説明

α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、及びα−オレフィン重合体の製造方法

【課題】立体規則性、触媒活性などの触媒性能の全てにおいて充分な性能を示す触媒及びその様な触媒成分を用いたα−オレフィン重合体の製造方法を提供。
【解決手段】チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分(A1)を有機アルミニウム化合物存在下で炭素数2以上の枝鎖オレフィンで重合処理し、得られた固体成分(A1’)に対して、アルケニル基を有するシラン化合物(A2)、有機ケイ素化合物(A3)及び有機アルミニウム化合物(A4)を接触処理することを特徴とするα−オレフィン重合用固体触媒成分(A)、それを用いたα−オレフィン重合用触媒、およびα−オレフィン重合体の製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、α−オレフィン重合用固体触媒成分、α−オレフィン重合用触媒、及びそれを用いたα−オレフィン重合体の製造方法に関し、詳しくは、立体規則性が高く、極めて高い触媒活性を有するα−オレフィン重合用固体触媒成分、それを用いたα−オレフィン重合用触媒、及びそれを用いたα−オレフィン重合体の製造方法に関するものである。
【背景技術】
【0002】
ポリエチレンやポリプロピレンなどのポリオレフィンは、産業資材として最も重要なプラスチック材料であり、フィルムやシートとして包装材料及び電気材料などに、成形品として自動車部材や家電製品などの工業材料に、さらに繊維材料や建築材料などの各種の用途に広範に汎用されている。
このように利用用途が非常に広く多岐にわたるために、ポリオレフィンにおいては、それらの用途面から、多種の性質においての改良向上が求め続けられ、それらの要望に応じるために、主として重合触媒の改良による技術開発が展開されてきた。
【0003】
遷移金属化合物と有機金属化合物を利用したチーグラー系の触媒により、オレフィンの重合活性が非常に高められて工業生産が実現化されたが、その後に分子量分布による重合体の物性の改善やα−オレフィンの立体規則性の向上をはじめ、多種の性能の改良がなされている。
具体的には、マグネシウム化合物を触媒担持体としてチタン及びハロゲンを必須成分として含有する固体触媒成分を使用した触媒が開発され、さらに電子供与性化合物を使用して触媒活性と立体規則性を高めた触媒(例えば、特許文献1参照。)、その後には、特定の有機ケイ素化合物を新たに触媒成分に付加して、さらに触媒活性や立体規則性の向上をはかる提案もなされている(例えば、特許文献2、3参照。)。また特定の有機ケイ素化合物の他に、ビニル基やアリル基のようなアルケニル基を有する特殊な構造のケイ素化合物を併用することで、触媒活性や立体規則性がさらに向上し、分子量調節剤として用いられる水素のレスポンスが良化するなどの性能向上も提案されている(例えば、特許文献4〜6参照。)。
【0004】
しかしながら、本発明者等が知る限りでは、これらのいずれの触媒系においても生成するα−オレフィン重合体の立体規則性、触媒活性などの触媒性能の全てにおいて充分な性能を示すものはなく、更なる改良技術の開発が望まれている。
【特許文献1】特開昭58−138706号公報
【特許文献2】特開昭62−187707号公報
【特許文献3】特開昭61−171715号公報
【特許文献4】特開平03−2234707号公報
【特許文献5】特開平07−2923号公報
【特許文献6】特開2006−169283号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、かかる従来技術の状況において、立体規則性、触媒活性などの触媒性能の全てにおいて充分な性能を示す触媒及びその様な触媒成分を用いたα−オレフィン重合体の製造方法の提供を目的とするものである。
【課題を解決するための手段】
【0006】
本発明者等は、上記の課題を受けて、チーグラー系触媒における基本的かつ普遍的な上記の問題を解決するために、チーグラー触媒における各種の触媒成分の性質や化学的構造などについて全般的な思考及び探索を行い、多種の触媒成分および製造条件について検討を重ね、触媒の活性点に関して立体規則性やモノマーの関与にかかわる触媒成分および製造条件を探索した。その結果、特定のアルケニル基を有するシラン化合物および特定の有機ケイ素化合物を採用することで、活性点に対するモノマー挿入反応が制御され、立体規則性および活性の改善がなされた。しかしながら、更なる立体規則性や活性の向上が依然として求められており、そこで特定のアルケニル基を有するシラン化合物および特定の有機ケイ素化合物を触媒と接触させるより以前に、炭素数2以上の枝鎖オレフィンで重合処理することで更に立体規則性や活性の向上される事が判明した。すなわち、本手法により、担体となるハロゲン化マグネシウムの構造が規制され、特定のアルケニル基を有するシラン化合物が効率よく活性点に接触し、さらに特定の有機ケイ素化合物が効率よくハロゲン化マグネシウム担体上に担持され、重合体の立体規則性と触媒活性も著しく向上され、さらに水素レスポンスがよい、非常にバランスの取れた触媒を得ることができる事実を見出し、本発明に至った。
【0007】
すなわち、本発明の第1の発明によれば、下記の成分(A1)の固体成分を有機アルミニウム化合物存在下で炭素数2以上の枝鎖オレフィンで重合処理し、得られた固体成分(A1’)に対して、成分(A2)、(A3)及び(A4)を接触処理することを特徴とするα−オレフィン重合用固体触媒成分(A)が提供される。
成分(A1):チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分
成分(A2):アルケニル基を有するシラン化合物
成分(A3):有機ケイ素化合物
成分(A4):有機アルミニウム化合物
【0008】
また、本発明の第2の発明によれば、第1の発明において、炭素数2以上の枝鎖オレフィンの重合量が成分(A1)1g当たり0.1g以上であることを特徴とする請求項1に記載のα−オレフィン重合用固体触媒成分(A)が提供される。
【0009】
また、本発明の第3の発明によれば、第1又は2の発明において、成分(A1)中のマグネシウムがジアルコキシマグネシウム由来のものであることを特徴とするα−オレフィン重合用固体触媒成分(A)が提供される。
【0010】
また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、成分(A2)アルケニル基を有するシラン化合物がビニルシラン化合物であることを特徴とするα−オレフィン重合用固体触媒成分(A)が提供される。
【0011】
また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、成分(A3)有機ケイ素化合物が下記一般式(1)で表されるケイ素化合物であることを特徴とするα−オレフィン重合用固体触媒成分(A)が提供される。
Si(OR ・・・(1)
(ここで、Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。Rは水素、ハロゲン、炭化水素基及びヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。Rは炭化水素基であり、0≦m≦2, 1≦n≦3, m+n=3を示す。)
【0012】
また、本発明の第6の発明によれば、第1〜5のいずれかの発明のα−オレフィン重合用固体触媒成分(A)及び下記成分(B)からなることを特徴とするα−オレフィン重合用触媒が提供される。
(B)有機アルミニウム化合物
【0013】
また、本発明の第7の発明によれば、第6の発明のα−オレフィン重合用触媒を用いて、α−オレフィンを単独重合又は共重合することを特徴とするα−オレフィン重合体の製造方法が提供される。
【発明の効果】
【0014】
本発明のα−オレフィン重合用触媒は、従来の触媒よりポリマーの立体規則性及び収率を高度に維持することができる。従って、触媒活性が非常に高いので、製造コストも低減することが可能である。加えて、得られるポリマーの立体規則性が高く、剛性と耐衝撃強度のバランスに優れた高品質な製品を得ることが出来る。
【発明を実施するための最良の形態】
【0015】
1.α−オレフィン重合用固体触媒成分(A)
本発明で用いるα−オレフィン重合用固体触媒成分(A)は、以下の成分(A1)を有機アルミニウム存在下で炭素数2以上の枝鎖オレフィンで重合処理し得られた固体成分(A1’)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、有機アルミニウム化合物(A4)、必要に応じて、少なくとも二つのエーテル結合を有する化合物(A5)を接触させてなるものである。以下に各構成成分を詳述する。
【0016】
(1)固体成分(A1)
本発明において、固体成分(A1)としては、チタン(A1a)、マグネシウム(A1b)及びハロゲン(A1c)を必須成分として含有し、任意成分として電子供与性化合物(A1d)を用いることが出来る。ここで、「必須成分として含有する」という事は、挙示の3成分以外に、本発明の効果を損なわない範囲で任意の成分を任意の形態で含んでも良いという事を示すものである。チタン、マグネシウム、及びハロゲンを必須成分として含有する固体成分自体は公知のものであり、以下に詳述する。
【0017】
(A1a)チタン
チタン源となるチタン化合物としては、任意のものを用いることが出来る。代表的な例としては特開平3−234707号公報に開示されている化合物を挙げることが出来る。チタンの価数に関しては、4価、3価、2価、0価の任意の価数を持つチタン化合物を用いることが出来るが、好ましくは4価および3価のチタン化合物、更に好ましくは4価のチタン化合物を用いる事が望ましい。
4価のチタン化合物の具体例としては、四塩化チタンに代表されるハロゲン化チタン化合物類、テトラブトキシチタンに代表されるアルコキシチタン化合物類、テトラブトキシチタンダイマー(BuO)Ti−O−Ti(OBu)に代表されるTi−O−Ti結合を有するアルコキシチタンの縮合化合物類、ジシクロペンタジエニルチタニウムジクロライドに代表される有機金属チタン化合物類、などを挙げることが出来る。この中で、四塩化チタンとテトラブトキシチタンが特に好ましい。
3価のチタン化合物の具体例としては、三塩化チタンに代表されるハロゲン化チタン化合物類を挙げることが出来る。三塩化チタンは、水素還元型、金属アルミニウム還元型、金属チタン還元型、有機アルミニウム還元型、など、公知の任意の方法で製造された化合物を用いることが出来る。
上記のチタン化合物類は単独で用いるだけではなく、複数の化合物を併用する事も可能である。また、上記チタン化合物類の混合物や平均組成式がそれらの混合された式となる化合物(例えば、Ti(OBu)Cl4−m;0<m<4などの化合物)、また、フタル酸エステル等のその他の化合物との錯化物(例えば、Ph(COBu)・TiClなどの化合物)、などを用いる事が出来る。
【0018】
(A1b)マグネシウム
マグネシウム源となるマグネシウム化合物としては、任意のものを用いることが出来る。代表的な例としては、特開平3−234707号公報に開示されている化合物を挙げることが出来る。一般的には、塩化マグネシウムに代表されるハロゲン化マグネシウム化合物類、ジエトキシマグネシウムに代表されるアルコキシマグネシウム化合物類、金属マグネシウム、酸化マグネシウムに代表されるオキシマグネシウム化合物類、水酸化マグネシウムに代表されるヒドロキシマグネシウム化合物類、ブチルマグネシウムクロライドに代表されるグリニャール化合物類、ブチルエチルマグネシウムに代表される有機金属マグネシウム化合物類、炭酸マグネシウムやステアリン酸マグネシウムに代表される無機酸及び有機酸のマグネシウム塩化合物類、及びそれらの混合物や平均組成式がそれらの混合された式となる化合物(例えば、Mg(OEt)Cl2−m;0<m<2などの化合物)、などを用いる事が出来る。この中で好ましいのはハロゲン化マグネシウム化合物類、アルコキシマグネシウム化合物類、グリニャール化合物類等があげられる。
【0019】
特に、大きな粒子を作る場合には、触媒粒径を制御し易いジアルコキシマグネシウムを用いる事が好ましい。ジアルコキシマグネシウムは事前に製造されたものを用いるだけでなく、触媒製造工程の中で金属マグネシウムとハロゲンあるいはハロゲン含有金属化合物の存在下にアルコールを反応させて得たものを用いる事も出来る。
更に、本発明において成分(A1b)として好適なジアルコキシマグネシウムは、顆粒状又は粉末状であり、その形状は不定形あるいは球状のものを使用し得る。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する閉塞等の問題が解消される。
【0020】
上記の球状ジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。具体的にその粒子の形状は、長軸径lと短軸径wとの比(l/w)が3以下であり、好ましくは1から2であり、より好ましくは1から1.5である。
また、上記ジアルコキシマグネシウムの平均粒径は1から200μmのものが使用し得る。好ましくは5から150μmである。球状のジアルコキシマグネシウムの場合、その平均粒径は1から100μm、好ましくは5から50μmであり、更に好ましくは10から40μmである。また、その粒度については、微粉及び粗粉の少ない、粒度分布の狭いものを使用することが望ましい。具体的には、5μm以下の粒子が20%以下であり、好ましくは10%以下である。一方、100μm以上の粒子が10%以下であり、好ましくは5%以下である。更にその粒度分布をln(D90/D10)(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒径である。)で表すと3以下であり、好ましくは2以下である。
【0021】
上記の如き球状のジアルコキシマグネシウムの製造方法は、例えば特開昭58−41832号公報、特開昭62−51633号公報、特開平3−74341号公報、特開平4−368391号公報、特開平8−73388号公報などに例示されている。
【0022】
(A1c)ハロゲン
ハロゲンとしては、フッ素、塩素、臭素、沃素、及びそれらの混合物を用いる事が出来る。この中で塩素が特に好ましい。
ハロゲンは、上記のチタン化合物類及び/又はマグネシウム化合物から供給されるのが一般的であるが、その他の化合物より供給することも出来る。代表的な例としては、四塩化ケイ素に代表されるハロゲン化ケイ素化合物類、塩化アルミニウムに代表されるハロゲン化アルミニウム化合物類、1,2−ジクロロエタンやベンジルクロライドに代表されるハロゲン化有機化合物類、トリクロロボランに代表されるハロゲン化ボラン化合物類、五塩化リンに代表されるハロゲン化リン化合物類、六塩化タングステンに代表されるハロゲン化タングステン化合物類、五塩化モリブデンに代表されるハロゲン化モリブデン化合物類、などを挙げることが出来る。これらの化合物は単独で用いるだけでなく、併用する事も可能である。この中で、四塩化ケイ素が特に好ましい。
【0023】
(A1d)電子供与体
任意成分として用いることのできる電子供与体(A1d)の代表的な例としては、特開2004−124090号公報に開示されている化合物を挙げることが出来る。一般的には、有機酸及び無機酸並びにそれらの誘導体(エステル、酸無水物、酸ハライド、アミド)化合物類、エーテル化合物類、ケトン化合物類、アルデヒド化合物類、アルコール化合物類、アミン化合物類、などを用いることが望ましい。
【0024】
電子供与体(A1d)として用いる事の出来る有機酸化合物としては、フタル酸に代表される芳香族多価カルボン酸化合物類、安息香酸に代表される芳香族カルボン酸化合物類、2−n−ブチル−マロン酸の様な2位に一つ又は二つの置換基を有するマロン酸や2−n−ブチル−コハク酸の様な2位に一つ又は二つの置換基若しくは2位と3位にそれぞれ一つ以上の置換基を有するコハク酸に代表される脂肪族多価カルボン酸化合物類、プロピオン酸に代表される脂肪族カルボン酸化合物類、ベンゼンスルホン酸やメタンスルホン酸に代表される芳香族及び脂肪族のスルホン酸化合物類、などを例示する事が出来る。これらのカルボン酸化合物類及びスルホン酸化合物類は、芳香族・脂肪族に関わらず、マレイン酸の様に分子中の任意の場所に任意の数だけ不飽和結合を有しても良い。
【0025】
電子供与体(A1d)として用いることの出来る有機酸の誘導体化合物としては、上記有機酸のエステル、酸無水物、酸ハライド、アミド、などを例示する事が出来る。
エステルの構成要素であるアルコールとしては、脂肪族及び芳香族アルコールを用いることが出来る。これらのアルコールの中でも、エチル基、ブチル基、イソブチル基、ヘプチル基、オクチル基、ドデシル基、等の炭素数1から20の脂肪族の遊離基からなるアルコールが好ましい。更に好ましくは炭素数2から12の脂肪族の遊離基からなるアルコールが望ましい。また、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、等の脂環式の遊離基からなるアルコールを用いる事も出来る。
酸ハライドの構成要素であるハロゲンとしては、フッ素、塩素、臭素、沃素、等を用いる事が出来る。中でも、塩素が最も好ましい。多価有機酸のポリハライドの場合は複数のハロゲンが同一であっても異なっていても良い。
アミドの構成要素であるアミンとしては、脂肪族及び芳香族アミンを用いることが出来る。これらのアミンの中でも、アンモニア、エチルアミンやジブチルアミンに代表される脂肪族アミン、アニリンやベンジルアミンに代表される芳香族の遊離基を分子内に有するアミン、などを好ましい化合物として例示する事が出来る。
【0026】
電子供与体(A1d)として用いることの出来る無機酸化合物としては、炭酸、リン酸、ケイ酸、硫酸、硝酸、などを例示することが出来る。これらの無機酸の誘導体化合物としては、エステルを用いることが望ましい。テトラエトキシシラン(ケイ酸エチル)、テトラブトキシシラン(ケイ酸ブチル)、リン酸トリブチルなどを具体例として挙げることが出来る。
【0027】
電子供与体(A1d)として用いることの出来るエーテル化合物としては、ジブチルエーテルに代表される脂肪族エーテル化合物類、ジフェニルエーテルに代表される芳香族エーテル化合物類、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパンや2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパンの様な2位に一つ又は二つの置換基を有する1,3−ジメトキシプロパンに代表される脂肪族多価エーテル化合物類、9,9−ビス(メトキシメチル)フルオレン、に代表される芳香族の遊離基を分子内に有する多価エーテル化合物類、などを例示する事が出来る。多価エーテル化合物類の好ましい例は、本明細書中の少なくとも二つのエーテル結合を有する化合物(A5)の例示からから選ぶことが出来る。
【0028】
電子供与体(A1d)として用いることの出来るケトン化合物としては、メチルエチルケトンに代表される脂肪族ケトン化合物類、アセトフェノンに代表される芳香族ケトン化合物類、2,2,4,6,6−ペンタメチル−3,5−ヘプタンジオンに代表される多価ケトン化合物類、などを例示することが出来る。
【0029】
電子供与体(A1d)として用いることの出来るアルデヒド化合物としては、プロピオンアルデヒドに代表される脂肪族アルデヒド化合物類、ベンズアルデヒドに代表される芳香族アルデヒド化合物類、などを例示する事が出来る。
【0030】
電子供与体(A1d)として用いることの出来るアルコール化合物としては、ブタノールや2−エチルヘキサノールに代表される脂肪族アルコール化合物類、フェノール、クレゾールに代表されるフェノール誘導体化合物類、グリセリンや1,1‘−ビ−2−ナフトールに代表される脂肪族若しくは芳香族の多価アルコール化合物類、などを例示することが出来る。
【0031】
電子供与体(A1d)として用いることの出来るアミン化合物としては、ジエチルアミンに代表される脂肪族アミン化合物類、2,2,6,6−テトラメチル−ピペリジンに代表される窒素含有脂環式化合物類、アニリンに代表される芳香族アミン化合物類、ピリジンに代表される窒素原子含有芳香族化合物類、1,3−ビス(ジメチルアミノ)−2,2−ジメチルプロパンに代表される多価アミン化合物類、などを例示することが出来る。
電子供与体(A1d)として用いることの出来る化合物として、上記の複数の官能基を同一分子内に含有する化合物を用いることも出来る。その様な化合物の例として、酢酸−(2−エトキシエチル)や3−エトキシ−2−t−ブチルプロピオン酸エチルに代表されるアルコキシ基を分子内に有するエステル化合物類、2−ベンゾイル−安息香酸エチルに代表されるケトエステル化合物類、(1−t−ブチル−2−メトキシエチル)メチルケトンに代表されるケトエーテル化合物類、N,N−ジメチル−2,2−ジメチル−3−メトキシプロピルアミンに代表されるアミノエーテル化合物類、エポキシクロロプロパンに代表されるハロゲノエーテル化合物類などを挙げる事が出来る。
【0032】
これらの電子供与体は単独で用いるだけでなく、複数の化合物を併用することも出来る。これらの中で好ましいのは、フタル酸ジエチル、フタル酸ジブチル、フタル酸ジイソブチル、フタル酸ジヘプチルに代表されるフタル酸エステル化合物類、フタロイルジクロライドに代表されるフタル酸ハライド化合物類、2−n−ブチル−マロン酸ジエチルの様な2位に一つ又は二つの置換基を有するマロン酸エステル化合物類、2−n−ブチル−コハク酸ジエチルの様な2位に一つ又は二つの置換基若しくは2位と3位にそれぞれ一つ以上の置換基を有するコハク酸エステル化合物類、2−イソプロピル−2−イソブチル−1,3−ジメトキシプロパンや2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパンの様な2位に一つ又は二つの置換基を有する1,3−ジメトキシプロパンに代表される脂肪族多価エーテル化合物類、9,9−ビス(メトキシメチル)フルオレンに代表される芳香族の遊離基を分子内に有する多価エーテル化合物類などである。
【0033】
本発明における固体成分(A1)を構成する各成分の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次の範囲内が好ましい。
【0034】
チタン化合物類(A1a)の使用量は、使用するマグネシウム化合物類の使用量に対してモル比(チタン化合物のモル数/マグネシウム化合物のモル数)で、好ましくは0.0001から1,000の範囲内であり、より好ましくは0.001〜100の範囲であり、特に好ましくは0.01から50の範囲内が望ましい。
マグネシウム化合物類(A1b)及びチタン化合物類以外にハロゲン源となる化合物(すなわち(A1c))を使用する場合は、その使用量はマグネシウム化合物類及びチタン化合物類の各々がハロゲンを含むか含まないかに関わらず、使用するマグネシウム化合物類の使用量に対してモル比(ハロゲン源となる化合物のモル数/マグネシウム化合物のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
固体成分(A1)を調製する際に任意成分として電子供与性化合物(A1d)を用いる場合の使用量は、使用するマグネシウム化合物の量に対してモル比(電子供与体のモル数/マグネシウム化合物のモル数)で、好ましくは0.001から10の範囲内であり、特に好ましくは0.01から5の範囲内が望ましい。
【0035】
本発明における固体成分(A1)は、上記の構成する各成分を上記の量比で接触して得られる。各成分の接触条件は、酸素を存在させないことが必要であるものの、本発明の効果を損なわない範囲で任意の条件を用いることが出来る。一般的には、次の条件が好ましい。
【0036】
接触温度は、−50から200℃程度、好ましくは0から100℃である。接触方法としては、回転ボールミルや振動ミルなどによる機械的な方法、並びに、不活性希釈剤の存在下に撹拌により接触させる方法、などを例示することが出来る。
【0037】
固体成分(A1)の調製の際には、中間及び/又は最後に不活性溶媒で洗浄を行っても良い。好ましい溶媒種としては、ヘプタンなどの脂肪族炭化水素化合物、トルエンなどの芳香族炭化水素化合物、及び、1,2−ジクロロエチレンやクロロベンゼンなどのハロゲン含有炭化水素化合物、などを例示することが出来る。
【0038】
本発明における固体成分(A1)の調製方法としては任意の方法を用いることが出来る。具体的には、下記の(i)〜(vi)の方法を例示する事が出来る。なお、本発明は下記例示により何ら制限されるものではない。
【0039】
(i)ジエトキシマグネシウムに代表されるアルコキシ基含有マグネシウム化合物類に四塩化チタンに代表されるハロゲンを含有するチタン化合物類と接触させる方法。必要に応じて電子供与体やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分はハロゲンを含有するチタン化合物類と同時に接触させても良いし、別々に接触させても良い。
【0040】
(ii)金属マグネシウムにアルコール及び必要に応じて沃素に代表される沃素含有化合物類を接触させた後、四塩化チタンに代表されるハロゲンを含有するチタン化合物類と接触させる方法。必要に応じて電子供与体やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分はハロゲンを含有するチタン化合物類と同時に接触させても良いし、別々に接触させても良い。
【0041】
(iii)ジエトキシマグネシウムに代表されるアルコキシ基含有マグネシウム化合物類をテトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類と接触させた後、ハロゲン化剤又は四塩化チタンに代表されるハロゲンを含有するチタン化合物類と接触させる方法。必要に応じて電子供与体等の任意成分を接触させても良い。この際、任意成分はハロゲン化剤又はハロゲンを含有するチタン化合物類と同時に接触させても良いし、別々に接触させても良い。
【0042】
(iv)塩化マグネシウムに代表されるハロゲンを含有するマグネシウム化合物類にチタン含有化合物類を接触させる方法。必要に応じて電子供与体やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分はチタン含有化合物類と同時に接触させても良いし、別々に接触させても良い。
【0043】
(v)塩化マグネシウムに代表されるハロゲンを含有するマグネシウム化合物類をアルコール化合物類、エポキシ化合物類、及び、リン酸エステル化合物類等を用いて溶解し、四塩化チタンに代表されるハロゲンを含有するチタン化合物類と接触させる方法。ハロゲンを含有するチタン化合物類と接触させる前に、スプレードライや冷却した炭化水素溶媒等の貧溶媒へ滴下する方法などを用いて粒子形成を行っても良い。また、必要に応じて電子供与体やハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分はハロゲンを含有するチタン化合物類と同時に接触させても良いし、別々に接触させても良い。
【0044】
(vi)塩化マグネシウムに代表されるハロゲンを含有するマグネシウム化合物類とテトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類及び特定のポリマーケイ素化合物成分を接触させて得られる固体成分に、四塩化チタンに代表されるハロゲンを含有するチタン化合物類及び/又は四塩化ケイ素に代表されるハロゲンを含有するケイ素化合物類を接触させる方法。このポリマーケイ素化合物としては、下記一般式(2)で示されるものが適当である。
[−Si(H)(R)−O−]q ・・・(2)
(ここで、Rは炭素数1から10程度の炭化水素基であり、qはこのポリマーケイ素化合物の粘度が1から100センチストークス程度となるような重合度を示す。)
具体的な化合物の例としては、メチルハイドロジェンポリシロキサン、フェニルハイドロジェンポリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、等を挙げることが出来る。また、必要に応じて電子供与体等の任意成分を接触させても良い。この際、任意成分はハロゲンを含有するチタン化合物類及び/又はハロゲンを含有するケイ素化合物類と同時に接触させても良いし、別々に接触させても良い。
【0045】
(vii)ブチルマグネシウムクロライドに代表されるグリニャー試薬等の有機マグネシウム化合物類とチタン含有化合物類を接触させる方法。チタン含有化合物類としては、テトラブトキシチタンに代表されるアルコキシ基含有チタン化合物類や四塩化チタンに代表されるハロゲンを含有するチタン化合物類などを用いることが出来る。必要に応じて電子供与体、テトラエトキシシランに代表されるアルコキシ基含有ケイ素化合物、及び、ハロゲン化ケイ素化合物等の任意成分を接触させても良い。この際、任意成分はチタン含有化合物と同時に接触させても良いし、別々に接触させても良い。
【0046】
(2)炭素数2以上の枝鎖オレフィンで重合処理して得られる固体成分(A1’)
本発明において固体成分(A1’)は、固体成分(A1)を有機アルミニウム化合物の存在下で炭素数2以上の枝鎖オレフィンで重合処理することを特徴としており、この工程で用いられる有機アルミニウム化合物(A1e)及び炭素数2以上の枝鎖オレフィン(A1f)について以下に詳述する。
【0047】
(A1e)有機アルミニウム化合物
本発明に用いられる有機アルミニウム化合物(A1e)としては、特開2004−124090号公報に開示された化合物等を用いることが出来る。一般的には、下記一般式(3)にて表される化合物を用いることが望ましい。
AlX(OR …(3)
(一般式(3)中、Rは炭化水素基を表す。Xはハロゲン若しくは水素を表す。Rは炭化水素基若しくはAlによる架橋基を表す。a≧1、0≦b≦2、0≦c≦2、a+b+c=3である。)
【0048】
一般式(3)中、Rは炭化水素基であり、好ましくは炭素数1から10、更に好ましくは炭素数1から8、特に好ましくは炭素数1から6、のものを用いることが望ましい。Rの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、イソブチル基、ヘキシル基、オクチル基、などを挙げることが出来る。この中で、メチル基、エチル基、イソブチル基、が最も好ましい。
一般式(3)中、Xはハロゲン若しくは水素である。Xとして用いる事の出来るハロゲンとしては、フッ素、塩素、臭素、沃素、などを例示することが出来る。この中で、塩素が特に好ましい。
一般式(3)中、Rは炭化水素基若しくはAlによる架橋基である。Rが炭化水素基である場合には、Rの炭化水素基の例示と同じ群からRを選択することが出来る。また、有機アルミニウム化合物(A1e)としてメチルアルモキサンに代表されるアルモキサン化合物類を用いることも可能であり、その場合RはAlによる架橋基を表す。
【0049】
有機アルミニウム化合物(A1e)として用いる事の出来る化合物の例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム、ジエチルアルミニウムクロライド、エチルアルミニウムクロライド、ジエチルアルミニウムエトキサイド、メチルアルモキサン、などを挙げることが出来る。中でも、トリエチルアルミニウムとトリイソブチルアルミニウムが好ましい。
有機アルミニウム化合物(A1e)は単独の化合を用いるだけでなく、複数の化合物を併用することも出来る。
【0050】
有機アルミニウム化合物(A1e)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(有機アルミニウム化合物(A1e)のモル数/チタン原子のモル数)で、好ましくは1から5,000の範囲内であり、特に好ましくは10から500の範囲内が望ましい。
【0051】
(A1f)炭素数2以上の枝鎖オレフィン
本発明における炭素数2以上の枝鎖オレフィン(A1f)の具体的な化合物の例としては、エチレン、プロピレン、1−ブテン、3−メチルブテン−1、3−メチルペンテン−1、4−メチルペンテン−1、4,4−ジメチルペンテン−1、4,4−ジメチルヘキセン−1などを挙げる事が出来る。中でも、エチレン、プロピレン、3−メチルブテン−1、4−メチルペンテン−1などが特に好ましい。
【0052】
固体成分(A1)と上記のモノマーとの反応条件は、本発明の効果を損なわない範囲で任意の条件を用いることが出来る。一般的には、以下の範囲内が好ましい。
固体成分(A1)1gあたりの基準で、炭素数2以上の枝鎖オレフィン(A1f)の量は0.1g以上であり、好ましくは0.5から10g、更に好ましくは0.8から5gの範囲内が望ましい。モノマーの供給方法は、モノマーを反応槽に定速的にあるいは定圧状態若しくは一定濃度になるように維持する供給方法やその組み合わせ、段階的な変化をさせるなど、任意の方法が可能である。
重合処理の反応温度は−150から150℃、好ましくは0から100℃である。そして、重合処理の反応温度は本重合のときの重合温度よりも低くする事が望ましい。重合処理の時間は、5分〜4時間の範囲であることが好ましい。反応は、一般的に撹拌下に行うことが好ましく、そのときヘキサン、ヘプタン等の不活性溶媒を存在させることもできる。
重合処理は複数回行っても良く、この際用いるモノマーは同一であっても異なっても良い。また、重合処理後にヘキサン、ヘプタン等の不活性溶媒で洗浄を行う事も出来る。重合処理を終了した後に、そのまま使用することが可能であるが、必要ならば乾燥を行ってもよい。
【0053】
本発明で行われる重合処理は、ハロゲン化マグネシウム担体を1次粒子の段階から解すことができ、ハロゲン化マグネシウム担体の表面構造を規制することを目的として行われる。その結果、アルケニル基を有するケイ素化合物(A2)および有機ケイ素化合物(A3)との接触反応を効率よく行われ、触媒性能が著しく向上する。従って、本重合前に微粉の発生を防ぐために行われる予備重合とは機能がまったく異なり、区別される。
【0054】
(3)アルケニル基を有するケイ素化合物(A2)
本発明に用いられるアルケニル基を有するケイ素化合物(A3)としては、特開平2−34707号公報、特開2003−292522号公報、並びに特開2006−169283に開示された化合物等を用いることが出来る。これらのアルケニル基を有する化合物はモノシラン(SiH)の水素原子の少なくとも一つがアルケニル基に、そして残りの水素原子のうちのいくつかが、ハロゲン(好ましくはCl)、アルキル基(好ましくは炭素数1〜12の炭化水素基)、アリール基(好ましくはフェニル基)、アルコキシ基(好ましくは炭素数1〜12のアルコキシ基)、その他で置き換えられた構造を示すものである。
【0055】
より具体的には、ビニルシラン、メチルビニルシラン、ジメチルビニルシラン、トリメチルビニルシラン、トリクロロビニルシラン、ジクロロメチルビニルシラン、クロロジメチルビニルシラン、クロロメチルビニルシラン、トリエチルビニルシラン、クロロジエチルビニルシラン、ジクロロエチルビニルシラン、ジメチルエチルビニルシラン、ジエチルメチルビニルシラン、トリペンチルビニルシラン、トリフェニルビニルシラン、ジフェニルメチルビニルシラン、ジメチルフェニルビニルシラン、CH=CH−Si(CH(CCH)、(CH=CH)(CHSi−O−Si(CH(CH=CH)、ジビニルシラン、ジクロロジビニルシラン、ジメチルジビニルシラン、ジフェニルジビニルシラン、アリルトリメチルシラン、アリルトリエチルシラン、アリルトリビニルシラン、アリルメチルジビニルシラン、アリルジメチルビニルシラン、アリルメチルジクロロシラン、アリルトリクロロシラン、アリルトリブロモシラン、ジアリルジメチルシラン、ジアリルジエチルシラン、ジアリルジビニルシラン、ジアリルメチルビニルシラン、ジアリルメチルクロロシラン、ジアリルジクロロシラン、ジアリルジブロモシラン、トリアリルメチルシラン、トリアリルエチルシラン、トリアリルビニルシラン、トリアリルクロロシラン、トリアリルブロモシラン、テトラアリルシラン、ジ−3−ブテニルシランジメチルシラン、ジ−3−ブテニルシランジエチルシラン、ジ−3−ブテニルシランジビニルシラン、ジ−3−ブテニルシランメチルヴィニルシラン、ジ−3−ブテニルシランメチルクロロシラン、ジ−3−ブテニルシランジクロロシラン、ジアリルジブロモシラン、トリアリルメチルシラン、トリ−3−ブテニルシランエチルシラン、トリ−3−ブテニルシランビニルシラン、トリ−3−ブテニルシランクロロシラン、トリ−3−ブテニルシランブロモシラン、テトラ−3−ブテニルシランシランなどを例示することができる。
これらの中でもビニルシラン化合物類が好ましく、とりわけトリメチルビニルシラン、トリクロロビニルシラン、ジメチルジビニルシランが好ましい。
【0056】
アルケニル基を有するシラン化合物(A2)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。アルケニル基を有するシラン化合物(A2)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(アルケニル基を有するシラン化合物(A2)のモル数/チタン原子のモル数)で、好ましくは0.001から1,000の範囲内であり、特に好ましくは0.01から100の範囲内が望ましい。
【0057】
本発明で用いられるアルケニル基を有するシラン化合物は、活性点となりうるチタン原子にアルケニル基で配位しており、有機アルミ化合物によるチタン原子の過還元や不純物などによる活性点の失活を防ぐ目的として用いられる。
【0058】
(4)有機ケイ素化合物(A3)
本発明で用いられる有機ケイ素化合物(A3)としては、特開2004−124090号公報に開示された化合物等を用いることが出来る。一般的には、下記一般式(1)にて表される化合物を用いることが望ましい。
Si(OR ・・・(1)
【0059】
一般式(1)中、Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。
として用いることの出来る炭化水素基は、一般に炭素数1から20、好ましくは炭素数3から10のものである。Rとして用いることの出来る炭化水素基の具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げる事が出来る。より好ましくは、Rとして分岐状脂肪族炭化水素基若しくは脂環式炭化水素基を用いる事が望ましく、とりわけ、i−プロピル基、i−ブチル基、t−ブチル基、テキシル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
がヘテロ原子含有炭化水素基である場合は、ヘテロ原子が、窒素、酸素、硫黄、リン、ケイ素から選ばれる事が望ましく、とりわけ、窒素又は酸素である事が望ましい。Rのヘテロ原子含有炭化水素基の骨格構造としては、Rが炭化水素基である場合の例示から選ぶことが望ましい。とりわけ、N,N−ジエチルアミノ基、キノリノ基、イソキノリノ基、などが好ましい。
【0060】
一般式(1)中、Rは水素、ハロゲン、炭化水素基若しくはヘテロ原子含有炭化水素基を表す。
として用いることの出来るハロゲンとしては、フッ素、塩素、臭素、沃素、などを例示する事が出来る。Rが炭化水素基である場合は、一般に炭素数1から20、好ましくは炭素数1から10のものである。Rとして用いることの出来る炭化水素基の具体的な例としては、メチル基やエチル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げる事が出来る。中でも、メチル基、エチル基、プロピル基、i−プロピル基、i−ブチル基、s−ブチル基、t−ブチル基、テキシル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
がヘテロ原子含有炭化水素基である場合は、Rがヘテロ原子含有炭化水素基である場合の例示から選ぶことが望ましい。とりわけ、N,N−ジエチルアミノ基、キノリノ基、イソキノリノ基、などが好ましい。
mの値が2の場合、二つあるRは同一であっても異なっても良い。また、mの値に関わらず、RはRと同一であっても異なっても良い。
【0061】
一般式(1)中、Rは炭化水素基を表す。Rとして用いることの出来る炭化水素基は、一般に炭素数1から20、好ましくは炭素数1から10、更に好ましくは炭素数1から5のものである。Rとして用いることの出来る炭化水素基の具体的な例としては、メチル基やエチル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、などを挙げることが出来る。中でも、メチル基とエチル基が最も好ましい。mの値が2以上である場合、複数存在するRは同一であっても異なっても良い。
【0062】
本発明で用いる事の出来る有機ケイ素化合物(A3)の好ましい例としては、t−Bu(Me)Si(OMe)、t−Bu(Me)Si(OEt)、t−Bu(Et)Si(OMe)、t−Bu(n−Pr)Si(OMe)、c−Hex(Me)Si(OMe)、c−Hex(Et)Si(OMe)、c−PenSi(OMe)、 i−PrSi(OMe)、i−BuSi(OMe)、i−Pr(i−Bu)Si(OMe)、n−Pr(Me)Si(OMe)、t−BuSi(OEt)、(EtN)Si(OMe)、EtN−Si(OEt)
【0063】
【化1】

などを挙げることが出来る。
【0064】
これらの有機ケイ素化合物類は単独で用いるだけでなく、複数の化合物を併用することも出来る。
【0065】
有機ケイ素化合物(A3)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。有機ケイ素化合物(A3)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比で(有機ケイ素化合物(A3)のモル数/チタン原子のモル数)で、好ましくは0.01から1,000の範囲内であり、特に好ましくは0.1から100の範囲内が望ましい。
【0066】
(5)有機アルミニウム化合物(A4)
本発明において用いる事の出来る有機アルミニウム化合物(A4)としては、特開2004−124090号公報に開示された化合物等を用いることが出来る。好ましくは、固体成分(A1’)を調製する際の成分である有機アルミニウム化合物(A1e)における例示と同じ群から選択する事が出来る。ここで有機アルミニウム化合物(A4)と固体成分(A1’)を調整するのに用いる事の出来る有機アルミニウム化合物(A1e)が同一であっても異なっても良い。
有機アルミニウム化合物(A4)は単独の化合を用いるだけでなく、複数の化合物を併用することも出来る。
有機アルミニウム化合物(A4)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。有機アルミニウム化合物(A4)の使用量は、固体成分(A1)を構成するチタン成分に対するアルミニウムの原子比(アルミニウム原子のモル数/チタン原子のモル数)で、好ましくは0.1から100の範囲内であり、特に好ましくは1から50の範囲内が望ましい。
【0067】
(6)少なくとも二つのエーテル結合を有する化合物(A5)
本発明におけるα−オレフィン重合用固体触媒成分(A)は、固体成分(A1)を有機アルミニウム存在下で炭素数2以上の枝鎖オレフィンで重合処理し得られた固体成分(A1’)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、並びに、有機アルミニウム化合物(A4)を接触させてなるものであるが、本発明の効果を損なわない範囲で少なくとも二つのエーテル結合を有する化合物(A5)の任意成分を任意の方法で接触させても良い。
本発明で用いる事の出来る少なくとも二つのエーテル結合を有する化合物(A5)としては、特開平3−294302号公報及び特開平8−333413号公報に開示された化合物等を用いることが出来る。一般的には、下記一般式(4)にて表される化合物を用いることが望ましい。
O−C(R−C(R−C(R)−OR ・・・(4)
(ここで、R及びRは水素、炭化水素基及びヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。)
【0068】
一般式(4)中、Rは水素、炭化水素基及びヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。
として用いることの出来る炭化水素基は、一般に炭素数1から20、好ましくは炭素数1から10のものである。Rとして用いることの出来る炭化水素基の具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げる事が出来る。より好ましくは、Rとして分岐状脂肪族炭化水素基若しくは脂環式炭化水素基を用いる事が望ましく、とりわけ、i−プロピル基、i−ブチル基、i−ペンチル基、シクロペンチル基、シクロヘキシル基、などを用いることが望ましい。
二つのRは結合して一つ以上の環を形成しても良い。この際、環構造中に2個又は3個の不飽和結合を含むシクロポリエン系構造を取る事も出来る。また、他の環式構造と縮合していても良い。単環式、複環式、縮合の有無に関わらず、環上に炭化水素基を置換基として1つ以上有していても良い。環上の置換基は、一般に炭素数1から20、好ましくは炭素数1から10のものである。具体的な例としては、n−プロピル基に代表される直鎖状脂肪族炭化水素基、i−プロピル基やt−ブチル基に代表される分岐状脂肪族炭化水素基、シクロペンチル基やシクロヘキシル基に代表される脂環式炭化水素基、フェニル基に代表される芳香族炭化水素基、などを挙げる事が出来る。
【0069】
一般式(4)中、Rは水素、炭化水素基及びヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。具体的には、RはRの例示から選ぶ事が出来る。好ましくは水素である。
一般式(4)中、Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。具体的には、RはRが炭化水素基である場合の例示から選ぶ事が出来る。好ましくは、炭素数1から6の炭化水素基である事が望ましく、更に好ましくはアルキル基である事が望ましい。最も好ましくはメチル基である。
からRがヘテロ原子含有炭化水素基である場合は、ヘテロ原子が、窒素、酸素、硫黄、リン、ケイ素から選ばれる事が望ましい。また、RからRが炭化水素基であるかヘテロ原子含有炭化水素基であるかに関わらず、任意にハロゲンを含んでいても良い。RからRがヘテロ原子及び/又はハロゲンを含む場合、その骨格構造は炭化水素基である場合の例示から選ばれる事が望ましい。また、RからRの八個の置換基はお互いに同一であっても異なっても良い。
【0070】
本発明で用いる事の出来る少なくとも二つのエーテル結合を有する化合物(A5)の好ましい例としては、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジエトキシプロパン、2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、2,2−ジシクロヘキシル−1,3−ジメトキシプロパン、2−イソプロピル−1,3−ジメトキシプロパン、2−tert−ブチル−1,3−ジメトキシプロパン、2,2−ジプロピル−1,3−ジメトキシプロパン、2−メチル−2−フェニル−1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレン、9,9−ビス(メトキシメチル)−1,8−ジクロロフルオレン、9,9−ビス(メトキシメチル)−2,7−ジシクロペンチルフルオレン、9,9−ビス(メトキシメチル)−1,2,3,4−テトラヒドロフルオレン、1,1−ビス(1’−ブトキシエチル)シクロペンタジエン、1,1−ビス(α−メトキシベンジル)インデン、1,1−ビス(フェノキシメチル)−3,6−ジシクロヘキシルインデン、1,1−ビス(メトキシメチル)ベンゾナフテン、7,7−ビス(メトキシメチル)−2,5−ノボルナジネン、などを挙げる事が出来る。中でも、2,2−ジイソプロピル−1,3−ジメトキシプロパン、2,2−ジイソブチル−1,3−ジメトキシプロパン、2−イソブチル−2−イソプロピル−1,3−ジメトキシプロパン、2−イソプロピル−2−イソペンチル−1,3−ジメトキシプロパン、2,2−ジシクロペンチル−1,3−ジメトキシプロパン、9,9−ビス(メトキシメチル)フルオレンが特に好ましい。
これらの少なくとも二つのエーテル結合を有する化合物(A5)は単独で用いるだけでなく、複数の化合物を併用することも出来る。また、固体成分(A)中の任意成分である電子供与体(A1d)として用いられる多価エーテル化合物と同一であっても異なっても良い。また少なくとも二つのエーテル結合を有する化合物(A5)は単独の化合を用いるだけでなく、複数の化合物を併用することも出来る。
【0071】
少なくとも二つのエーテル結合を有する化合物(A5)の使用量の量比は、本発明の効果を損なわない範囲で任意のものでありうるが、一般的には、次に示す範囲内が好ましい。少なくとも二つのエーテル結合を有する化合物(A5)の使用量は、固体成分(A1)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(A5)のモル数/チタン原子のモル数)で、好ましくは0.01から10,000の範囲内であり、特に好ましくは0.5から500の範囲内が望ましい。
【0072】
2.α−オレフィン重合用固体触媒成分(A)の調製方法
本発明におけるα−オレフィン重合用固体触媒成分(A)は、固体成分(A1)を有機アルミニウム存在下で炭素数2以上の枝鎖オレフィンで重合処理し得られた固体成分(A1’)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、並びに、有機アルミニウム化合物(A4)を接触させてなるものである。この際、本発明の効果を損なわない範囲で少なくとも二つのエーテル結合を有する化合物(A5)等の他の任意成分を任意の方法で接触させても良い。
【0073】
固体触媒成分(A)の各構成成分の接触条件は、酸素を存在させない事が必要であるものの、本発明の効果を損なわない範囲で任意の条件を用いることが出来る。一般的には、次の条件が好ましい。
接触温度は、−50から200℃程度、好ましくは−10から100℃、更に好ましくは0から70℃、とりわけ好ましくは10℃から60℃である。接触方法としては、回転ボールミルや振動ミルなどによる機械的な方法、並びに、不活性希釈剤の存在下に撹拌により接触させる方法、などを例示することが出来る。好ましくは、不活性希釈剤の存在下に撹拌により接触させる方法を用いることが望ましい。
【0074】
固体成分(A1’)、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、並びに、有機アルミニウム化合物(A4)の接触手順に関しては、任意の手順を用いることが出来る。具体的な例としては、下記の手順(i)〜手順(v)が挙げられる。
【0075】
手順(i):固体成分(A1’)にアルケニル基を有するケイ素化合物(A2)を接触させ、次いで有機ケイ素化合物(A3)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(ii):固体成分(A1’)にアルケニル基を有するケイ素化合物(A2)及び有機ケイ素化合物(A3)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(iii):固体成分(A1’)に有機ケイ素化合物(A3)を接触させ、次いでアルケニル基を有するケイ素化合物(A2)を接触させた後、有機アルミニウム化合物(A4)を接触させる方法
手順(iv):全ての化合物を同時に接触させる方法
などを例示することが出来る。この中でも、手順(i)及び手順(ii)が好ましい。
【0076】
任意成分として、少なくとも二つのエーテル結合を有する化合物(A5)を用いる場合も、上記と同様に任意の順序で接触させる事が出来る。
【0077】
また、固体成分(A1’)に対して、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、並びに、有機アルミニウム化合物(A4)のいずれも、任意の回数接触させる事も出来る。この際、アルケニル基を有するケイ素化合物(A2)、有機ケイ素化合物(A3)、並びに、有機アルミニウム化合物(A4)のいずれも複数回の接触で用いる化合物がお互いに同一であっても異なっても良い。
また、先に各成分の使用量の範囲を示したが、これは1回当たりに接触させる使用量であり、複数回使用するときは、1回の使用量が前述した使用量の範囲内であれば、何回接触させても良い。
【0078】
固体触媒成分(A)の調製の際には、中間及び/又は最後に不活性溶媒で洗浄を行っても良い。好ましい溶媒種としては、ヘプタンなどの脂肪族炭化水素化合物、トルエンなどの芳香族炭化水素化合物、及び、1,2−ジクロロエチレンやクロロベンゼンなどのハロゲン含有炭化水素化合物、などを例示することが出来る。
【0079】
3.α−オレフィン重合用触媒
(1)有機アルミニウム化合物(B)
本発明においてはα−オレフィン重合用触媒としては、上記のα−オレフィン重合用固体触媒成分(A)及び、有機アルミニウム化合物(B)を用いることが必須要件である。
本発明において用いる事の出来る有機アルミニウム化合物(B)としては、特開2004−124090号公報に開示された化合物等を用いることが出来る。好ましくは、α−オレフィン重合用固体触媒成分(A)を調製する際の成分である有機アルミニウム化合物(A4)における例示と同じ群から選択する事が出来る。α−オレフィン重合用固体触媒成分(A)を調製する際に用いる事の出来る有機アルミニウム化合物(A4)と触媒成分として用いる事の出来る有機アルミニウム化合物(B)が同一であっても異なっても良い。
有機アルミニウム化合物(B)は単独の化合を用いるだけでなく、複数の化合物を併用することも出来る。
【0080】
有機アルミニウム化合物(B)の使用量は、α−オレフィン重合用固体触媒成分(A)を構成するチタン成分に対するモル比(有機アルミニウム化合物(B)のモル数/チタン原子のモル数)で、好ましくは1から5,000の範囲内であり、特に好ましくは10から500の範囲内が望ましい。
【0081】
(2)触媒における任意成分
本発明においては触媒としてα−オレフィン重合用固体触媒成分(A)及び有機アルミニウム化合物(B)用いることが必須要件であるが、本発明の効果を損なわない範囲で、下記に説明する有機ケイ素化合物(C)、及び、少なくとも二つのエーテル結合を有する化合物(D)などの任意成分を用いることが出来る。
【0082】
(C)有機ケイ素化合物
本発明のα−オレフィン重合用触媒において任意成分として用いられる有機ケイ素化合物(C)としては、 特開2004−124090号公報に開示された化合物等を用いることが出来る。好ましくは、α−オレフィン重合用固体触媒成分(A)を調製する際の成分である有機ケイ素化合物(A3)における例示と同じ群から選択する事が出来る。
またここで使用される有機ケイ素化合物(C)は、α−オレフィン重合用固体触媒成分(A)に含まれる有機ケイ素化合物(A3)と同一であっても異なってもよい。
【0083】
有機ケイ素化合物(C)を用いる場合の使用量は、α−オレフィン重合用固体触媒成分(A)を構成するチタン成分に対するモル比(有機ケイ素化合物(C)のモル数/チタン原子のモル数)で、好ましくは0.01から10,000の範囲内であり、特に好ましくは0.5から500の範囲内が望ましい。
【0084】
(D)少なくとも二つのエーテル結合を有する化合物
本発明の触媒において任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(D)としては、特開平3−294302号公報および特開平8−333413号公報に開示された化合物等を用いることが出来る。好ましくは、α−オレフィン重合用固体触媒成分(A)において用いられる少なくとも二つのエーテル結合を有する化合物(A5)における例示と同じ群から選択する事が出来る。この際、固体触媒成分(A)を調製する際に任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(A5)と触媒の任意成分として用いられる少なくとも二つのエーテル結合を有する化合物(D)が同一であっても異なっても良い。
少なくとも二つのエーテル結合を有する化合物(D)は単独の化合を用いるだけでなく、複数の化合物を併用することも出来る。
【0085】
少なくとも二つのエーテル結合を有する化合物(D)を用いる場合の使用量は、固体触媒成分(A)を構成するチタン成分に対するモル比(少なくとも二つのエーテル結合を有する化合物(D)のモル数/チタン原子のモル数)で、好ましくは0.01から10,000の範囲内であり、特に好ましくは0.5から500の範囲内が望ましい。
【0086】
(E)その他の化合物
本発明の効果を損なわない限り、上記の有機ケイ素化合物(C)、及び、少なくとも二つのエーテル結合を有する化合物(D)以外の成分を触媒の任意成分として用いる事が出来る。例えば、特開2004−124090号公報に開示された様に、分子内にC(=O)N結合を有する化合物(E)を用いることにより、CXSの様な非晶性成分の生成を抑制することが出来る。この場合、テトラメチルウレア、1,3−ジメチル−2−イミダゾリジノン、1−エチル−2−ピロリジノン、などを好まし例として挙げることが出来る。また、ジエチル亜鉛の様なAl以外の金属原子を持つ有機金属化合物を用いることも出来る。
分子内にC(=O)N結合を有する化合物(E)を用いる場合の使用量は、固体触媒成分(A)を構成するチタン成分に対するモル比(分子内にC(=O)N結合を有する化合物(E)のモル数/チタン原子のモル数)で、好ましくは0.001から1,000の範囲内であり、特に好ましくは0.05から500の範囲内が望ましい。
【0087】
4.予備重合
本発明における固体触媒成分(A)は、本重合で使用する前に予備重合されていても良い。重合プロセスに先立って、予め少量のポリマーを触媒周囲に生成させることによって、触媒がより均一となり、微粉の発生量を抑えることができる。
予備重合におけるモノマーとしては、特開2004−124090号公報に開示された化合物等を用いることが出来る。具体的な化合物の例としては、エチレン、プロピレン、1−ブテン、3−メチルブテン−1、4−メチルペンテン−1、などに代表されるオレフィン類、スチレン、α−メチルスチレン、アリルベンゼン、クロロスチレン、などに代表されるスチレン類似化合物、及び、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、1,5−ヘキサジエン、2,6−オクタジエン、ジシクロペンタジエン、1,3−シクロヘキサジエン、1,9−デカジエン、ジビニルベンゼン類、などに代表されるジエン化合物類、などを挙げる事が出来る。中でも、エチレン、プロピレン、3−メチルブテン−1、4−メチルペンテン−1、スチレン、ジビニルベンゼン類、などが特に好ましい。
【0088】
固体触媒成分(A)若しくは固体成分(A1)と上記のモノマーとの反応条件は、本発明の効果を損なわない範囲で任意の条件を用いることが出来る。一般的には、以下の範囲内が好ましい。
固体触媒成分(A)若しくは固体成分(A1)1グラムあたりの基準で、予備重合量は0.001から100gの範囲内であり、好ましくは0.1から50g、更に好ましくは0.5から10gの範囲内が望ましい。予備重合時の反応温度は−150から150℃、好ましくは0から100℃である。そして、予備重合時の反応温度は本重合のときの重合温度よりも低くする事が望ましい。反応は、一般的に撹拌下に行うことが好ましく、そのときヘキサン、ヘプタン等の不活性溶媒を存在させることもできる。
予備重合は複数回行っても良く、この際用いるモノマーは同一であっても異なっても良い。また、予備重合後にヘキサン、ヘプタン等の不活性溶媒で洗浄を行う事も出来る。
【0089】
5.α−オレフィンの重合
本発明の触媒を使用する、α−オレフィンの重合は、炭化水素溶媒を用いるスラリー重合、実質的に溶媒を用いない液相無溶媒重合又は気相重合に適用される。スラリー重合の場合の重合溶媒としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン等の炭化水素溶媒が用いられる。採用される重合方法は、連続式重合、回分式重合又は多段式重合等いかなる方法でもよい。重合温度は、通常30〜200℃程度、好ましくは50〜150℃であり、そのとき分子量調節剤として水素を用いることができる。
【0090】
本発明の触媒系で重合するα−オレフィンは、一般式:R−CH=CH(ここで、Rは炭素数1〜20の炭化水素基であり、分枝基を有してもよい。)で表されるものである。具体的には、プロピレン、ブテン−1、ペンテン−1、ヘキセン−1,4−メチルペンテン−1等のα−オレフィン類である。これらのα−オレフィンの単独重合のほかに、α−オレフィンと共重合可能なモノマー(例えば、エチレン、α−オレフィン、ジエン類、スチレン類等)との共重合も行うことができる。これらの共重合性モノマーは、ランダム共重合においては15重量%まで、ブロック共重合においては50重量%まで使用することができる。
【0091】
6.α−オレフィン重合体
本発明により重合されるα−オレフィン重合体のインデックスについては特に制限はなく、各種用途に合わせて適宜調節する事が出来る。一般的には、α−オレフィン重合体のMFRは0.01から10,000g/10分の範囲内である事が好ましく、特に好ましくは0.1から1,000g/10分の範囲内である。
また、非晶性成分である冷キシレン可溶分(CXS)の量は、用途によって好ましい範囲が異なるのが一般的である。射出成形用途などの高い剛性が好まれる用途に対しては、CXSの量は0.01から3.0重量%の範囲内である事が好ましく、特に好ましくは0.05から1.5重量%の範囲内、とりわけ好ましくは0.1から1.0重量%の範囲内が望ましい。
ここで、MFR、CXSの値は下記実施例の中で定められた手法により測定する値である。
【0092】
また、本発明により得られるポリマー粒子は、優れた粒子性状を示す。一般的に、ポリマー粒子の粒子性状は、ポリマー嵩密度、粒径分布、粒子外観、などにより評価される。本発明により得られるポリマー粒子は、ポリマー嵩密度が、0.35から0.55g/mlの範囲内、好ましくは、0.40から0.50g/mlの範囲内である。
ここで、ポリマー嵩密度は下記実施例の中で定められた手法により測定する値である。
【実施例】
【0093】
以下、実施例を用いて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。本発明における各物性値の測定方法を以下に示す。
(1)MFR:タカラ社製メルトインデクサーを用い、JIS−K6921に基づき、230℃、21.18Nの条件で評価した。
(2)ポリマー嵩密度:パウダー試料の嵩密度をASTM D1895−69に準ずる装置を使用し測定した。
(3)CXS:試料(約5g)を140℃のp−キシレン(300ml)中に一度完全に溶解させた。その後23℃まで冷却し、23℃で12時間ポリマーを析出させた。析出したポリマーを濾別した後、濾液からp−キシレンを蒸発させた。p−キシレンを蒸発させた後に残ったポリマーを100℃で2時間減圧乾燥した。乾燥後のポリマーを秤量し、試料に対する重量%としてCXSの値を得た。
(4)密度:MFR測定時に得られた押出ストランドを用い、JIS−K7112 D法に準拠して密度勾配管法で行った。
(5)Ti含量:試料を精確に秤量し、加水分解した上で比色法を用いて測定した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含量を計算した。
(6)ケイ素化合物含量:試料を精確に秤量し、メタノールで分解した。ガスクロマトグラフィーを用いて標準サンプルと比較する事により、得られたメタノール溶液中のケイ素化合物濃度を求めた。メタノール中のケイ素化合物濃度と試料の重量から、試料に含まれるケイ素化合物の含量を計算した。予備重合後の試料については、予備重合ポリマーを除いた重量を用いて含量を計算した。
【0094】
(実施例1)
(1)固体触媒成分(A)の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、Mg(OEt)を200g、TiClを1L添加した。温度を90℃に上げて、フタル酸ジ−n−ブチルを50ml導入した。その後、温度を110℃に上げて3hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。更に、精製したn−ヘプタンを用いて、トルエンをn−ヘプタンで置換し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.7wt%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として200g導入した。精製したn−ヘプタンを導入して、固体成分(A1)の濃度が25g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして20g添加し、420gのプロピレンを4hrかけて供給した。プロピレンの供給が終わった後、更に30分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄し固体成分(A1’)を得た。
その後、精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、成分(A2)としてジメチルジビニルシランを50ml、成分(A3)としてt−Bu(Me)Si(OMe)を40ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして80g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行ってα−オレフィン用重合触媒成分(A)を得た。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.1gのポリプロピレンを含んでいた。分析したところ、このα−オレフィン用重合触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.7wt%、t−Bu(Me)Si(OMe)が7.4wt%含まれていた。
【0095】
(2)プロピレンの重合
撹拌及び温度制御装置を有する内容積3.0リットルのステンレス鋼製オートクレーブを真空下で加熱乾燥し、室温まで冷却してプロピレン置換した後、成分(B)としてEtAlを550ミリグラム、及び水素を2000ミリリットル導入し、次いで液体プロピレンを1000グラム導入して、内部温度を70℃に合わせた後に、上記のα−オレフィン用重合触媒成分(A)を7ミリグラム圧入して、プロピレンを重合させた。1時間後にエタノールを10ml圧入して重合を停止した。ポリマーを乾燥して秤量した。結果を表1に示す。
【0096】
(実施例2)
実施例1のα−オレフィン用重合触媒成分(A)の調整において、成分(A2)のジメチルジビニルシラン代わりにトリメチルビニルシランを使用し、成分(A3)のt−Bu(Me)Si(OMe)の代わりに(i−Pr)Si(OMe)を使用した以外は全く同様に行った。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.1gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.8wt%、(i−Pr)Si(OMe)が6.1wt%含まれていた。また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0097】
(実施例3)
実施例1の−オレフィン用重合触媒成分(A)の調整において、成分(A2)のジメチルジビニルシラン代わりにジアリルジメチルシランを使用した以外は全く同様に行った。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.1gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが2.0wt%、t−Bu(Me)Si(OMe)が5.3wt%含まれていた。また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0098】
(実施例4)
実施例1のα−オレフィン用重合触媒成分(A1’)の調整において、プロピレンの供給量を420gから840gに変更した以外は全く同様に行った。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり4.0gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.7wt%、t−Bu(Me)Si(OMe)が7.2wt%含まれていた。また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0099】
(実施例5)
実施例1のα−オレフィン用重合触媒成分(A1’)の調整において、プロピレンの供給量を420gから210gに変更した以外は全く同様に行った。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり1.1gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが2.0wt%、t−Bu(Me)Si(OMe)が5.7wt%含まれていた。また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0100】
(比較例1)
(1)固体触媒成分(A)の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したトルエン2Lを導入した。ここに、室温で、Mg(OEt)を200g、TiClを1L添加した。温度を90℃に上げて、フタル酸ジ−n−ブチルを50ml導入した。その後、温度を110℃に上げて3hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。次いで、精製したトルエンを導入して全体の液量を2Lに調整した。室温でTiClを1L添加し、温度を110℃に上げて2hr反応を行った。反応生成物を精製したトルエンで充分に洗浄した。更に、精製したn−ヘプタンを用いて、トルエンをn−ヘプタンで置換し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.7wt%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として100g導入した。精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、成分(A2)としてジメチルジビニルシランを50ml、成分(A3)としてt−Bu(Me)Si(OMe)を40ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして80g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分にはTiが1.8wt%、t−Bu(Me)Si(OMe)が4.2wt%含まれていた。
上記で得られた固体触媒成分を用いて、以下の手順により予備重合を行った。上記のスラリーに精製したn−ヘプタンを導入して、固体成分の濃度が20g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして10g添加し、210gのプロピレンを4hrかけて供給した。プロピレンの供給が終わった後、更に30分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行って固体触媒成分(A)を得た。この固体触媒成分(A)は、固体成分1gあたり2.0gのポリプロピレンを含んでいた。分析したところ、この固体触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.6wt%、t−Bu(Me)Si(OMe)が3.8wt%含まれていた。
また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0101】
(比較例2)
実施例1のα−オレフィン用重合触媒成分(A)の調整において、成分(A2)のジメチルジビニルシランを使用しなかった以外は全く同様に行った。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.1gのポリプロピレンを含んでおり、このα−オレフィン用重合成分(A)のポリプロピレンを除いた部分には、Tiが1.5wt%、t−Bu(Me)Si(OMe)が5.2wt%含まれていた。また重合は実施例1と同様の方法で行った。結果を表1に示す。
【0102】
【表1】

【0103】
(実施例6)
(1)固体触媒成分(A)の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したn−ヘプタン2Lを導入した。更に、MgClを250g、Ti(O−n−Bu)を1.8L添加して、95℃で2hr反応を行った。反応生成物を40℃に冷却し、メチルハイドロジェンポリシロキサン(20センチストークスのもの)を500ml添加した。40℃で5hr反応を行った後、析出した固体生成物を精製したn−ヘプタンで充分に洗浄した。
次いで、精製したn−ヘプタンを導入して、上記固体生成物の濃度が200g/Lとなる様に調整した。ここに、SiClを300ml添加して、90℃で3hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が100g/Lとなる様に精製したn−ヘプタンを導入した。フタル酸ジクロライド30mlを精製したn−ヘプタン270mlに混合した液を事前に調製しておき、その混合液をオートクレーブへ添加し、90℃で1hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200g/Lとなる様に精製したn−ヘプタンを導入した。ここへ、TiClを1L添加し、95℃で3hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.5wt%であった。
次に、撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として100g導入した。精製したn−ヘプタンを導入して、固体成分(A1)の濃度が25g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして10g添加し、240gのプロピレンを4hrかけて供給した。プロピレンの供給が終わった後、更に30分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄し固体成分(A1’)を得た。
その後、精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、成分(A2)としてトリメチルビニルシランを25ml、成分(A3)としてt−Bu(Me)Si(OMe)を20ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして40g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行ってα−オレフィン用重合触媒成分(A)を得た。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.0gのポリプロピレンを含んでいた。分析したところ、このα−オレフィン用重合触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.8wt%、t−Bu(Me)Si(OMe)が5.0wt%含まれていた。
また重合は実施例1と同様の方法で行った。結果を表2に示す。
【0104】
(比較例4)
(1)固体触媒成分(A)の調製
撹拌装置を備えた容量10Lのオートクレーブを充分に窒素で置換し、精製したn−ヘプタン2Lを導入した。更に、MgClを250g、Ti(O−n−Bu)を1.8L添加して、95℃で2hr反応を行った。反応生成物を40℃に冷却し、メチルハイドロジェンポリシロキサン(20センチストークスのもの)を500ml添加した。40℃で5hr反応を行った後、析出した固体生成物を精製したn−ヘプタンで充分に洗浄した。
次いで、精製したn−ヘプタンを導入して、上記固体生成物の濃度が200g/Lとなる様に調整した。ここに、SiClを300ml添加して、90℃で3hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が100g/Lとなる様に精製したn−ヘプタンを導入した。フタル酸ジクロライド30mlを精製したn−ヘプタン270mlに混合した液を事前に調製しておき、その混合液をオートクレーブへ添加し、90℃で1hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、反応生成物の濃度が200g/Lとなる様に精製したn−ヘプタンを導入した。ここへ、TiClを1L添加し、95℃で3hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、固体成分(A1)のスラリーを得た。このスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分(A1)のTi含量は2.5wt%であった。
次に、撹拌装置を備えた容量20Lのオートクレーブを充分に窒素で置換し、上記固体成分(A1)のスラリーを固体成分(A1)として100g導入した。精製したn−ヘプタンを導入して液レベルを4Lに調整した。ここに、成分(A2)としてトリメチルビニルシランを25ml、成分(A3)としてt−Bu(Me)Si(OMe)を20ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして40g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分にはTiが1.8wt%、t−Bu(Me)Si(OMe)が4.5wt%含まれていた。
上記で得られた固体成分を用いて、以下の手順により予備重合を行った。上記のスラリーに精製したn−ヘプタンを導入して、固体成分の濃度が20g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして10g添加し、240gのプロピレンを4hrかけて供給した。プロピレンの供給が終わった後、更に30分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行って固体触媒成分(A)を得た。この固体触媒成分(A)は、固体成分1gあたり2.1gのポリプロピレンを含んでいた。分析したところ、この固体触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.6wt%、t−Bu(Me)Si(OMe)が4.3wt%含まれていた。
また重合は実施例1と同様の方法で行った。結果を表2に示す。
【0105】
(実施例7)
(1)固体触媒成分(A)の調製
窒素で置換した内容積1リットルの攪拌機付の三つ口フラスコに、エタノール約480g、ヨウ素3.2gおよび金属マグネシウム32gを投入し、攪拌しながら還流条件下で系内から水素ガスの発生がなくなるまで、加熱下で反応させ、固体状反応生成物を得た。この固体状反応生成物を減圧下に乾燥させることによりマグネシウム化合物を得た。
次に、窒素で置換した内容積0.5Lの攪拌機付の三つ口フラスコに、上記で調製したマグネシウム化合物16gと、脱水処理したオクタン80mlを加えた。これを40℃に加熱し、四塩化ケイ素2.4mlを加えて20分間攪拌した後、フタル酸ジ−n−ブチル3.4mlを加えた。この溶液を80℃まで昇温し、引き続き、滴下ロートを用いて、四塩化チタン77mlを滴下し、内温125℃で1時間攪拌し、担持操作を行った。その後、脱水オクタンを用いて十分洗浄を行った。その後、さらに四塩化チタン122mlを加え、内温125℃で2時間攪拌し、2回目の担持操作を行った。その後、脱水オクタンを用いて十分洗浄を行い、固体成分(A1)を得た。
次に、窒素で置換した内容積0.5リットルの攪拌機付の三つ口フラスコに、上記固体成分(A1)のスラリーを固体成分(A1)として4g導入した。精製したn−ヘプタンを導入して、固体成分(A1)の濃度が25g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして0.4g添加し、8.4gのプロピレンを1hrかけて供給した。プロピレンの供給が終わった後、更に10分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄し固体成分(A1’)を得た。
その後、精製したn−ヘプタンを導入して液レベルを200mlに調整した。ここに、成分(A2)としてトリメチルビニルシランを1.0ml、成分(A3)として−Hex(Me)Si(OMe)を0.8ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして1.0g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行ってα−オレフィン用重合触媒成分(A)を得た。このα−オレフィン用重合触媒成分(A)は、固体成分1gあたり2.0gのポリプロピレンを含んでいた。分析したところ、このα−オレフィン用重合触媒成分(A)のポリプロピレンを除いた部分には、Tiが2.0wt%、c−Hex(Me)Si(OMe)が6.3wt%含まれていた。
また重合は実施例1と同様の方法で行った。結果を表2に示す。
【0106】
(比較例4)
(1)固体触媒成分(A)の調製
窒素で置換した内容積1リットルの攪拌機付の三つ口フラスコに、エタノール約480g、ヨウ素3.2gおよび金属マグネシウム32gを投入し、攪拌しながら還流条件下で系内から水素ガスの発生がなくなるまで、加熱下で反応させ、固体状反応生成物を得た。この固体状反応生成物を減圧下に乾燥させることによりマグネシウム化合物を得た。
次に、窒素で置換した内容積0.5Lの攪拌機付の三つ口フラスコに、上記で調製したマグネシウム化合物16gと、脱水処理したオクタン80mlを加えた。これを40℃に加熱し、四塩化ケイ素2.4mlを加えて20分間攪拌した後、フタル酸ジ−n−ブチル3.4mlを加えた。この溶液を80℃まで昇温し、引き続き、滴下ロートを用いて、四塩化チタン77mlを滴下し、内温125℃で1時間攪拌し、担持操作を行った。その後、脱水オクタンを用いて十分洗浄を行った。その後、さらに四塩化チタン122mlを加え、内温125℃で2時間攪拌し、2回目の担持操作を行った。その後、脱水オクタンを用いて十分洗浄を行い、固体成分(A1)を得た。
次に、窒素で置換した内容積0.5リットルの攪拌機付の三つ口フラスコに、上記固体成分(A1)4gを導入した。精製したn−ヘプタンを導入して液レベルを200mlに調整した。ここに、成分(A2)としてジメチルジビニルシランを1.0ml、成分(A3)としてc−Hex(Me)Si(OMe)を0.8ml、成分(A4)としてEtAlのn−ヘプタン希釈液をEtAlとして1.0g添加し、40℃で2hr反応を行った。反応生成物を精製したn−ヘプタンで充分に洗浄し、得られたスラリーの一部をサンプリングして乾燥した。分析したところ、固体成分にはTiが2.0wt%、c−Hex(Me)Si(OMe)が4.9wt%含まれていた。
上記で得られた固体触媒成分を用いて、以下の手順により予備重合を行った。上記のスラリーに精製したn−ヘプタンを導入して、上記で得られた固体成分の濃度が20g/Lとなる様に調整した。スラリーを10℃に冷却した後、EtAlのn−ヘプタン希釈液をEtAlとして0.4g添加し、8.4gのプロピレンを1hrかけて供給した。プロピレンの供給が終わった後、更に10分反応を継続した。次いで、気相部を窒素で充分に置換し、反応生成物を精製したn−ヘプタンで充分に洗浄した。得られたスラリーをオートクレーブから抜き出し、真空乾燥を行って固体触媒成分(A)を得た。この固体触媒成分(A)は、固体成分1gあたり2.0gのポリプロピレンを含んでいた。分析したところ、この固体触媒成分(A)のポリプロピレンを除いた部分には、Tiが1.8wt%、c−Hex(Me)Si(OMe)が4.8wt%含まれていた。
また重合は実施例1と同様の方法で行った。結果を表2に示す。
【0107】
【表2】

【0108】
表1〜2から明らかなように、実施例1〜7及び比較例1〜4を対照検討すると、本発明では触媒活性、CXS、密度等の全般にわたり比較例に対して優れた結果が得られていることが明白であり、非常にバランスの優れた触媒である。
具体的には、実施例1と比較例1を比較することで、アルケニル基を有するシラン化合物(A2)と有機ケイ素化合物(A3)を接触させる以前に炭素数2以上の枝鎖オレフィンで重合処理することにより、特定の構造の有機ケイ素化合物(A3)の含量が増加し、触媒活性が向上し、さらにはポリマーのCXSが削減し、密度が向上している。
【0109】
また実施例1と比較例2を比較することにより、アルケニル基を有するシラン化合物(A2)の不存在下では、有機ケイ素化合物(A3)の含量が比較例1と比べて増えたとしても、活性は向上せず、ポリマーのCXSや密度も良好になっていないことが分かる。
実施例2、3はそれぞれ、実施例1のアルケニル基を有するシラン化合物(A2)や有機ケイ素化合物(A3)を異なる構造の化合物に変えたものであるが、実施例1の結果と同様に触媒活性が向上し、ポリマーのCXSが削減し、密度が向上している。
さらに実施例4、5それぞれ、実施例1の固体成分(A)1g当たりの炭素数2以上の枝鎖オレフィンの重合量を変化させたものであるが、重合量が4程度では、実施例1の結果と同様に触媒活性が向上しポリマーのCXSが削減し、密度が向上している。一方、重合量が1程度になると実施例1より効果が劣るものの、比較例1のように全く重合処理をしないものと比べると性能が向上していることが分かる。
実施例6、7はそれぞれ、実施例1とは製造方法の異なる固体成分(A1)を用いて評価を行っている。比較例3、4と比較することにより、前述の結果と同様に触媒活性が向上し、さらにはポリマーのCXSが削減し、密度が向上していることが分かる。
従って、実施例は、立体規則性が高く、極めて高い触媒活性を有する触媒であり、比較例に比して優れた結果が得られていると言える。
【産業上の利用可能性】
【0110】
本発明のα−オレフィン重合用触媒は、触媒活性が非常に高いので、製造コストを低減することが可能であり、得られるポリマーの立体規則性が高く、剛性と耐衝撃強度のバランスに優れた高品質な製品を得ることができるので、産業上好適に用いることができる。
【図面の簡単な説明】
【0111】
【図1】本発明の触媒についての理解を助け明確にするためのフローチャート図である。

【特許請求の範囲】
【請求項1】
下記の成分(A1)の固体成分を有機アルミニウム化合物存在下で炭素数2以上の枝鎖オレフィンで重合処理し、得られた固体成分(A1’)に対して、成分(A2)、(A3)及び(A4)を接触処理することを特徴とするα−オレフィン重合用固体触媒成分(A)。
成分(A1):チタン、マグネシウム及びハロゲンを必須成分として含有する固体成分
成分(A2):アルケニル基を有するシラン化合物
成分(A3):有機ケイ素化合物
成分(A4):有機アルミニウム化合物
【請求項2】
炭素数2以上の枝鎖オレフィンの重合量が成分(A1)1g当たり0.1g以上であることを特徴とする請求項1に記載のα−オレフィン重合用固体触媒成分(A)。
【請求項3】
成分(A1)中のマグネシウムがジアルコキシマグネシウム由来のものであることを特徴とする請求項1又は2に記載のα−オレフィン重合用固体触媒成分(A)。
【請求項4】
成分(A2)アルケニル基を有するシラン化合物がビニルシラン化合物であることを特徴とする請求項1〜3のいずれか1項に記載のα−オレフィン重合用固体触媒成分(A)。
【請求項5】
成分(A3)有機ケイ素化合物が下記一般式(1)で表されるケイ素化合物であることを特徴とする請求項1〜4のいずれか1項に記載のα−オレフィン重合用固体触媒成分(A)。
Si(OR ・・・(1)
(ここで、Rは炭化水素基若しくはヘテロ原子含有炭化水素基を表す。Rは水素、ハロゲン、炭化水素基及びヘテロ原子含有炭化水素基から選ばれる任意の遊離基を表す。Rは炭化水素基であり、0≦m≦2, 1≦n≦3, m+n=3を示す。)
【請求項6】
請求項1〜5のいずれか1項に記載のα−オレフィン重合用固体触媒成分(A)及び下記成分(B)からなることを特徴とするα−オレフィン重合用触媒。
(B)有機アルミニウム化合物
【請求項7】
請求項6に記載のα−オレフィン重合用触媒を用いて、α−オレフィンを単独重合又は共重合することを特徴とするα−オレフィン重合体の製造方法。

【図1】
image rotate


【公開番号】特開2008−163151(P2008−163151A)
【公開日】平成20年7月17日(2008.7.17)
【国際特許分類】
【出願番号】特願2006−353221(P2006−353221)
【出願日】平成18年12月27日(2006.12.27)
【出願人】(596133485)日本ポリプロ株式会社 (577)
【Fターム(参考)】