説明

国際特許分類[C22B23/02]の内容

国際特許分類[C22B23/02]に分類される特許

21 - 30 / 73


【課題】フェロニッケル製錬において、ロータリーキルンに投入される石炭の一部を木質ペレットで代替することが可能な、木質ペレットを使用したフェロニッケル製錬方法を提供する。
【解決手段】ニッケル酸化鉱をロータリーキルンで焼成する工程、次いで、得られたか焼鉱を電気炉に送り還元を行う工程を含むフェロニッケルの製錬方法であって、
ロータリーキルンでの焼成工程では、ロータリーキルンの原料投入口及び/又は原料投入口からか焼鉱排出口の中間で石炭を投入する際に、石炭の少なくとも一部の代替として、木質ペレットを用いることを特徴とするフェロニッケルの製錬方法など。 (もっと読む)


【課題】フェロニッケル製錬において、ロータリーキルンに投入される石炭の一部を木質ペレットで代替することが可能な、木質ペレットを使用したフェロニッケル製錬方法を提供する。
【解決手段】ニッケル酸化鉱をロータリーキルンで焼成する工程、次いで、得られたか焼鉱を電気炉に送り還元を行う工程を含むフェロニッケルの製錬方法であって、
ロータリーキルンでの焼成工程では、ロータリーキルンの原料投入口または原料投入口からか焼鉱排出口の中間で石炭を投入する際に、石炭の少なくとも一部の代替として、ホワイトペレット、バークペレットまたは全木ペレットから選ばれる少なくとも一種の木質ペレットを用いることを特徴とするフェロニッケルの製錬方法など。 (もっと読む)


【課題】Co−Cr−Pt系またはCo−Cr−Pt−Ru系の金属、およびSiO2、TiO2、Cr23、CoO、Ta25のうちのいずれか1つまたは複数の金属酸化物からなるターゲットから、工程数を少なくかつ不純物の混入を少なく金属を回収する。
【解決手段】ターゲット1を、貫通孔12Bが底面にある上段ルツボ12および該貫通孔12Bの下に設けられた下段ルツボ14を備えてなる2段ルツボ10の該上段ルツボ12内で、ターゲット1にTiO2およびTa25のどちらも含まれない場合は1400〜1790℃で加熱し、ターゲット1にTiO2が含まれ、Ta25が含まれない場合は1400〜1630℃で加熱し、ターゲット1にTa25が含まれる場合は1400〜1460℃で加熱して、溶融した前記金属を下段ルツボ14内に流れ込ませて前記金属酸化物から分離する。 (もっと読む)


【課題】LCD構成部材のリサイクル処理法を提供する。
【解決手段】LCDが、他の原材料の代替品として少なくとも部分的に使用される。一般に、LCDは、900〜1700℃の温度範囲で熱処理される。対象は、使用済みLCDおよび製造不良LCDを用い、構成部材の分別無しで好ましくは1250〜1350℃の高温処理を行い、毒性産物の生成無しに、貴金属の回収、スラグの道路建設での使用、プラスチックフィルムの燃焼熱のガラスの融解に利用する。 (もっと読む)


本発明は、浮遊溶解炉の使用方法、浮遊溶解炉および精鉱バーナ(4)に関する。精鉱バーナ(4)は、第1のガス(5)を反応シャフト(2)に供給する第1のガス供給装置(12)、および第2のガス(16)を反応シャフト(2)に供給する第2のガス供給装置(18)を含んでいる。第1のガス供給装置(12)は、供給パイプ(7)の開口部(8)と同心状に配設された第1の環状放出口(14)を備え、第1の環状放出口(14)は供給パイプ(7)を取り囲んでいる。第2のガス供給装置(18)は、供給パイプ(7)の開口部(8)と同心状に配設された第2の環状放出口(17)を備え、第2の環状放出口(17)は、供給パイプ(7)開口部(14)を取り囲んでいる。 (もっと読む)


本発明は、浮遊溶解炉の反応シャフトの熱平衡制御方法、および反応ガスおよび微粉状固形物を浮遊溶解炉の反応シャフトに供給する精鉱バーナに関するものである。本方法では、吸熱性材料(16)を、精鉱バーナ(4)を使用して供給し、粉末状固形物(6)および反応ガス(5)から成る混合物の一部を構成することで、粉末状固形物(6)、反応ガス(5)、および吸熱性材料(16)を含有する混合物を反応シャフト(2)内に形成する。精鉱バーナ(4)は、吸熱性材料(16)を添加して混合物の一部を形成させる冷却剤供給器(15)を含み、混合物は、供給パイプの開口部(8)から放出される微粉状固形物(6)と、環状放出口(14)から放出される反応ガス(5)とから成る。 (もっと読む)


本発明は、浮遊溶解炉の反応シャフトに燃料ガスを供給する方法、および反応ガスおよび微細固形物を浮遊溶解炉の反応シャフトに供給する精鉱バーナに関するものである。本方法では、燃料ガス(16)を、精鉱バーナ(4)を使用して供給し、微粉状固形物(6)および反応ガス(5)から成る混合物の一部を形成することで、微粉状固形物(6)、反応ガス(5)、および燃料ガス(16)を含有する混合物を反応シャフト(2)内に形成する。精鉱バーナ(4)は、燃料ガス(16)を添加して微細固形物(6)と反応ガス(5)から成る混合物の一部を形成する燃料ガス供給器(15)を含む。 (もっと読む)


【課題】 ニッケル、リチウムを含む溶液からニッケルとリチウムを溶媒抽出による共抽出し、濃縮した後、炭酸ニッケル、炭酸リチウムとして回収する。
【解決手段】 少なくともリチウム、ニッケルを含む溶液を
第1工程として、有機溶媒である2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルエステルにより、3段以上の抽出段を使用し、溶媒抽出し、有機相中へニッケルとリチウムをpH=8.0から8.5において共抽出するニッケルとリチウムの抽出方法。 (もっと読む)


【課題】自溶製錬炉において、炉内に供給された原料と反応用ガスの混合を積極的に促進し、早期に均一な混合雰囲気を作り出すことで反応の早期完了及び反応を均一化する。
【解決手段】原料を分散し、同時に反応に寄与するガスをシャフト部上部のランスから旋回気流となるように吹き込むことを特徴とする自溶製錬炉の操業方法。 (もっと読む)


【課題】リチウムイオンバッテリーに含まれる金属を資源化する方法
【解決手段】
本発明はリチウムイオンバッテリーから金属を回収するためのリサイクル方法に関する。より具体的には、アルミニウム及び炭素を含むリチウムイオンバッテリーからコバルトを回収するための自己発生プロセス(autogeneous process)が開示され、この方法は
2注入手段を備えた浴炉を準備する工程と、
スラグ形成剤としてのCaO及びリチウムイオンバッテリーを含む冶金装入原料を供給する工程と、
2を注入するとともに該浴炉へ前記冶金装入原料を供給し、これによって該コバルトの少なくとも一部が還元され金属相中に集められる工程と、
湯出しによって該金属相からスラグを分離する工程を含み、
冶金装入原料の質量%で表されるリチウムイオンバッテリーの該フラクションが少なくとも153質量%−3.5(Al%+0.6C%)[該バッテリー中のアルミニウム及び炭素の質量%をそれぞれAl%及びC%と表す]であることを特徴とし、これによって溶融還元プロセスを自己発生条件(autogeneous conditions)で操作することを可能とする。この方法は、シャフト炉を用いる技術方法に対し、装入原料の形態に対する広い許容範囲、高いエネルギー効率及び簡略化された排気清浄要求という利点を有する。 (もっと読む)


21 - 30 / 73