説明

エアロゾルデポジション法による成膜体の形成方法

【課題】
エアロゾルデポジション法により超100μm厚の成膜体を形成する方法を提供する。
【解決手段】
複数のノズルから原料微粒子を被堆積基板の略同一箇所に向けて噴射し、その基板入射角度を制御することにより、堆積された膜のエッチングを行いつつ成膜体を形成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、エアロゾルデポジション法を用いて膜厚の厚い成膜体を形成する方法に関する。
【背景技術】
【0002】
エアロゾルデポジション法(以下、AD法と記す)は、粒径が数十nm〜数μmのセラミックスあるいは金属の微粒子から成る原料をガスと混合してエアロゾル化し、ノズルを通して基板に噴射して、被膜を形成する技術である。近年、AD法は、低基板温度で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な被膜が形成できる方法として着目されている。
【0003】
AD法を用いた成膜装置について図7を用いて説明する。図7は、成膜装置の基本構成を示した概略図である。図中、71は被成膜基板、72は被成膜基板71を移動せしめるXYステージ、73はノズル、74は成膜チャンバ、75は分級器、76はエアロゾル発生器、77は高圧ガス供給源、78はマスフロー制御器、79はパイプライン、図中矢印は基板走査方向を模式的に示したものである。セラミックスあるいは金属からなる原料微粒子は、エアロゾル発生器76の内部でマスフロー制御器78を介して供給される搬送ガス(図示せず)と混合されてエアロゾル化される。成膜チャンバ74の内部は、真空ポンプ(図示せず)で〜50Pa程度に減圧されており、この圧力とエアロゾル発生器76内部の圧力との差圧によって生じるガス流によってエアロゾル化された原料微粒子は、分級器75を介して成膜チャンバ74内に導かれ、ノズル73を通して加速、被成膜基板71に噴射される。ガスによって搬送された原料微粒子は、1mm以下の微小開口のノズルを通すことで数百m/sまでに加速される。
【0004】
加速された原料微粒子は被成膜基板71に衝突し、その運動エネルギーは一気に解放され、皮膜が形成されることになる。しかし、加速された原料微粒子が有する運動エネルギーが全て基板に衝突した原料微粒子の温度上昇に費やされたとしても、その温度は、例えばセラミックスの焼結に必要な温度等と比べると一桁程度低く、緻密な成膜体が得られるメカニズムについては不明な点が多い。しかし、その成膜過程には、原料微粒子の基板衝突時に発生する破砕が重要な役割担っていると考えられている。なお、“原料微粒子の破砕”とは、基板に飛来した原料微粒子自体の破砕と、既に基板表面に付着している原料微粒子の破砕の両者を意味する。
【0005】
すなわち、特開2003−73855号公報においては、脆性材料から成る原料微粒子の場合、その微粒子の平均粒径が50nm以上で、かつその形状が非球形の不定形形状で、少なくとも一カ所以上、角を持つ形状とすることにより、当該角の部分に基板衝突時の衝撃力が集中し、原料微粒子の破砕が促進される結果、緻密な成膜体が得られることが開示されている。
【特許文献1】特開2003−73855号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、我々のAD法による膜厚の大きい成膜体を形成するための系統的な検討の結果、10〜20μm程度の成膜体は比較的容易に形成されるものの、それ以上の膜厚、例えば100μmを超える膜厚の成膜体を安定に形成することが困難であることが判明した。すなわち、成膜初期過程、換言すると膜厚が20μm程度以下と薄い状態においては、緻密な成膜体が得られるものの、膜厚が増大するにつれ緻密な成膜体は形成されず、圧粉体のみが形成される、と云う問題があることが明らかとなった。
【課題を解決するための手段】
【0007】
上記課題を解決するために、
本発明により提供される第1の手段は、
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子を並列配置された複数のノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表面の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆積基板への入射方向が異なることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
【0008】
また、本発明により提供される第2の手段は、
前記第1の手段において、該複数のノズルの少なくとも一から噴射される、該エアロゾル化された原料微粒子を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の密度が、他のノズルから噴射される該エアロゾル化された原料微粒子を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の濃度と異なることを特徴とする前述したエアロゾルデポジション法による成膜体の形成方法である。
【0009】
また、本発明により提供される第3の手段は、
前記第1又は第2の手段において、該複数のノズルの少なくとも一から間欠的に該エアロゾル化された原料微粒子を含む搬送ガスが噴射されることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
また、本発明により提供される第4の手段は、
前記第1乃至第3いずれかの手段において、該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向の一と該被堆積基板の被堆積面とのなす角度が略90度であることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
更に、本発明により提供される第5の手段は
前記第1乃至第3いずれかの手段において、該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向と該被堆積基板の被堆積面とのなす角度の少なくとも一が略同一で、かつ該角度が90度以下であることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
【0010】
AD法で形成された膜であって、成膜初期段階では緻密な成膜体で、膜厚の増加と共に圧粉体となった膜の組織を電子顕微鏡で観察した結果、例えば図8に模式的に示すような組織を有していることが明らかとなった。図8は、搬送ガス流量が一定の条件下で形成した膜の断面組織を模式的に示した概略図であり、図中81は基板、82は成膜体層、83は圧粉体層である。すなわち、搬送ガス流量が一定で、原料微粒子の基板入射角度が基板81の表面の法線方向と略一致する条件下で、唯一のノズルから噴射された原料微粒子によって形成された膜の組織は、同図に示したように、成膜体層82では緻密な膜が形成されており、かつ成膜体層82を構成する粒子の径は原料微粒子の粒径の約1/10〜1/5であった。一方、圧粉体層83においては、基板81からの距離が大きくなるにつれ(膜厚が増加するにつれ)、空隙部の数、大きさ共に増大し、かつ圧粉体層を構成する粒子の径も増大し、最終的には原料微粒子の粒径と同程度になることが明らかとなった。また、成膜体層82と圧粉体層83との境界は明瞭に区別できるものではなく、成膜体層から圧粉体層への組織変化は連続的に発生していることも明らかとなった。
【0011】
この観察結果より、圧粉体層83が形成される原因は、膜厚の増加につれて原料微粒子の破砕(前述したように、“原料微粒子の破砕”とは基板に飛来した原料微粒子自体の破砕と既に基板表面に付着した原料微粒子の破砕の両者を意味する。)が発生し難くなっていることにあることが判った。
【0012】
一方、原料微粒子が破砕される原因は、その基板衝突時における原料微粒子の有する運動エネルギーの解放に伴う衝撃力であり、係る原料微粒子の有する運動エネルギーは基板衝突速度によって決定される。ところで、原料微粒子の基板衝突速度は、搬送ガスの流量によって決定されることから、搬送ガス流量:一定の条件下で成膜する場合には、原料微粒子の基板衝突速度は常に一定であり、衝突時に解放される運動エネルギーも一定になる。従って、理想的には、形成された膜厚の如何を問わず、原料微粒子の破砕は同様に発生して然るべきである。
【0013】
しかし、前述したように、AD法で形成した膜の断面組織を電子顕微鏡で観察した結果、膜厚の増加と共に、空隙部の数及びその大きさ、共に増大していることから、以下に述べるような現象が発生してものと想定される。
【0014】
図9は、原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発生する歪みとの関係を模式的に示した図である。一般的に、圧力(応力)と歪みとは、同図に示したように、圧力が小さい領域では、圧力に応じて歪みは線形的に増加するが(図中、弾性変形領域)、その後圧力の上昇に歪み量は追従しなくなり、最終的には破砕に至る(図中破砕発生点)。圧粉体層においては、空隙部が多数存在するため、緻密な成膜体層に比べて変形し易く、弾性変形領域が広いと考えられ、結果として破砕が発生するために要する圧力(以下、臨界圧力と記す)も大きくなっていると推定される。すなわち、原料微粒子の基板衝突によって発生する圧力が、成膜体層における臨界圧力は超えるが、圧粉体層の臨界圧力を下回る場合には、一旦圧粉体層が形成されると、最早基板に付着した原料微粒子の破砕は発生せず、圧粉体層が形成され続けることになる。
【0015】
係る圧粉体層の形成を阻止するためには、圧粉体層の形成の源となる、基板表面に付着している未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去することが必要となる。係る未破砕原料微粒子、若しくは破砕が不充分な微粒子は、基板表面、あるいは基板に既に形成されている成膜体との密着力が低いと考えられ、比較的容易に除去され得るものと考えられる。
【0016】
すなわち、本発明は、以下に説明する基板に入射する原料微粒子のエッチング効果に着目し、未破砕原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ緻密な成膜体を形成せんとするものである。
【0017】
図4〜6に原料微粒子の入射方向、換言すると基板入射角度の影響を示す。
【0018】
図4aは原料微粒子の入射方向と基板入射角度との関係を示す模式図で、図中41は基板、42は成膜された膜、43はノズル、44はノズル開口部、45はノズル開口部44から噴射された原料微粒子である。図4bは基板位置を固定して一定時間形成された成膜体の形状を模式的に示したものである。図中、46は成膜体の形状、47は等膜厚線、Pは最も膜厚の厚い点を基板に投影した点である。基板41を固定し、一定時間原料微粒子を基板表面に向けて噴射せしめた場合、原料微粒子45は、ある程度の方向分布を持って基板に入射するため、形成された成膜体は成膜体46に示すような山型の形状となる。ここで云う、原料微粒子の入射方向とは点Pとノズル開口部44の中心と結ぶ直線に平行で、かつノズル開口部44から点Pに向かう方向の意である。大略的には、図4aに示した矢印、及びブロック矢印で示した方向と理解される。また、ここで云う基板入射角度とは、図4aに示すように、基板表面法線方向と入射方向とのなす角度、Θの意であり、被堆積表面と入射方向とのなす角度は(90−Θ)度に相当する。
【0019】
図5は基板入射角度と一定時間成膜した成膜体の膜厚との関係を示す。図中●印は、搬送ガス流量が小さい場合、□印は搬送ガス流量が大きい場合に対応する。いずれの場合も、基板入射角度が0度(すなわち被堆積表面とのなす角度が90度)で成膜した場合に得られる膜厚で規格化されている。同図に示したように、基板入射角度が20度を超えた辺りから、成膜体の膜厚は急激に減少しはじめ、搬送ガス流量が小さい場合の減少量は、同流量が大きい場合に比べて小さい。この原因は、基板入射角度の増大と共に、基板に入射する粒子のエッチング効果が顕在化することにあると推定される。
【0020】
図6は、一定の膜厚の成膜体を形成した後、一定時間の間、原料微粒子を基板に入射せしめた後の膜厚減少量と基板入射角度との関係を示したものである。図5と同様に、図中●印は、搬送ガス流量が小さい場合、□印は搬送ガス流量が大きい場合に対応する。また、同図において、膜厚減少量が0とは、膜厚の減少が発生しない場合、及び基板に入射された原料微粒子が堆積されて膜厚が増加した場合の両者を意味する。
【0021】
同図に示したように、搬送ガス流量が大きい場合、基板入射角度が25度を超えた辺りから、膜厚減少が顕在化するのに対し、搬送ガス流量が小さい場合には基板入射角度が40度を超えた辺りから膜厚減少が顕在化する。
【0022】
以上の結果から、AD法においては、原料微粒子の基板入射角度、及び搬送ガス流量を適当に選定することにより、原料微粒子のエッチング効果を制御できることが理解される。
【0023】
すなわち、本発明は、複数のノズルを用いて成膜することにより、前述したエッチング効果と堆積効果とを調和させ、圧粉体層の形成の源となる、基板表面に付着している未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ、膜厚が厚く、かつ緻密性に優れた成膜体を形成せんとするものである。
【発明の効果】
【0024】
本発明により、AD法を用いて超100μm厚の膜厚の厚い成膜体を安定して形成することが可能となる。
【発明を実施するための最良の形態】
【0025】
以下、本発明の実施の形態について説明する。
図1乃至図3は本発明の実施の形態を示す模式図で、基板位置とノズルとの関係を模式的に示したものである。
【0026】
図1は、第1と第2の2つのノズルから噴射される原料微粒子によって成膜体が形成される場合を模式的に示したものである。図中、11は第1のノズル、12は第2のノズル、13は第1のノズルから噴射される原料微粒子、14は第2のノズルから噴射される原料微粒子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子13,14の基板入射方向を示す。同図に示した構成においては、原料微粒子13の入射方向は基板表面の法線と略平行(基板入射角度は略0度)であり、主に成膜体42の形成を担う。一方、原料微粒子14は、主に成膜体表面に付着した未破砕原料微粒子、あるいは破砕が不充分な粒子を除去する機能を担うことから、その入射方向は、基板表面の法線と有限の角度をなし、その値はエッチング効果が顕在化する角度(ここで云う“エッチング効果が顕在化する”とは、必ずしも膜の堆積が全く発生しないことを意味するのではなく、堆積速度が減少しはじめることを意味し、“エッチング効果が顕在化する角度”とは、例えば、基板入射角度が略20度若しくはそれ以上の角度を云う。以下同様)に設定される。また、各々のノズル11、12から噴射される原料微粒子の基板衝突速度、換言すると搬送ガス流量、あるいは搬送ガス中の原料微粒子の濃度等は、緻密な成膜体42が形成されることを条件として、適宜選定することができる。また、各ノズル11、12から、連続的に原料微粒子を噴射させるか、それとも間歇的に噴射させるか、等についても同様に選定することができる。
【0027】
図2は、第1、第2及び第3の3つのノズルから噴射される原料微粒子によって成膜体が形成される場合を模式的に示したものである。図中、21は第1のノズル、22は第2のノズル、23は第3のノズル、24は第1のノズルから噴射される原料微粒子、25は第2のノズルから噴射される原料微粒子、26は第3のノズルから噴射される原料微粒子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子24、25、26の基板入射方向を示す。
【0028】
同図に示した構成は、図1に示した構成のバリエーションの構成に対応する。すなわち、原料微粒子24の入射方向は基板表面の法線と略平行(基板入射角度は略0度)であり、主に成膜体42の形成を担う。一方、原料微粒子25、26は、主に成膜体表面に付着した未破砕原料微粒子、あるいは破砕が不充分な粒子を除去する機能を担うことから、その入射方向は、基板表面の法線と有限の角度をなし、その値はエッチング効果が顕在化する角度に設定される。また、各々のノズル21、22、23から噴射される原料微粒子の基板衝突速度、換言すると搬送ガス流量、あるいは搬送ガス中の原料微粒子の濃度等は、緻密な成膜体42が形成されることを条件として、適宜選定することができる。また、各ノズル21、22、23から、連続的に原料微粒子を噴射させるか、それとも間歇的に噴射させるか、等についても同様に選定することができる。
【0029】
図3は、第1と第2の2つのノズルから噴射される原料微粒子によって成膜体が形成される場合を模式的に示したものである。図中、31は第1のノズル、32は第2のノズル、33は第1のノズルから噴射される原料微粒子、34は第2のノズルから噴射される原料微粒子である。また、図中の矢印、及びブロック矢印は、各々の原料微粒子33,34の基板入射方向を示す。同図に示した構成は、第1と第2の2つのノズルから構成される点においては、図1に示した構成と共通するが、原料微粒子33及び原料微粒子34の基板入射方向が、共に基板表面の法線と一定の角度をなす点において異なる。本構成は、原料微粒子33、34の基板入射角度を、エッチング効果が明らかに認められるが、なお、膜の堆積効果が優っている角度(例えば、基板入射角度が20度〜30度の範囲)に設定し、エッチングを行いつつ成膜体を形成する、と云う構成である。勿論、一のノズルで、エッチングを行いつつ成膜体を形成することは可能であるが、係る場合には成膜速度が減少し、特に超100μmを超える膜厚を形成する方法としては適さない。従って、図3に示した構成で、ノズルの数を3個以上と増加すれば、その分短時間で所望の膜厚を有する成膜体の形成が可能となる。
【0030】
以下、実施例を用いて、本発明の実施の形態について、更に詳細に説明する。
【実施例1】
【0031】
原料微粒子として平均粒径が0.7μmのアルミナ粒子を用い、搬送ガスとして空気を用いて成膜した。基板とノズル配置は、図1に示した構成と略同一である。第1のノズル(図1においてノズル11に対応)から噴射されるアルミナ微粒子(図1において原料微粒子13に対応)の基板入射角度は略0度で、第2のノズル(図1においてノズル12に対応)から噴射されるアルミナ微粒子(図1において原料微粒子14に対応)の基板入射角度は略30度に設定した。第1、第2のノズルのノズル開口は、共に5nm×0.3nmで、用いた基板は石英ガラスである。また、第1、第2のノズルら噴射されるガス流量を、共に、3l/minに設定した。このとき、第1、第2のノズルから噴射されたアルミナ微粒子の基板衝突速度は、共に220m/sであり、得られた成膜速度は10μm/minであった。
成膜中、前述した搬送ガス流量を保持し、膜厚が120μm厚のアルミナ成膜体を形成した。
【0032】
なお、第1のノズル(図1においてノズル11に対応)から噴射されるアルミナ微粒子(図1において原料微粒子13に対応)のみによる成膜も試みたが、膜厚が30μmを超えた辺りから圧粉体の形成が認められ、超100μm厚の成膜体を形成することは出来なかった。
【実施例2】
【0033】
実施例1と同様の条件で100μm厚のアルミナ成膜体を形成した。ただし、第1のノズル(図1においてノズル11に対応)から噴射される搬送ガス流量は、実施例1と同様の、3l/minであるが、本実施例においては、第2のノズル(図1においてノズル12に対応)から噴射される搬送ガスの流量を、5l/minとした。このとき、第2のノズルから噴射されたアルミナ微粒子の基板衝突速度は、300m/sであり、得られた成膜速度は7μm/minであった。成膜中、前述した搬送ガス流量を保持して、100μm厚のアルミナ成膜体を形成した。
【実施例3】
【0034】
実施例2と同様の条件で110μm厚のアルミナ成膜体を形成した。ただし、第1のノズル(図1においてノズル11に対応)から噴射される搬送ガス流量は、実施例2と同様の、3l/minであるが、本実施例においては、第2のノズル(図1においてノズル12に対応)から噴射される搬送ガス種をHeとして、その流量を4 l/minとした。このとき、第2のノズルから噴射されたアルミナ微粒子の基板衝突速度は、450m/sであり、アルミナ膜の堆積は認められなかった。
【0035】
本実施例においては、第1のノズルからのアルミナ微粒子の噴射を連続的して行いつつ、第2のノズルからのアルミナ微粒子の噴射を間歇的に行った。その噴射スキームを図10に示す。すなわち、2分経過する毎に、約20秒間、第2のノズルからアルミナ微粒子を噴射する、と云うサイクルを複数回繰り返すことにより、110μm厚のアルミナ微粒子を成膜した。
【実施例4】
【0036】
実施例3とほぼ同様の条件で、120μm厚のアルミナ成膜体を形成した。ただし、本実施例の場合、第1及び第2のノズル共に、そこからなされるアルミナ微粒子の噴射を間歇的に行った。その噴射スキームを図11に示す。すなわち、第1のノズルからアルミナ微粒子を2分間噴射した後に噴射を停止し、その後、約20秒間第2のノズルからアルミナ微粒子を噴射する、と云うサイクルを繰り返して120μm厚のアルミナ成膜体を形成した。
【実施例5】
【0037】
原料微粒子として平均粒径が0.7μmのアルミナ粒子を用い、搬送ガスとして空気を用いて成膜した。基板とノズル配置は、図2に示した構成と略同一である。第1のノズル(図2においてノズル21に対応)から噴射されるアルミナ微粒子(図2において原料微粒子24に対応)の基板入射角度は略0度で、第2のノズル(図2においてノズル22に対応)から噴射されるアルミナ微粒子(図2において原料微粒子25に対応)の基板入射角度は略30度で、第3のノズル(図2においてノズル23に対応)から噴射されるアルミナ微粒子(図2において原料微粒子26に対応)の基板入射角度は略30度に設定した。第2及び第3のノズルから噴射されるアルミナ微粒子の基板入射角度は、その絶対値が略同一で符号が正負で異なる(すなわち、角度は略同一であるが入射方向が異なる)。第1、第2及び第3のノズルのノズル開口は、共に5nm×0.3nmで、用いた基板は石英ガラスである。また、第1、第2及び第3のノズルら噴射されるガス流量を、共に、3l/minに設定した。このとき、第1、第2及び第3のノズルから噴射されたアルミナ微粒子の基板衝突速度は、共に220m/sであり、得られた成膜速度は13μm/minであった。
成膜中、前述した搬送ガス流量を保持し、膜厚が110μm厚のアルミナ成膜体を形成した。
【実施例6】
【0038】
原料微粒子として平均粒径が0.7μmのアルミナ粒子を用い、搬送ガスとして空気を用いて成膜した。基板とノズル配置は、図3に示した構成と略同一である。第1のノズル(図3においてノズル31に対応)から噴射されるアルミナ微粒子(図3において原料微粒子33に対応)の基板入射角度は略30度で、第2のノズル(図3においてノズル32に対応)から噴射されるアルミナ微粒子(図3において原料微粒子34に対応)の基板入射角度は略30度に設定した。第1及び第2のノズルから噴射されるアルミナ微粒子の基板入射角度は、その絶対値が略同一で符号が正負で異なる(すなわち、角度は略同一であるが入射方向が異なる)。第1、第2のノズルのノズル開口は、共に5nm×0.3nmで、用いた基板は石英ガラスである。また、第1、第2のノズルら噴射されるガス流量を、共に、3l/minに設定した。このとき、第1、第2のノズルから噴射されたアルミナ微粒子の基板衝突速度は、共に220m/sであり、得られた成膜速度は6μm/minであった。
成膜中、前述した搬送ガス流量を保持し、膜厚が100μm厚のアルミナ成膜体を形成した。
【0039】
以上、実施例を用いて、本発明について詳細に説明したが、本発明は前述した搬送ガス種、流量、搬送ガスの噴射スキーム、あるいは原料微粒子の材料、更にはノズルの数、原料微粒子の基板入射角度等に限定されるものではない。
【産業上の利用可能性】
【0040】
本発明により成る成膜方法は、AD法を用いて、100μmを超える厚さの成膜体を形成する上で有用であり、係る成膜体を用いた部品、材料に係る産業分野において利用可能である。
【図面の簡単な説明】
【0041】
【図1】基板位置とノズルとの関係を示す模式図である。
【図2】基板位置とノズルとの関係を示す模式図である。
【図3】基板位置とノズルとの関係を示す模式図である。
【図4】基板入射角度を説明するための模式図である。
【図5】成膜体の膜厚と基板入射角度との関係を示す図である。
【図6】膜厚減少量と基板入射角度との関係を示す図である。
【図7】AD法を用いた成膜装置の基本構成を示した概略図である。
【図8】AD法で形成した試料の断面組織を模式的に示した概略図である。
【図9】原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発生する歪みとの関係を模式的に示した図である
【図10】搬送ガスの噴射スキームを示す図である。
【図11】搬送ガスの噴射スキームを示す図である・
【符号の説明】
【0042】
11 第1のノズル
12 第2のノズル
13 第1のノズルから噴射される原料微粒子
14 第2のノズルから噴射される原料微粒子
21 第1のノズル
22 第2のノズル
23 第3のノズル
24 第1のノズルから噴射される原料微粒子
25 第2のノズルから噴射される原料微粒子
25 第2のノズルから噴射される原料微粒子
26 第3のノズルから噴射される原料微粒子
31 第1のノズル
32 第2のノズル
33 第1のノズルから噴射される原料微粒子
34 第2のノズルから噴射される原料微粒子
41 基板
42 成膜された膜
43 ノズル
44 ノズル開口部
45 ノズル開口部44が噴射された原料微粒子
46 成膜体の形状
47 等膜厚線
71 被成膜基板
72 XYステージ
73 ノズル
74 成膜チャンバ
75 分級器
76 エアロゾル発生器
77 高圧ガス供給源
78 マスフロー制御器
79 パイプライン
81 基板
82 成膜体層
83 圧粉体層
P 最も膜厚の厚い点を基板に投影した点

【特許請求の範囲】
【請求項1】
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子を並列配置された複数のノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該複数のノズルから加速噴射された原料微粒子が、該被堆積基板の被堆積表面の略同一箇所に入射し、かつ各ノズルから加速噴射された原料微粒子の該被堆積基板への入射方向が異なることを特徴とするエアロゾルデポジション法による成膜体の形成方法。
【請求項2】
該複数のノズルの少なくとも一から噴射される、該エアロゾル化された原料微粒子を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の密度が、他のノズルから噴射される該エアロゾル化された原料微粒子を含む搬送ガスの流量、若しくは搬送ガス中の原料微粒子の濃度と異なることを特徴とする請求項1記載のエアロゾルデポジション法による成膜体の形成方法。
【請求項3】
該複数のノズルの少なくとも一から間欠的に該エアロゾル化された原料微粒子を含む搬送ガスが噴射されることを特徴とする請求項1又は2記載のエアロゾルデポジション法による成膜体の形成方法。
【請求項4】
該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向の一と該被堆積基板の被堆積表面とのなす角度が略90度であることを特徴とする請求項1乃至3いずれかに記載のエアロゾルデポジション法による成膜体の形成方法。
【請求項5】
該複数のノズルから加速噴射された原料微粒子の該被堆積基板への入射方向と該被堆積基板の被堆積表面とのなす角度の少なくとも一が略同一で、かつ該角度が90度以下であることを特徴とする請求項1乃至3いずれかに記載のエアロゾルデポジション法による成膜体の形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2009−132945(P2009−132945A)
【公開日】平成21年6月18日(2009.6.18)
【国際特許分類】
【出願番号】特願2006−68424(P2006−68424)
【出願日】平成18年3月13日(2006.3.13)
【出願人】(000113263)HOYA株式会社 (3,820)
【Fターム(参考)】