や誤差の増大を抑える。
【解決手段】温度制御装置5は、温度依存性抵抗ヒータ11と、PWMコントローラ71と、加算器52と、反転増幅器53と、PWMスイッチSW1と、差動増幅器54と、差動増幅器55と、ADC56と、を備える。PWMコントローラ71のPWM信号がオンである場合に、PWMスイッチSW1によって強電流が温度依存性抵抗ヒータ11に流れる。PWMコントローラ71のPWM信号がオフである場合、PWMスイッチSW1によって弱電流が温度依存性抵抗ヒータ11に流れる。PWMコントローラ71は、PWM信号がオフの場合における差動増幅器54、差動増幅器55及びADC56の信号に基づき、温度依存性抵抗ヒータ11の温度を設定温度に近づけるようにPWM信号のデューティ比を新たに設定する。 (もっと読む)


【課題】正確かつ高速な応答性を有する新規な温度制御アルゴリズムを提供し、この温度制御アルゴリズムを利用して、所定の物体の温度制御を正確かつ高速に行う。
【解決手段】温度制御システムは、発熱制御機構モデル(2)を適用した温度制御装置101と、ペルチェ素子などから構成される加熱装置102と、この加熱装置102上に載置され、温度制御に供する物体103とを備えて構成される。温度制御装置101に適用した発熱制御機構モデル(2)は、時間t<0(目標温度に到達する以前)のときに、初期温度(目標温度)T0を発生するための初期エネルギーE0を発生するエネルギー発生器41と、時間t≧0(目標温度に到達した後)のときに、温度変化量ΔTがゼロになるようにフィードバック制御によりエネルギーΔEを発生するエネルギー発生器4とを含んで構成される。 (もっと読む)


1 - 20 / 41