説明

国際特許分類[C02F1/76]の内容

化学;冶金 (1,075,549) | 水,廃水,下水または汚泥の処理 (35,433) | 水,廃水,下水または汚泥の処理 (35,433) | 水,廃水または下水の処理 (21,821) | 酸化によるもの (2,305) | ハロゲンまたは化合物によるもの (425)

国際特許分類[C02F1/76]に分類される特許

51 - 60 / 425


【課題】薬液の渇水を的確に表示し、薬液の未注入を防止した給水ユニットを提供する。
【解決手段】井戸水等を送水する送水管内に注入ポンプ30から除菌用の薬液を注入し、井戸水等を除菌処理して給水する給水ユニット10の除菌器16において、注入ポンプ30は、制御装置20から注入ポンプ30へ発せられた1回の動作指令に応じて1の注入動作を行い、制御装置20は、制御装置20が発した動作指令の数を積算して総動作指令数を求め、更に、総動作指令数に注入ポンプ30の1動作あたりの注入量を乗算して薬液の総注入量を求め、総注入量を表示装置に表示させることとした。 (もっと読む)


【課題】電気分解の際に発生するガスのより十分な有効利用ができる排水処理方法を提供しようとするもの。
【解決手段】水素ガス3と、電解機構1で電気分解する際に生成する塩素ガス5とを反応させて塩化水素ガス6を生成せしめる塩化水素ガス生成工程と、前記塩化水素ガス6を排水7に溶解させる塩化水素ガス溶解工程を具備し、塩化水素ガス6が溶解した排水7を前記電解機構1に送るようにした。塩化水素ガスが生成する際に次のような大きな反応生成熱が発生するので、この反応生成熱を熱エネルギーとしてエネルギー利用することができる。 (もっと読む)


【課題】 フェノール類を含む高COD排水に対し、従来の生物学的処理法に比べてオペレーション技術の簡易化、設備の小型化、エネルギーコストの削減が可能な排水処理方法を提案する。
【解決方法】
該排水の電導度が2mS/cm以上の場合、鉄を電極にした電気分解を行う。pHを6以上9未満に調整し微粒子を発生させ、これを沈殿除去後水酸化第2鉄コロイド粒子を加えて沈殿除去する。孔拡散・ろ過法で固液分離する。
電導度が2mS/cm未満の場合、酸化剤を加えた後に、塩化第1鉄水溶液または塩化第2鉄水溶液を加えるか、あるいは塩化第1鉄と塩化第2鉄を混合した水溶液を加えるか、あるいは平均粒径4nm以上30nm未満の水酸化第2鉄コロイドを加える。pHを5以上9未満に調整してした沈殿物を除去し水酸化第2鉄コロイドの添加および高分子膜を用いての沈殿物の固液分離する。 (もっと読む)


【課題】原水性状が大きく変化しても安定した品質の浄水が得られる、浄水処理方法及び浄水処理装置を提供すること。
【解決手段】原水に凝集剤を注入してフロックを含む凝集処理水を生成する工程、及び前記凝集処理水を膜ろ過して浄水を得る膜ろ過工程を含む、浄水処理方法であって、前記凝集処理水の紫外線吸光度(A)が、予め設定された紫外線吸光度目標値(A)以下となるように、原水の紫外線吸光度(A)及び濁度の情報から凝集剤注入率を制御する、浄水処理方法。原水に凝集剤を注入するための凝集剤注入装置、凝集剤注入装置からの凝集剤によりフロックを含む凝集処理水を生成する凝集処理装置、及び前記凝集処理水を膜ろ過して浄水を得る膜ろ過装置を含む、浄水処理装置であって、該浄水処理装置は、原水の紫外線吸光度(A)、及び前記凝集処理水の紫外線吸光度(A)を測定する装置、並びに前記A、A、及び濁度の情報を処理して、前記凝集剤注入装置の凝集剤注入率を制御する制御部を含む、浄水処理装置。 (もっと読む)


【課題】 原水中のTOC、特に尿素を高度に分解することができる水処理方法を提供する。
【解決手段】 1は図示しない原水貯槽から供給される原水Wの前処理システムであり、この前処理システム1で処理された原水Wは、生物処理手段3に供給される。そして、この生物処理手段3で処理された処理水W1は一次純水装置に供給される。生物処理手段3の前段には図示しないpHセンサと第一の供給機構5とが設けられていて、第一の供給機構5からアンモニア性の窒素源(NH−N)及び硫酸が添加可能となっている。また、第一の供給機構5に併行して、酸化剤及び/又は殺菌剤を添加する第二の供給機構6が設けられている。このような構成により、生物処理手段3において硝化菌を優占種化する。 (もっと読む)


【課題】除菌剤などの薬剤を、少ない濃度ムラで注入する薬液注入器、および給水ユニットを提供する。
【解決手段】薬液注入器は、送水管内の流量を検出する流量検出手段と、薬液を注入する注入ポンプと、流量に基づき注入ポンプを作動させる制御手段を備え、算出された注入ポンプの作動頻度が下限値以上であれば、算出された作動頻度で注入ポンプを作動させ、作動頻度が下限値未満であれば、予め定められた最低頻度で注入ポンプを作動させることとした。給水ユニットは、薬液注入器と、給水ポンプと、濾過装置などから構成されている。送水管には、薬液注入器の注入位置より下流に濾過装置を設け、薬液は、原水を除菌、および酸化させる薬液であることとした。 (もっと読む)


【課題】ガスを流体に移送するシステムを提供する。
【解決手段】本発明による方法及び装置は、廃水処理に使用されるガス富化流体を生成することに関する。実施例において、処理すべき廃水供給部の一部の廃水を流体供給部(80)によって引いて、廃水を、ガス供給部(70)からのガスで加圧された容器(60)に噴霧器の仕方で送出する。それにより、ガス富化廃水を形成する。次いで、ガス富化廃水を、ガス富化流体供給部(90)によって、処理すべき廃水供給源へ送出する。 (もっと読む)


【課題】第一鉄を主体とする溶存鉄を主に含む多種金属イオン含有排水を原水とした場合に、鉄以外の成分の混入が抑制され、しかも含水率の低い脱水性に優れたスラッジが得られ、排水中の溶存鉄を回収して利用可能な回収方法の提供。
【解決手段】原水を中和酸化槽に導入し、原水のpHを3.5〜6.0に調整し、中和酸化槽内にδ−FeO(OH)を触媒として添加し、溶存鉄を酸化剤で酸化処理して水酸化鉄(III)粒子を主とする金属水酸化物を生成させ、中和酸化槽の下流側に配置させた沈殿槽で金属水酸化物を含有するスラッジを沈殿分離し、かつ、沈殿分離したスラッジの一部を中和酸化槽に返送するための返送工程を設け、該工程で、沈殿分離したスラッジの一部をスラッジ反応槽に導入し、該反応槽内にアルカリ剤を添加してスラッジを処理し、処理後のスラッジを中和酸化槽内に戻しながら原水を連続処理する多種金属イオン含有排水からの溶存鉄の回収方法。 (もっと読む)


【課題】 構成の小型化および簡素化を図り、占有面積または占有空間を少なくして設置可能とし、感染性廃液を低コストで効率よく処理することができる感染性廃液の処理装置および方法を提供する。
【解決手段】 感染性微生物を含む感染性廃液を貯留する廃液貯留槽3と、廃液貯留槽3に貯留される廃液が供給され、供給された廃液にオゾンガスおよび二酸化塩素を含有する薬液を順次接触させて、廃液中の感染性微生物を不活性化する反応槽5と、薬液を貯留する薬液貯留槽6と、オゾンガスを発生するオゾンガス発生源7と、薬液貯留槽6に貯留される薬液を、反応槽5に供給する薬液輸送手段8と、オゾンガス発生源7からのオゾンガスが供給され、反応槽5内の廃液を循環する廃液循環手段9と、薬液輸送手段8から反応槽5へ供給される薬液の供給量および廃液循環手段9から反応槽5へ供給されるオゾンガスの供給量を、時系列的に制御する制御手段10とを設ける。 (もっと読む)


【課題】 有機物の存在下でも、病原性微生物を、環境への負荷を軽減しつつ、簡単かつ確実に病原性微生物を不活性化する方法を提供する。
【解決手段】 病原性微生物および有機物を含む水性媒体に、活性酸素供与体、二酸化塩素および活性酸素供与体を順次加えて水性媒体を処理し、前記水性媒体の病原性微生物を不活性化する。 (もっと読む)


51 - 60 / 425