説明

Fターム[5H505CC04]の内容

交流電動機の制御一般 (51,584) | 電源 (3,035) | 直流電源を用いるもの (1,926) | 電池を用いるもの (1,375) | 2次電池を用いるもの (983)

Fターム[5H505CC04]に分類される特許

81 - 100 / 983


【課題】スイッチングトランジスタの異常を精度よく検知することのできる電力変換装置を提供する。
【解決手段】電力変換装置が備えるスイッチング回路SWには、並列に接続された2個のトランジスタTra、Trbと、各トランジスタの温度を計測する温度センサQa、Qbが備えられている。電力変換装置のコントローラは、温度センサが計測した2個のトランジスタの温度差が予め定められた温度差閾値を超えている場合に、そのスイッチング回路SWに含まれるトランジスタに異常が発生していることを示す診断結果を出力する。 (もっと読む)


【課題】 2組の巻線組を有する3相回転機の駆動を制御する制御装置において、相電流検出値のみを用いて、インバータまたは巻線組の故障を検出する。
【解決手段】 第1系統インバータ601および第2系統インバータ602は、それぞれ3相モータ80を構成する2組の巻線組801、802に、振幅が互いに同一で、位相が互いに30°ずれる交流電流を供給する。電流検出器701、702は、インバータ601、602から巻線組801、802に通電される相電流を検出する。故障判定手段751、752は、互いに他系統の3相電流検出値に基づいて、自系統の相電流推定値を算出し、電流検出値と比較する。これにより、ECU101は、電流検出器701、702からの情報である相電流検出値のみを用いて、インバータ601、602または巻線組801、802の故障を検出することができる。 (もっと読む)


【課題】モデル予測制御において想定したモータジェネレータのモデルと実際のモータジェネレータの特性とにずれがある場合等にあっては、電流の予測精度が低下するため、制御性が低下するおそれがあり、これを改善する。
【解決手段】電流センサ16によって検出される実電流は、dq変換部22によって実電流id,iqに変換される。予測部33は、dq変換部22の出力する実電流id,iqを初期値として用いて、モータジェネレータ10を流れる電流を予測し、予測電流ide,iqeを算出する。フィードバック制御部40は、予測電流ideを実電流idにフィードバック制御するための操作量(補正量Δid)を算出し、フィードバック制御部44は、予測電流iqeを実電流iqにフィードバック制御するための操作量(補正量Δiq)を算出する。 (もっと読む)


【課題】電流の予測に用いる電流の初期値を取得すべく利用される電流センサがコストアップの要因となっていること。
【解決手段】電流センサ16は、インバータINVの入力端子を流れる電流(母線電流IDC)を検出する。予測部33は、dq変換部22の出力する実電流id,iqを初期値として用いて、モータジェネレータ10を流れる電流を予測し、予測電流ide,iqeを算出する。UVW変換部40は、予測電流ide,iqeを3相の相電流に変換する。セレクタ42では、UVW変換部40の出力値と母線電流IDCとのうちの3つを、モータジェネレータ10の各相を流れる電流値としてdq変換部22に入力する。この際、インバータINVの操作状態を表現する電圧ベクトルが有効電圧ベクトルであるなら、母線電流IDCがいずれか1相の電流値とされる。 (もっと読む)


【課題】モータジェネレータ10を流れる電流の検出値をフィードバック制御するための操作量としての指令電圧の1電気角周期に渡る積分値をゼロにフィードバック制御する場合、電気角の検出値に誤差が生じることで、電流の検出値に重畳されたオフセット誤差を適切に補正できないこと。
【解決手段】モデル予測制御部30では、モデル予測制御によってインバータINVの今回の操作状態を表現する電圧ベクトルViを選択する。積分値算出部40では、電圧ベクトルViを入力とし、各相の印加電圧の積分値Δvu,Δvv,Δvwを算出する。補正部44u,44v,44wでは、これらをゼロにフィードバック制御すべく実電流iu,iv,iwを補正する。 (もっと読む)


【課題】アクセル操作に応じた走行をより適正に行なう。
【解決手段】走行用のモータからのトルクの出力と出力停止とを矩形波状に繰り返して走行する矩形波トルク走行を行なう際に、モータの出力トルクの時間平均値をアクセル開度に基づく要求トルクとした状態で(例えば、バッテリの放電電流値i2とオン時間Ton(時間t2)との積(i2・t2)がバッテリの放電電流値i1と矩形波周期Tp(時間t1)との積(i1・t1)と等しくなるようにして)矩形波トルク走行が行なわれるようモータを制御する。これにより、アクセル操作に応じた走行をより適正に行なうことができる。 (もっと読む)


【課題】回転電機制御システムにおいて、実変調度となまし変調度との間に乖離が生じても、PWM制御モードと過変調制御モードとの間の制御モード切替に際し、過大な電流が生じることを抑制することである。
【解決手段】回転電機制御システム10は、回転電機20と、回転電機20を駆動する電源回路ブロック12と、電流フィードバックの制御ブロック22と、制御装置40で構成される。制御装置40は、実変調度と、なまし変調度とを求める変調度取得部42と、実変調度となまし変調度の間について予め定めた所定条件に基づいて、PWM制御モードと過変調制御モードとの間で制御モードを切り替える制御モード切替部44を含んで構成される。 (もっと読む)


【課題】 回転角センサの取り付け位置ずれ等による角度誤差を、多相回転機を搭載対象に搭載したままの状態で検出する多相回転機の制御装置を提供する。
【解決手段】 3相モータ(多相回転機)の制御装置であるマイコンは、モータに取り付けられた回転角センサの取り付け位置ずれ等による角度誤差Δθを算出する処理を実行する。まず、d軸およびq軸電流指令値を0アンペアに設定する(S00)。次に、モータの回転軸を外部から回転させ(S10)、逆起電圧によって流れる相電流を検出し(S30)、3相2相変換する(S40)。制御器は、電流検出値が0アンペアになるように電圧指令値Vq、Vdを出力する(S50)。角度誤差算出手段は、電圧指令値Vq、Vdに基づいて角度誤差Δθを算出し(S70)、角度補正値として記憶する(S90)。以後、回転角センサの検出値から補正値を差し引いて補正する。 (もっと読む)


【課題】デッドタイム付与後の実際のスイッチング状態の切替タイミングが複数のレッグ間で重なることで、サージ電圧が大きくなるおそれがあること。
【解決手段】ノルム設定部30では、要求トルクTrと電気角速度ωとに基づき、インバータINVの出力電圧ベクトルのノルムを設定する。位相設定部26では、推定トルクTeを要求トルクTrにフィードバック制御するための操作量として位相δを設定する。操作状態設定部34では、ノルム設定部30によって設定されたノルムVnと、位相設定部26によって設定された位相δとに基づき操作信号を生成してインバータINVに出力する。操作状態設定部34には、デッドタイム付与後における実際のスイッチング状態の切り替えが複数レッグで同時になされない波形が記憶されている。 (もっと読む)


【課題】 2組の巻線組を有する3相回転機の駆動を制御する制御装置において、トルクリップルを抑制しつつ、インバータおよび巻線組の過熱を防止する。
【解決手段】 第1系統インバータ601および第2系統インバータ602は、それぞれ3相モータ80を構成する2組の巻線組801、802に、振幅が互いに同一で、位相が互いに30°ずれる交流電力を供給する。電流検出器701、702は、インバータ601、602から巻線組801、802に通電される相電流を検出し、温度推定器751、752は、相電流検出値の積算値からインバータまたは巻線組の温度を推定する。電流指令値制限手段20は、推定温度Tm1、Tm2に基づいて、電流指令値Id*、Iq*の上限を2系統共通に制限する。これにより、トルクリップルを増大させることなく、インバータおよび巻線組の過熱を適切に防止することができる。 (もっと読む)


【課題】変調率が過度に大きくなる場合、制御量とその指令値との差を入力とする積分要素の出力値を参照するモデル予測制御によって、かえって制御性の低下を招くこと。
【解決手段】インバータの次回の操作状態を表現する電圧ベクトルV(n+1)は、ステップS20において、評価関数Jを最小とする電圧ベクトルに決定する。ここで、偏差edq(n+2)は、次回の操作状態として仮設定されたものによる予測電流ide(n+2),iqe(n+2)と指令電流idr,iqrとの差である。また、仮積分値Intは、前回までに採用された電圧ベクトルによって生じる偏差を入力とする積分要素の出力値(積分値In)に偏差edq(n+2)にゲインKiを乗算した値を加えたものである。ステップS28において変調率Mが閾値Mth以上であると判断される場合、積分値Inの更新を禁止する。 (もっと読む)


【課題】インバータを備えた回転電機駆動装置と直流電源部との接続が遮断された場合に、回転電機からインバータを介して回生される回生電力を迅速に低減させる。
【解決手段】回転電機の回転に同期して回転する2軸の直交ベクトル空間において、各軸に沿った界磁電流と駆動電流との合成ベクトルである電機子電流を制御してインバータを制御するインバータ制御部を備える。インバータ制御部は、直流電源部とインバータとの接続が遮断状態であると判定した場合には、回転電機の回生トルクがゼロとなるようにインバータを制御するゼロトルク制御を実行すると共に、遮断状態でのゼロトルク制御の実行に際して、回転電機の回生トルクをゼロに低下させていく際のトルク変化率ΔTの制限値を、直流電源部とインバータとの接続が維持されている状態でのトルク変化率ΔTの制限値LT1よりも大きい値に設定する。 (もっと読む)


【課題】モータ駆動電力ラインおよび発電電力ラインを電磁リレーで切り替えるにあたり、電磁リレーの溶損回避を図る。
【解決手段】モータ駆動および発電作動のいずれかに切り替え可能なモータ発電機22と、モータ駆動に要する駆動電力をバッテリ19からモータ発電機へ流すモータ駆動電力ラインLmと、発電作動による発電電力をモータ発電機から電気負荷およびバッテリへ流す発電電力ラインLgと、これらの電力ラインとモータ発電機との間に電気接続されたインバータ23と、両電力ラインを切り替える電磁リレー25と、モータ発電機が有するU相コイル、V相コイルおよびW相コイルの少なくとも1つをグランドショートさせるよう、インバータが有するスイッチング素子を制御するショート制御手段と、を備える。そして、ショート制御手段によりグランドショートさせた状態で、電磁リレーを切り替え作動させる。 (もっと読む)


【課題】パルス幅変調制御によるインバータの制御から矩形波制御によるインバータの制御への切替時にインバータの制御性が低下するのを抑制する。
【解決手段】インバータをPWM制御によって制御するか矩形波制御によって制御するかに拘わらず、電圧位相指令θs*の今回値と前回値との差分としての電圧位相指令変化量Δθsが変化許容値θslim以下となるよう電圧位相指令θ*を設定し(S330〜S430)、設定した電圧位相指令θs*を用いて次の切替電気角θswやスイッチングパターンを設定する(S440,S450)。 (もっと読む)


【課題】トルク指令に周期的なトルク振動が含まれる場合であっても、電流指令に対する追従性能を向上させるとともに、矩形波制御が実行される場合に、制御系が不安定になることを抑制できる交流回転電機の制御装置が求められる。
【解決手段】電圧制御部は、第一変調率域ではパルス幅変調制御を実行し、第二変調率域では矩形波制御を実行し、電流フィードバック制御部は、トルク指令に周期的なトルク振動が含まれる場合に、振動周波数の周期関数の特性を有する高調波モデルにより二相電圧指令を算出し、トルク電流演算部は、第一変調率域において変調率が増加するに従ってトルク振動の振幅を減少させ、第二変調率域でトルク振動の振幅をゼロとするように、トルク指令に含まれる前記トルク振動の制限を実行する制御装置。 (もっと読む)


【課題】昇圧コンバータにおける共振の発生を回避しつつ車両挙動の急激な変動を抑制する電動車両およびその制御方法を提供する。
【解決手段】制御装置40は、PWM制御モードと矩形波電圧制御モードとを選択的に切替えてインバータ20を制御する。制御装置40は、モータジェネレータMGの回転数が所定範囲内となることによって平滑コンデンサCおよび昇圧コンバータ10のリアクトルLにより形成されるLC回路の共振条件が成立したとき、モータジェネレータMGのトルクを制限することによって矩形波電圧制御モードでのインバータ20の制御を禁止する。さらに、制御装置40は、上記共振条件の成立に伴なうトルクの制限およびその解除時にトルクの変化率を制限する。 (もっと読む)


【課題】トルク指令に周期的なトルク振動が含まれる場合であっても、電流指令に対する追従性能を向上させるとともに、矩形波制御の実行が開始される場合に、矩形波の出力電圧波形の位相が急変することを防止できる交流回転電機の制御装置が求められる。
【解決手段】電流フィードバック制御部は、トルク振動の周波数の周期関数の特性を有する高調波モデルを用いた演算の出力値に少なくとも基づいて二相電圧指令を算出し、矩形波制御の実行が開始された場合は、トルク振動の周期に応じて設定された期間内でゼロとなるように、高調波モデルを用いた演算の出力値を徐々に変化させる減衰処理を実行する制御装置。 (もっと読む)


【課題】新たな部品を追加することなくモータの巻線間のサージ電圧を抑えられる電力変換装置を提供する。
【解決手段】インバータ回路10の浮遊容量C11と、インバータ回路10とモータM1を接続する配線の寄生インダクタンスL10と、モータM1の巻線のインダクタンスLm1と、モータM1の浮遊容量C10とによって構成されるLC共振回路の共振周波数が、インバータ回路10の出力可能な周波数のうち、所定周波数範囲以外の周波数となるように、寄生インダクタンスL10及び浮遊容量C11の少なくともいずれかが調整されている。寄生インダクタンスL10と、浮遊容量C10を利用して、従来のようなフィルタ回路を構成する。そのため、新たな部品を追加することなくコモンモード電流を抑えることができる。しかも、LC共振回路の共振によるコモンモード電流の増大を抑えられる。従って、車両駆動用モータM1の相巻線間のサージ電圧を抑えられる。 (もっと読む)


【課題】モータ駆動制御システムにおいて、交流電動機の駆動制御に支障を来たすことなく、交流電動機に流れる電流を検出する電流センサの故障診断を高い信頼性をもって行なうことを可能とする。
【解決手段】相電流演算部320は、電流センサ180による母線電流Idcの検出値と、インバータ140のスイッチング素子Q3〜Q8のオン・オフの組合せを示すスイッチングパターンとに基づいて、交流電動機200の相電流を推定する。相電流比較部330は、相電流演算部320による相電流の推定値と、電流センサ240による相電流の検出値との比較結果に基づいて、電流センサ240の故障を診断する。制御部340は、交流電動機200の駆動に基づく暗騒音が発生しているときに電流センサ240の故障診断の実行期間を設けるとともに、故障診断の実行期間中は、制御指令演算部310で用いる搬送波の周波数を一時的に低下させる。 (もっと読む)


【課題】一方の極性の電流しか検出できないスイッチング素子に内蔵される検出用素子により電流を検出してモータを制御する場合、力行状態と回生状態とを判定して通電を制御することで脱調を回避する。
【解決手段】グランド側に接続される各相の半導体スイッチング素子に電流検出機能付きのIGBT4X〜4Zを用いてインバータ回路3を構成する。極性検出部は、IGBTを全てオンしてモータ1の各相巻線2U,2V,2Wが短絡されているときにセンスIGBT7X,7Y,7Zを介して流れる電流に基づきU,V相間電流のゼロクロスタイミングを検出し、変化極性検出部は、U,V相間電流の変化量のゼロクロスタイミングを検出する。電流極性検出回路11がW相電流の極性を判定すると、力行・回生判定部は、W相電流の極性に応じてモータが力行状態か回生状態かを判定し、起動処理部は、回生状態と判定されるとスイッチング制御を停止する。 (もっと読む)


81 - 100 / 983