説明

Fターム[5J500AH43]の内容

増幅器一般 (93,357) | 回路素子 (16,323) | センサー (150) | 感温素子、熱電対、サーミスタ、バイメタル (107)

Fターム[5J500AH43]に分類される特許

1 - 20 / 107


【課題】本発明は、オーディオ装置において、スピーカの劣化を防止することを目的とするものである。
【解決手段】本発明は、音声入力端子4と、この音声入力端子4に接続されたPWM変調器7と、このPWM変調器7の出力側に接続された増幅器8と、この増幅器8の出力側に接続されたLCフィルタ9と、このLCフィルタ9の出力側に接続された音声出力端子10とを備え、前記LCフィルタ9にフィルタ電流検出器12、あるいは、スピーカ電流検出器を接続し、これらのフィルタ電流検出器、あるいは、スピーカ電流検出器に制御器13を接続し、この制御器13により前記増幅器8を制御する構成とした。 (もっと読む)


【課題】過熱検出回路の検出温度がばらつくことを抑制する。
【解決手段】コンパレータ170には、第1抵抗110と第1定電流源120の間の電圧Aと、ダイオード130と第2定電流源140の間の電圧Bが入力される。第1リーク電流源150は、ドレインが第1抵抗110と第1定電流源120の間に接続されており、ソース及びゲート電極が第1定電流源120と第2配線104の間に接続されている。第2リーク電流源160は、ドレインが第1配線102とダイオード130の間に接続されており、ソース及びゲート電極がダイオード130と第2定電流源140の間に接続されている。 (もっと読む)


【課題】EXCITERユニットの簡素化、コスト削減の実現を可能にする。
【解決手段】送信装置は、電力増幅部13と、送出部15と、冷却部27と、温度検出手段181と、出力電力検出手段182と、冷却制御手段183とを備えている。電力増幅部13は、伝送信号を電力増幅する。送出部15は、電力増幅部13の出力を伝送路へ送出する。冷却部17は、電力増幅部13を冷却する。温度検出手段181は、電力増幅部13の温度を検出する。出力電力検出手段182は、電力増幅部13の出力電力を検出する。冷却制御手段183は、温度検出手段181の検出結果及び出力電力検出手段182の検出結果に基づいて、冷却部17の冷却処理を制御する。 (もっと読む)


【課題】温度検出信号の精度が向上する熱電対用増幅回路を提供することを目的とする。
【解決手段】コレクタを接地されており、熱電対の一端の電圧をベースに供給されてエミッタから出力するコレクタ接地の第1のトランジスタQ11と、コレクタを接地されており、熱電対の他端の電圧をベースに供給されてエミッタから出力するコレクタ接地の第2のトランジスタQ12と、ベースを一定電位にされており、第1のトランジスタの出力をエミッタに供給されてコレクタから出力するベース接地の第3のトランジスタQ14と、ベースを一定電位にされており、第2のトランジスタの出力をエミッタに供給されてコレクタから出力するベース接地の第4のトランジスタQ15と、第3のトランジスタの出力と第4のトランジスタの出力とを差動増幅する演算増幅器15とを有する。 (もっと読む)


【課題】装置の起動時等の低温時における無線送信特性の劣化を抑制することが可能な無線通信装置を提供する。
【解決手段】無線通信装置101は、他の装置へ送信すべき送信信号を受けて増幅するための増幅部25と、増幅部25へ出力される送信信号を減衰可能な減衰部62と、温度を検出するための温度検出部61とを備え、減衰部62は、温度検出部61によって検出された温度が所定値より低い場合には送信信号を減衰させる。 (もっと読む)


【課題】入力バイアス電圧の調整の時間的効率を大幅に向上することができる電力増幅装置および電力増幅装置の入力バイアス電圧調整方法を提供すること。
【解決手段】バイアス電圧供給部は、GaN−FETのゲートにバイアス電圧を与える。演算制御部は、異なる時点の負荷電流の差を算出する。参照テーブルは、GaN−FETに対応して定められている、ゲートソース間電圧を一定に保ち始めたときからドレイン電流が変化していく当初のドレイン電流変化率と、ゲートソース間電圧を一定に保ち始めたときのドレイン電流を時間経過後に保つため必要なゲートソース間電圧の変更量との対応関係を記述している。参照制御部は、負荷電流の差を参照テーブルのドレイン電流変化率に当てはめて、ゲートソース間電圧の変更量を取り出す。バイアス電圧変更制御部は、変更量に基づいて、ゲートバイアス電圧を変更するように、バイアス電圧供給部を制御する。 (もっと読む)


【課題】Idqドリフトにより発生する利得の変動を解消すること。
【解決手段】増幅器は、検出部と、判定部と、決定部とを備える。検出部は、ゲート端子に印加されるゲート電圧に応じて信号を増幅する増幅素子の利得の変動を監視するために用いられる所定値を検出する。判定部は、検出部により検出された所定値に基づいて、ゲート電圧を増加させるか否かを判定する。決定部は、判定部によりゲート電圧を増加させると判定された場合に、所定値に応じて増加後のゲート電圧を決定する。 (もっと読む)


【課題】 設計段階や調整段階において、テストを正常に行うことができ、しかも、アンプ装置を保護することのできる技術を提供する。
【手段】 要注意判断手段6は、増幅回路2の出力負荷を検出し、音声信号が特殊信号であり、負荷レベルが所定値を超えていれば要注意であると判断する。テスト用信号判断手段8は、音声信号の種類に基づいて、当該音声信号がテスト信号であるか否かを判断する。モード切換手段9は、要注意判断手段6が要注意であると判断すると、低電力モードに切り換える。ただし、テスト用信号判断手段8がテスト用信号であると判断した場合には、要注意判断がなされた場合であっても、直ちに低電力モードには切り換えない。 (もっと読む)


【課題】小型低消費電力の歪補償機能付のマイクロ波送信装置を提供する。
【解決手段】送信データ変調処理部1からの送信データをDPD処理部20に入力して予歪処理したデジタル信号をDAC2でアナログ信号に変換してVGA9を介して電力増幅器8へ入力する。入力信号を増幅した電力増幅器8が出力する信号を検波した信号を利得制御用の信号としてVGA9に入力し、VGA9は、入力された検波信号が一定の値になるように自動利得制御を行うことにより利得歪み補償を行いマイクロ波無線装置の装置規模を小さく押さえ、かつ低消費電力のマイクロ波送信装置を提供する。 (もっと読む)


【課題】入力電圧に比例した電流を出力するOTAの製造ばらつきおよび周囲温度の変化による利得の変化を抑制することが可能な信号増幅回路を提供する。
【解決手段】入力電圧Vinが入力される第1のOTA1、第1のコンデンサC1を有する第1の積分器10と、第1のコンデンサC1に並列接続された第1のアナログスイッチSW1と、入力電圧Vinの積分時間を調整する積分時間調整回路3とを備える。積分時間調整回路3は、第1の参照電圧Vref1が入力される第2のOTA2、第2のコンデンサC2を有する第2の積分器20と、第2のコンデンサC2に並列接続された第2のアナログスイッチSW2と、第2の積分器20の出力電圧と第2の参照電圧Vref2とを比較するコンパレータCP2とを備え、コンパレータCP2の出力に基づいて第1のアナログスイッチSW1、第2のアナログスイッチSW2それぞれを制御する第1の制御信号、第2の制御信号を出力する。 (もっと読む)


【課題】画素のSN比を改良するために読み取り回路によりもたらされるノイズを低減する。
【解決手段】少なくとも1つの抵抗式熱検出器(102)にバイアスをかけて読み取るための電子回路(100)であって、抵抗式熱検出器の電気抵抗に変動があると、抵抗式熱検出器に一定値のバイアス電流を流すことによって抵抗式熱検出器にバイアスをかけることができるバイアス手段と、抵抗式熱検出器(102)の端子で電圧を電流に変換することができ、抵抗式熱検出器の端子の一つにゲートが電気的に接続させる少なくとも1つのMOS型トランジスタ(106)を備える変換手段と、変換手段のMOS型トランジスタのソースに電気的に接続されるベースクリップ電圧生成手段とを備える電子回路を提供する。 (もっと読む)


【課題】異常発生原因の事後解析を容易に行うことが可能な半導体装置、及び、これを用いた電子機器を提供する。
【解決手段】半導体装置100は、入力信号INに所定の信号処理を施して中間信号MIDを生成する第1チップXと、中間信号MIDを電力増幅して出力信号OUTを生成する第2チップYと、を単一のパッケージ内に有し、第2チップYは、複数の異常を監視して保護動作を行うとともに、複数の異常監視結果に応じてその論理レベルが時分割で順次変遷されるエラー信号ERRORを生成する保護機能部Y20を有し、第1チップはX、エラー信号ERRORを時分割で順次サンプリングし、そのサンプリング結果を前記複数の異常監視結果に関する履歴情報として格納するエラー検出部X20を有する。 (もっと読む)


【課題】温度変化によるアナログ回路のゲイン変動をより高精度に補償することができる温度補正回路を提供すること。
【解決手段】アナログ回路部20周囲の雰囲気温度を取得する温度取得部11と、雰囲気温度の変化に伴うアナログ回路部20のゲイン変動を補償する温度補正データを記憶した温度補正データ記憶部12と、雰囲気温度の変化に伴うアナログ回路部20のゲイン変動の個体差を補償する個体差補正データを記憶した個体差補正データ記憶部13と、温度取得部11によって取得された雰囲気温度に応じた温度補正データおよび個体差補正データに基づいて、アナログ回路部20の出力信号のレベルの温度変化による変動分を補正した信号を出力する補正部14と、を備える。 (もっと読む)


【課題】送信用増幅器の温度上昇を抑制する携帯通信端末を提供する。
【解決手段】携帯通信端末は、複数の通信用周波数帯の各帯域に対応して設けられた送信信号増幅用の増幅器と、増幅器周辺の温度を測定する測定部と、制御部とを備え、制御部は、測定部が測定した温度が閾値以上であるか否かを判定し、測定した温度が閾値以上であった場合に、直前に使用した通信用周波数帯とは異なる通信用周波数帯に属するチャネルを選択し、当該チャネルが属する通信用周波数帯に対応する増幅器を用いて送信を行うように制御する。 (もっと読む)


【課題】温度変化によって最適動作点が変動しても電力効率を高効率化することができる。
【解決手段】増幅部1は、信号を増幅する第1の増幅器1aと、信号が所定レベル以上になると信号を増幅する第2の増幅器1bとを備える。検出部2は、温度変化を検出する。算出部3は、検出部2の温度変化の検出により、増幅部1から出力される出力信号の隣接チャネル漏洩電力比を算出する。制御部4は、算出部3によって算出された隣接チャネル漏洩電力比に基づいて、第1の増幅器1aおよび第2の増幅器1bのゲートバイアスを制御する。 (もっと読む)


【課題】送信電力増幅部が過熱状態になった場合においても、発熱量を減少させることによって電力素子の焼損や破壊を防止しつつ送信機能を維持できるように構成した送信電力増幅器を提供する。
【解決手段】
高周波電力増幅部の出力電力Poutを検出する手段、供給電流I・電圧Vとから送信電力増幅器供給電力Pin検出手段、PinとPoutとの差から熱電力量Pheatを算出する手段、熱電力量Pheatが設定した許容発熱電力閾値を越えた場合、高周波電力増幅部に供給する電源電圧を制御する手段備える。 (もっと読む)


【課題】素子特性の相違に起因するドレイン電流のばらつきを低減することが可能な増幅装置を得る。
【解決手段】増幅装置3Bは、入力端子12に入力された入力信号S1を増幅することにより、出力端子14から出力信号S2を出力する増幅素子10と、増幅素子10の近傍に配置され、増幅素子10の温度に応じて出力値が変化する温度検出素子41と、温度検出素子41の出力値に基づいて、増幅素子10を流れるドレイン電流Idの電流値を既定値に近付けるための出力電圧V6を生成し、当該出力電圧V6に基づくバイアス電圧V7を増幅素子10のゲート電極Gに印加するオペアンプ11と、を備える。 (もっと読む)


【課題】温度変化や、入力信号の周波数等に応じて生じるおそれのある入出力特性の歪を抑制することができる増幅回路、及びこれを用いた無線通信装置を提供する。
【解決手段】本発明の増幅回路1は、入力信号の電力を増幅する増幅器2と、増幅器2に電源電圧を付与する電源部3と、増幅器2の温度を検知するための温度センサ11と、入力信号の送信周波数を決定する周波数決定部8とを備えている。さらに、温度センサ11から得られる検知温度、及び周波数決定部8から得られる送信周波数に基づいて電源部3の電源電圧、及び入力信号の信号電力を調整する制御部10を備えている。 (もっと読む)


【課題】小型で安価な部品からなり、かつ、より安全性の高い送信パワーアンプの過電流・過熱保護対策が可能な無線装置を提供する。
【解決手段】情報を無線信号として送信するための送信パワーアンプ2の温度、電流値に基づき、スイッチ部11にて電源の電池1から送信パワーアンプ2に供給される電流をON/OFFする。電源の電池1とは異なる電源部15からの低電圧の電力で動作する制御部11を送信パワーアンプ2の近傍に配置し、制御部12内の温度センサ12bにて検知した送信パワーアンプ2の温度があらかじめ任意に設定した温度閾値を超えた場合、または、制御部12内の電流検出部12aにて検知した送信パワーアンプ2の電流値があらかじめ任意に設定した電流閾値を超えた場合、制御部12は、FET13、電流モニタ部14、制御端子16を介して、スイッチ部11をOFFに設定し、送信パワーアンプ2への電流供給を停止させる。 (もっと読む)


【課題】 負電源のみで動作させた場合でも、ゲートソース間電圧を自由に変化させることができて、抵抗またはダイオード等の形成材料の種類に影響されることなく、大きな温度補償量を得ることができるバイアス回路を提供する。
【解決手段】 本発明のバイアス回路10は、ゲート端子、ドレイン端子、ソース端子を有するトランジスタ11と、一端がゲート端子に、他端が第1のコントロール端子16に接続され、負の温度依存性の第1の抵抗体12と、一端がドレイン端子に、他端が第2のコントロール端子17に接続され、正の温度依存性の第2の抵抗体13と、一端がソース端子に、他端がゲートバイアス出力端子19に接続され、負の温度依存性の第3の抵抗体14と、一端が第3の抵抗体14の前記他端に、他端が第3のコントロール端子18に接続され、正の温度依存性の第4の抵抗体15とを有することを特徴とする。 (もっと読む)


1 - 20 / 107