説明

カルボキシ末端プロリンを有するペプチドに富むタンパク質加水分解物

【課題】カルボキシ末端プロリンを有するペプチドのモル分率(%)が、加水分解物を生成することに用いられたタンパク質基質におけるプロリンのモル分率(%)の二倍より大きいペプチドを含む、タンパク質加水分解物を提供する。
【解決手段】タンパク質基質からタンパク質加水分解物を酵素的に生産する方法であり、カルボキシ末端プロリン残基を有するペプチドフラグメントに富むタンパク質加水分解物を生産するためにプロリン特異的エンドプロテアーゼ又はプロリン特異的エンドプロテアーゼを含む組成物を用いる前記方法であって、任意でサブチリシン又はメタロエンドプロテアーゼ、及び、カルボキシペプチダーゼのような他の酵素を用いてもよい前記方法。前記タンパク質加水分解物をそのまま、又は、タンパク質加水分解物によって栄養的に補われた食品の苦味の減少、及び低抗原性を有する加水分解物を含む食品原料への使用。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はタンパク質加水分解物、前記加水分解物を生産する方法及び前記加水分解物の使用に関する。
【背景技術】
【0002】
牛乳又は牛乳画分の酵素加水分解物は、食品産業において制限された応用性のみを有する。それにもかかわらず、これら加水分解物は市場において興味深いニッチを占め、このことは、このような加水分解物を得るための最適化された方法を記述及びクレームする大量の文献によって証明される。乳又は乳画分をタンパク質分解活性を有する酵素にさらすと、主に生成物のアレルゲン性を最小限にし、容易に吸収できる消化物の提供によって胃腸での摂取を促進し、かつ長期にわたる保存期間中に酸性製品中のタンパク質を沈殿に対して安定化させる加水分解物が生産される。
【0003】
乳タンパク質の分子量を減少させることは、有益な効果を生み出すために一般的に受け入れられる手法であるが、乳タンパク質の酵素加水分解は欠点を有する。乳を酵素とインキュベートすることの否定的な側面は、不完全なタンパク質分解消化、ペプチド断片の長さの縮小に伴って増加する苦味、必須精製工程による最終生成物の収率低下、及び、高レベルの遊離アミノ酸によって引き起こされる不快な味の変化を含む。
【0004】
エンドプロテアーゼとのインキュベーションによって、全乳画分の均一かつ完全な分解物を得ることは、多くの場合困難である。例えば、β−ラクトブロブリンはプロテアーゼ抵抗性であることが知られており、この分子の部分消化物は、幼児用調製粉乳に対して予期せぬ強い免疫原性反応、及び、酸性のスポーツ飲料のような製品において目に見えるタンパク質沈殿物を生じる。タンパク質加水分解物中に消化不充分なタンパク質が存在しないことを保証するために、長いまま残ったペプチド断片を加水分解物から除去するための、最終的な限外濾過が通常必要とされる。このような部分的消化タンパク質断片を加水分解物から除去する必須工程は、最終消化生成物の収率を必然的に低下させ、従って製品コストが増加する。
【0005】
タンパク質抗原性は、タンパク質を8〜10のアミノ酸残基のみを有するペプチドにまで消化することによって克服し得るが、そのような徹底的なタンパク質分解消化によって作り出されたペプチドは非常に苦くなり得る。この現象に対する一般的な説明は、高含有量の疎水性アミノ酸を有する小さいペプチドが苦味を促進するということである。用いられるタンパク質原材料の性質、消化のために用いられるタンパク質分解酵素の種類、及び、得られるペプチドの長さが、最終加水分解物に付随する苦味の程度を主に決定する。例えば、多くの疎水性アミノ酸を含むカゼインは、乳清タンパク質よりもはるかに苦い加水分解物を生成することが知られる。
【0006】
生産工程では、活性炭又は疎水性レジンへの吸着を用いた苦いペプチドの選択的除去によって、タンパク質加水分解物の苦味除去が行われる。このような除去工程の間に付随する収率減少が、最終生成物のコストを増加させる。さらに、トリプトファン、ロイシン、フェニルアラニン及びイソロイシンを含む種々の栄養学上必須なアミノ酸が、その疎水性の性質のために失われ得るため、この方法は最終生成物の栄養価に対して悪影響を有する。このように、この方法での苦味除去は、栄養学上重要なアミノ酸が欠乏した加水分解物を生産し易い。
【0007】
苦味除去は、加水分解物をエキソペプチダーゼにさらすことによっても達成することができる。このアプローチでは、ペプチドの全体的な疎水性を減少しようとして、アミノ末端及びカルボキシ末端のアミノ酸がペプチドから遊離される。非選択的エキソプロテアーゼに対するペプチドの曝露は、不運にも制御不可能な量の遊離アミノ酸が遊離された最終加水分解物を生じる。続いて滅菌又は噴霧乾燥に必要とされるように、遊離アミノ酸を含む前記加水分解物を加熱すると、多くの場合メイラード反応を経て異風味のブロスが生成する。さらに、エキソプロテアーゼによって作り出された高レベルな遊離アミノ酸が、最終加水分解生成物の浸透性を浸透圧性下痢が引き起こされ得るレベルまで増加し得る。
【0008】
従って、タンパク質加水分解物の生産は、タンパク質分解消化物の良い点と悪い点の間の二律背反性を表す。現在の手法は、製品カテゴリーの特定な要求に対してタンパク質基質の酵素消化が最適化されている。例えば、真正アレルギー性の幼児のために意図されたタンパク質加水分解物は、徹底したタンパク質分解消化に続き、大きい分子量のまま残っているペプチド断片の厳密な除去を必要とする。対照的に、稀に牛乳アレルギーを示す成人のために計画された製品は典型的には、平均的なペプチドの長さが増加され、異風味の可能性を最小限にし、かつ、製品の収率を最大限にした加水分解物を含む。
【0009】
β−カゼイン、β−ラクトグロブリン及びα−ラクトアルブミンのような主要な乳タンパク質の全て、並びに、例えばダイズ単離物、コメタンパク質及び小麦グルテンから得られる植物性タンパク質画分が、重要な抗原性構成成分であると考えられる。このように、これら乳及び穀物タンパク質の酵素消化物は分子量を3000Daより小さくすることが、アレルゲン性を最小限にするために重要であると考えられる。乳清中のβ−ラクトグロブリン画分は、このタンパク質が人乳に存在せず、β−ラクトグロブリンのタンパク質分解消化が困難であるのが判明していることから、特に重要なアレルゲンであると考えられている。徹底的に加水分解されたタンパク質加水分解物を含む幼児用調製粉乳は、典型的には遊離アミノ酸を高レベルに含んでおり、このことは最適状態には及ばない味及び高浸透性を暗示する。現在販売されている加水分解された幼児用調製粉乳製品の最近の評価は、その大部分が依然として免疫原性物質の基礎となる乳清を含むことを示している。この所見は、低コストで改良された加水分解物をもたらす新しい酵素混合物の需要が、なお存在することを示している。
【0010】
医療上の必要性を伴わない消費者、例えば運動選手又は痩身食餌療法を行う人々のための製品に含まれるタンパク質加水分解物は、良い味の特徴を提供するように作られなければならない。このような状況において、高い嗜好性及び酸性条件下の溶解性のような物理化学的側面が、最も重要である。栄養価を高めた果物ジュース及びスポーツ飲料を含むこのカテゴリーの製品は、消費者の健康を改善するため、特にグルタミン及びアルギニンの補充に焦点を合わせている。例えばスポーツ飲料は、肉体の耐久力を高めること及び長期にわたる高負荷な練習後の運動選手の回復に役立つ。小麦グルテンのようなグルタミンに富む穀物タンパク質源、又は、コメタンパク質及びダイズ単離物のようなアルギニンに富むタンパク質源は、乳タンパク質の代替物として酸性の健康関連製品の補充要求を満足させると考えられている。しかしながら、そのような穀物タンパク質、特に小麦グルテンは、より酸性のpHレベルすなわち4より高いpHにおいて非常に低い可溶性を示し、完全に可溶なグルテン加水分解物を得ることは困難であることを意味している。
【0011】
タンパク質加水分解に付随する、製品のコスト及び品質に対する悪影響の理由から、加水分解物の特性を改良すること及び製品コストを下げることを目的とした種々の酵素混合物が、先行する刊行物に記述されている。例は、トリプシン、キモトリプシン及びパンクレアチンのような動物由来のエンドプロテアーゼの使用に言及するEP321603、並びに、バチルス(Bacillus)種若しくはアスペルギルス(Aspergillus)種から得られたエンドプロテアーゼの使用を支持するEP325986及びWO96/13174を含む。種々のエキソプロテアーゼが、ペプチド混合物の苦味除去をし得ると記述されている。一方この目的のために、例えばEP0223560は特定のプロリン特異的エンドプロテアーゼの使用に言及しており、WO96/13174はアミノペプチダーゼ及びカルボキシペプチダーゼの混合物に言及している。
【0012】
幾つかの刊行物は、相対的に少ない苦味特性を有するタンパク質加水分解物を生産するために、プロリン特異的エンドプロテアーゼと種々のエキソペプチダーゼとの組合せの有益な効果を大いに宣伝する。例えば、日本の特許JP02039896は、低分子量ペプチド調製品を生成するための、ジペプチジルカルボキシペプチダーゼと組合せたプロリン特異的エンドプロテアーゼの使用に言及する。三つのプロリン特異的ペプチド加水分解酵素によるプロリンに富むオリゴペプチドの分解は、苦味無しにチーズの熟成を促進するために必要不可欠であると記述される(Journal of Dairy Science,77(2)385−392(1994))。さらに具体的に言うと、プロリン特異的エンドプロテアーゼのカルボキシペプチダーゼとの組合せの苦味除去効果が、JP5015314に記述される。JP5015314は、一般的な非特異的タンパク質分解活性に加えて少量のプロリン特異的エンドプロテアーゼ活性及びカルボキシペプチダーゼ活性を示す、アスペルギルス・オリザエ(oryzae)から得られた未精製な酵素調製品を記述する。JP5015314によると、ペプチドのカルボキシ末端に存在するプロリン残基が、苦い味を引き起こし、望ましくない。ダイズタンパク質とプロリン特異的エンドプロテアーゼ及びカルボキシペプチダーゼ酵素混合物とのインキュベーションによって得られた加水分解物は、プロリン特異的エンドプロテアーゼとカルボキシペプチダーゼとの組合せを欠くプロテアーゼ調製品によって得られたダイズ加水分解物よりも、著しく苦味が減っていた。
【0013】
まとめると、技術水準は、エキソペプチダーゼが媒介するカルボキシ末端(又はアミノ末端)の疎水性アミノ酸残基のペプチドからの遊離が、実質的に苦味除去されたペプチド加水分解物に必要不可欠であることを強く示唆する。同様に、苦味除去のためのプロリン特異的エンドプロテアーゼに特に言及する参考文献は、この活性の機能が、疎水性プロリン残基を露出させ続くカルボキシペプチダーゼによる除去を可能にすることであることを教示する。この仮説の意味は、プロリン特異的エンドプロテアーゼの苦味除去活性が、そのようなカルボキシ末端プロリン残基を有するペプチドを作り出すことより、むしろカルボキシ末端プロリン残基の効果的な除去に結び付けられるということである。
【発明の概要】
【課題を解決するための手段】
【0014】
本発明は、カルボキシ末端プロリンを有するペプチドのモル分率(%)が、加水分解物を生成することに用いられたタンパク質基質におけるプロリンのモル分率(%)の二倍より大きいペプチドを含む、タンパク質加水分解物を提供する。
【0015】
本発明は:
−カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも8%、好ましくは少なくとも15%、より好ましくは30〜70%であるペプチドを含む、乳清加水分解物;
−カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも25%、好ましくは少なくとも30%、より好ましくは70%未満であるペプチドを含む、カゼイン加水分解物;
−カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは30〜70%であるペプチドを含む、ダイズ加水分解物;
−カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは少なくとも30%、有利には70%未満であるペプチドを含む、グルテン加水分解物;及び
−カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは少なくとも30%、有利には70%未満であるペプチドを含む、オオムギ加水分解物、も提供する。
【0016】
本発明はさらに:
(a)配列番号2の1〜526アミノ酸と少なくとも40%のアミノ酸配列同一性を有するアミノ酸配列を有する、ポリペプチド又はその断片;
(b)低ストリンジェンシー条件下で(i)配列番号1の核酸配列、又は、その断片であって、60ヌクレオチドにわたって、好ましくは100ヌクレオチドにわたって少なくとも80%若しくは90%同一である、より好ましくは200ヌクレオチドにわたって少なくとも90%同一である前記断片、又は(ii)配列番号1の核酸配列に対して相補性である核酸配列、とハイブリダイズするポリヌクレオチドによってコードされるポリペプチド:からなる群より選択されるプロリン特異的エンドプロテアーゼ、及び、前記エンドペプチダーゼをコードするDNA分子も提供する。
【0017】
本発明は:
−食品又は飲料における、本発明のタンパク質加水分解物の使用;
−本発明のプロリン特異的エンドプロテアーゼの使用;
−タンパク質基質からタンパク質加水分解物を酵素的に生産する方法であって、タンパク質基質をプロリン特異的エンドプロテアーゼとインキュベートしてカルボキシ末端プロリンを有するペプチドに富むタンパク質加水分解物を生産する前記方法;
−本発明のプロリン特異的エンドプロテアーゼを含む酵素組成物であって、カルボキシ末端プロリンを有するペプチドのモル分率(%)が本発明のタンパク質又は加水分解物におけるプロリンのモル分率(%)の少なくとも二倍であるペプチドを含む、タンパク質加水分解物を生産し得る前記組成物;及び
−本発明のタンパク質加水分解物又は本発明の方法によって得られたタンパク質加水分解物、を含む食品:も提供する。
【図面の簡単な説明】
【0018】
【図1】発現プラスミドpGBFIN11−EPOのプラスミドマップである。Endo−Proはプロリン特異的エンドプロテアーゼを表す。
【図2】宿主株(A.ニガーCBS513.88)、及び、ここでは矢印で指し示したプロリン特異的エンドプロテアーゼを過剰発現する種々の形質転換体の、培養濾液のSDS−PAGE分析である。
【発明を実施するための形態】
【0019】
我々は、ペプチドのカルボキシ末端におけるプロリン残基の高出現率が、少ない苦味と相関し得ることを示した。さらに、プロリン特異的エンドプロテアーゼの高濃縮物すなわちJP5015314で特定された活性を数十倍上回る濃縮物と、それに加えてカルボキシペプチダーゼが存在しないことのみが、所望するカルボキシ末端プロリン残基の高出現率を達成できることを実証した。
【0020】
経済的な見地から、この知見の意味は、プロリン特異的エンドプロテアーゼを多量かつ相対的に純粋な形態で生産する改良された手法に対して、明確な必要性が存在するということである。これを実行する好ましい手段は、組換えDNA技術を用いて前記プロリン特異的エンドプロテアーゼの過剰産生を介することである。多くの食品は酸性であり、産業的、非無菌条件下における長期的酵素インキュベーションは、微生物混入を防ぐために酸性インキュベーション条件を必要とするので、さらに好ましい手段は、組換えDNA技術を用いて酸安定性プロリン特異的エンドプロテアーゼの過剰産生を介することである。特に好ましい手段はアスペルギルス由来のプロリン特異的エンドプロテアーゼの過剰産生を介することであり、最も好ましい手段はアスペルギルス・ニガー由来のプロリン特異的エンドプロテアーゼの過剰産生を介することである。後者手段を可能にするために、アスペルギルス由来のプロリン特異的エンドプロテアーゼのユニークな配列情報が必要不可欠である。さらに好ましくは、前記コード遺伝子の全ヌクレオチド配列が入手できなくてはならない。
【0021】
ひとたび新しい酵素が相対的に純粋な形態で入手可能になれば、技術的及び経済的利点を有する他の新しく驚くべき応用が考えられる。新しい応用は、普通でないアミノ酸組成物を有するタンパク質性基質から、苦味のない加水分解物を作り出すことであろう。普通でないアミノ酸組成物は、ある種の食品応用において重大な利益を提供し得る。例は、高レベルの疎水性アミノ酸残基を有するカゼイン、小麦グルテン又はトウモロコシのタンパク質単離物である。先行技術方法を用いる加水分解において生成する不快な苦味のために、今まで、このような基質は事実上有用でなかった。本発明の加水分解方法を用いると、新しく苦味のない加水分解物が入手可能となり、幼児栄養、臨床栄養、治療的食餌療法、消費者の食餌療法及びスポーツ栄養に用いることが可能となる。このような新しい加水分解物とは別に、酸性プロリン特異的エンドプロテアーゼだけの苦味減少効果を利用する応用も考えられる。例えば、チーズ又はヨーグルトにおいて熟成途中で生じ得る苦味を抑制することのように、発酵工程を必要とするタンパク質性食品にエンドペプチダーゼを取り込むこと。酵素改変されたチーズ製品又は風味生産のためのタンパク質加水分解物製品のようなプロテアーゼ処理を必要とするタンパク質性食品においても、本発明の酵素の取り込みは苦味を抑制することを助けるであろう。
【0022】
さらに、苦味を抑制することに直接的に関係しない利点についても検討する。そのような新しい応用の一つは、食物タンパク質のアレルゲン性を減少させるための、酵素と食物タンパク質とのインキュベーションである。種々の食物タンパク質は、プロリン豊富なペプチド配列を有するプロラミンを含む小麦グルテンのような、高アレルゲン性の細画分を含む。これらのタンパク質は、新しい酵素にさらされて、その抗原性を軽減し得る。別の新しい応用は全種類のパン生地への前記酵素の取り込みであり、このことが、得られたパンの腐敗を遅らせることが観察された。別の新しい応用は、プロリン豊富なペプチドを生成するためのプロリン特異的エンドプロテアーゼの使用である。このようなプロリン豊富なペプチドは、食欲抑制作用、繊維素溶解性効果、抗血栓性効果、降圧性効果、胃粘膜保護及び関節性リウマチ予防に結びついていると考えられているので、種々の食物又は栄養補助食品に対して望ましい添加物である。
【0023】
別の驚くべき応用は、タンパク質利用を高めるための、動物飼料に対する新しい酵素の添加である。例えば前記酵素の添加は、飼料タンパク質に存在する消化が困難なプロリン豊富な配列の消化性の改良、及び、高レベルのポリフェノールを含み安価に入手可能な植物性タンパク質の転換率の改良をもたらす。
【0024】
さらに別の新しい応用では、前記酵素をビール醸造に用いる。オオムギタンパク質はプロリン豊富な配列に富み、麦芽未処理の形態では、穀物タンパク質は、適切な発酵性ワートを作り出すために必要とされる遊離アミノ酸に分解することが非常に困難である。非常に驚くべきは、糖化過程への新しい酵素の取り込みは、挽いたが麦芽未処理のオオムギからアミノ酸の遊離を刺激することが示され、非常に多量の麦汁が得られたことである。同様な手段で、例えばソルガムのような安価で現地で利用可能な穀物を高い割合で含むマッシュからのビール発酵を改良することができる。
【0025】
これらの新しい応用の多くにおいて、プロリン特異的エンドプロテアーゼは好ましくは酸性の最適pHを有する活性範囲を示す。
【0026】
上述の問題を克服するために、本発明は、単離精製したプロリン特異的エンドプロテアーゼ単独の活性が、すなわち実質的な付随物又は外部タンパク質分解酵素の二次活性なしで、タンパク質加水分解物の著しく苦味除去することに充分であることを実証する。従ってプロリン特異的エンドプロテアーゼは、本発明の酵素調製品をタンパク質1グラムあたり少なくとも5ユニット、好ましくは10U/g、より好ましくは25U/g、さらに好ましくは50U/g含み得る。さらに、本発明に従って行われる研究は、付随物又は外部タンパク質分解酵素の二次活性が存在しないことを意味する、単離精製したプロリン特異的エンドプロテアーゼ単独の活性が、タンパク質加水分解物の全体的な免疫原性レベルを著しく減少させ、酸性条件下で全体的な可溶性を著しく増加することに充分であることを実証する。本発明に従って生産した加水分解物は、カルボキシ末端プロリン残基を有するペプチドに富む。
【0027】
本発明の態様は、実質的なレベルの遊離アミノ酸の付随的な産生なしで顕著に少ない苦味及び低アレルゲン性の特性を有するタンパク質加水分解物製品の高収率のための、単離精製したプロリン特異的エンドプロテアーゼを含む酵素混合物を提供する。この酵素混合物は、多様なタンパク質画分の加水分解物を調製するのに適切である。特に、乳タンパク質のようなタンパク質基質を単離精製したプロリン特異的エンドプロテアーゼ及びサブチリシンと共にインキュベートして、カルボキシ末端プロリンを有するペプチド断片に富むタンパク質加水分解物を生産し得る。「富む」という用語は、酵素切断した加水分解生成物のうち少なくとも8%のペプチド断片が、カルボキシ末端プロリン残基を所有することを意味することを意図する。
【0028】
本発明は、タンパク質を加水分解することによって得られ、カルボキシ末端プロリンを有するペプチドのモル分率(%)が加水分解物を生産するために用いたタンパク質基質におけるプロリンのモル分率(%)の少なくとも二倍であるペプチドを含む、タンパク質加水分解物を提供する。
【0029】
前記加水分解物中に存在するペプチドの平均の長さは、通常3〜9アミノ酸である。
【0030】
本発明の好ましい加水分解物は:カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも8%、好ましくは少なくとも15%、より好ましくは30〜70%であるペプチドを含む乳清加水分解物、カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも25%、好ましくは30〜70%であるペプチドを含むカゼイン加水分解物、及び、カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは30〜70%であるダイズ加水分解物である。
【0031】
ペプチド又はペプチド断片は、分子量400〜2000ダルトンのペプチドを意味する。これらのペプチドは、「材料及び方法」の節に記述するように、LC/MC分析により分析することができる。
【0032】
一般に本発明のタンパク質加水分解物製品において、タンパク質基質は実質的に、有利には少なくとも50%加水分解される。好ましくはタンパク質基質の少なくとも10%が、分子量400〜2000ダルトンのペプチドに変換される。より好ましくは20〜90%、さらに好ましくは30〜80%のタンパク質基質が、前記ペプチドに変換される。
【0033】
本発明の別の態様では、タンパク質基質を、単離精製されたプロリン特異的エンドプロテアーゼ、セリンエンドプロテアーゼ又はメタロエンドプロテアーゼ、及び、カルボキシペプチダーゼと共にインキュベートしてもよく、カルボキシ末端プロリンを有するペプチド断片に富むタンパク質加水分解物を生産し得る。
【0034】
本発明の酵素混合物は、スポーツ飲料及びジュースをベースにした飲み物の風味増強及び栄養価増強を意図するタンパク質加水分解物の生産における使用に、特に適している。
何故なら、非常に少ない苦味特性及び前記飲み物の一般的酸性条件下での優れた溶解性を兼備する、加水分解ペプチド混合物が得られるからである。本発明の酵素混合物は、プロリン特異的エンドプロテアーゼ(E.C.3.4.21.26)と併せて、例えばセリンプロテアーゼ又はメタロエンドプロテアーゼといった少なくとも一つのエンドプロテアーゼを含み、一次加水分解物を提供することを特徴とする。さらに具体的には、本発明は単離精製されたプロリン特異的エンドプロテアーゼとセリンプロテアーゼ又はメタロプロテアーゼとの酵素混合物に関し、この酵素混合物は、ペプチド断片の少なくとも8%、好ましくは少なくとも15%、より好ましくは30〜70%がカルボキシ末端プロリンを有するペプチド断片を含むタンパク質加水分解物を生産し得る。
【0035】
本発明の別の態様は、カルボキシ末端アミノ酸残基としてプロリンを有するペプチドがかなり豊富なタンパク質加水分解物である。このような富裕な加水分解物は、カルボキシ末端プロリン残基を有するペプチド断片を少なくとも8%、好ましくは少なくとも15%、より好ましくは30〜70%含み得る。典型的にタンパク質加水分解物の生成に利用される酵素調製品は、カルボキシ末端にプロリン残基を有するペプチドを生成できないため、このようなペプチドを相対的に豊富に含むタンパク質加水分解物は新規である。
【0036】
本発明の酵素混合物による加水分解のための基質は、乳、脱脂粉乳、酸性カゼイン、レンネット・カゼイン、酸性乳清製品又はチーズ乳清製品を含む。非常に驚くべきことに、アスペルギルス由来のプロリン特異的エンドプロテアーゼはプロリン残基のカルボキシ末端側だけでなく、ゼラチン及び残留肉を含む骨又は魚の骨のような、酵素にとって興味深い基質である他のコラーゲンベースの動物性タンパク質を形成するヒドロキシプロリン残基のカルボキシ末端側も切断する。さらに、小麦グルテン、挽いたオオムギ、及び、例えばダイズ、コメ又はトウモロコシから得られるタンパク質画分のような植物性基質も、適切な基質である。本発明に従って生産した乳タンパク質加水分解物は、付加的な濾過又は精製の工程を用いても用いなくても、幼児栄養のための低アレルギー誘発性加水分解物、経腸栄養及び食餌療法栄養のための基礎的加水分解物、及び、多様な形態をとる健康食品のためのタンパク質濃縮物のような、種々の特殊性食品に使用され得る。このように、本発明のタンパク質加水分解物は、幼児用調製粉乳のような低抗原性を有する食品原料を生産することに用いられ得る。加えて本発明の酵素調製品は、少なくとも一つのタンパク質加水分解物により風味付けされた食物において、たとえそのタンパク質加水分解物が大量に存在していても、苦味を減少することに用いられ得る。例えば、食物がタンパク質加水分解物を5%〜10%(w/v)含み得てもなお、本発明の酵素調製品を用いて、この苦味を減少することができる。
【0037】
本発明は、多様な食品応用に対するタンパク質加水分解物調製のための、酸性最適pHを有する単離精製されたプロリン特異的エンドプロテアーゼを単独で、又は、一つ以上の付加的酵素を含む組成物として提供する。この単離精製されたプロリン特異的エンドプロテアーゼは、タンパク質性材料1グラムあたり少なくとも10ユニットのプロリン特異的エンドプロテアーゼ活性を有することで定義される。材料及び方法の節に明記されるように、これらユニット数は、合成ペプチドZ−Gly−Pro−pNAを用いて37℃にて、プロリン特異的エンドプロテアーゼの最適pHがpH6より低い場合はpH5において測定されるべきであり、例えばアスペルギルス・ニガーのプロリン特異的エンドプロテアーゼ又はその他の場合はpH=7においてユニット数が測定されるべきである。この単離精製された酵素は、単独又は酵素混合物で、本技術分野で既知である酵素混合物の幾つかの不利益を克服する。最も重要なのは、本発明の単離精製されたプロリン特異的エンドプロテアーゼが、低アレルゲン性の素質、高収率及び少ない苦味特性を併せ持つ加水分解物の生産における鍵であるということである。さらに、単離精製されたプロリン特異的エンドプロテアーゼ又は前記プロリン特異的エンドプロテアーゼを含む酵素混合物によって生産された加水分解物は、酸安定性であって、非常に低レベルの遊離アミノ酸を含み、吹き付け乾燥又は製品殺菌のような加熱工程の間に生成される異風味を最小限にする。本発明の加水分解物は、乾燥粉末1グラムあたり900マイクロモルより少ない遊離アミノ酸を、好ましくは乾燥粉末1グラムあたり300マイクロモルより少ない遊離アミノ酸を、より好ましくは乾燥粉末1グラムあたり150マイクロモルより少ない遊離アミノ酸を、さらに好ましくは乾燥粉末1グラムあたり50マイクロモルより少なく遊離アミノ酸を含むであろう。
【0038】
本発明の酵素混合物は、セリンプロテアーゼ又はメタロプロテアーゼのような別のエンドプロテアーゼと併せて単離精製プロリン特異的エンドプロテアーゼ(E.C.3.4.21.26)を含むことを特徴とし、これらは共に働いて一次タンパク質加水分解物を生じさせる。
【0039】
セリンプロテアーゼはよく知られるアルカリエンドプロテアーゼのクラスを表し、サブチリシン(E.C.3.4.21.26)及びキモトリプシン(E.C.3.4.21.1)のような最も重要な代表物の幾つかは、ペプチド鎖をTyr、Trp、Phe及びLeuのような疎水性アミノ酸のカルボキシ末端側で切断することを好む。本発明の酵素混合物は、キモトリプシン及び/又はサブチリシンを含み得る。サブチリシンはバチルス種によって生産され、特に広い範囲の基質特異性及び広い範囲のアルカリ性最適pHを有する。この酵素は、50℃〜60℃で最適に作用する。この酵素は定番の市販製品として安価に入手可能であり、例えば種々の乳加水分解物の生産に有用である。キモトリプシンは動物の膵臓から得ることができ、サブチリシンより僅かにアルカリ性のpH値において幾らか狭い範囲の基質特異性を有し、50℃より下で最適に作用する。
【0040】
メタロエンドプロテアーゼのクラスは、細菌、真菌及び高等生物において幅広く存在する。これらは中性メタロプロテアーゼ及び酸性メタロプロテアーゼに分類することができる。これら二つのサブクラスのうち中性のプロテアーゼのみが、所望の切断選択(preference)、すなわちPhe及びLeuのような疎水性アミノ酸残基のカルボキシ末端側におけるペプチド鎖の切断を示す。中性メタロプロテアーゼのカテゴリーの良く知られる代表物はバシロリシン(bacillolysin)(E.C.3.4.24.28)及びサーモリシン(E.C.3.4.24.27)であり、これらのいずれか又は両方が、本発明の酵素混合物に存在し得る。両酵素はバチルス種から得られ、中性又は僅かにアルカリ性の条件下で最大の活性を示す。中性のメタロエンドプロテアーゼのあまり良く知られていない代表物は、アスペルギルス種から得られた。プロリン特異的エンドヌクレアーゼが、その苦味除去効果のために用いられず、プロリン豊富なタンパク質配列の加水分解を助けるために用いられる場合は、例えばデューテロリジン(deuterolysine)(EC3.4.24.39)のような酸性メタロプロテアーゼのクラスとの組合せが有益であり得る。
【0041】
プロリン特異的エンドプロテアーゼは、ペプチド又はポリペプチドをプロリン残基のカルボキシ末端側で切断し得るエンドプロテアーゼである。この酵素は動物及び植物において広く見出されるが、微生物における存在は限られているようである。今日までに、プロリン特異的エンドプロテアーゼは、アスペルギルス種(EP0522428)、フラボバクテリウム種(EP0967285)、アエロモナス種(J.Biochem.113,790−796)、ザントモナス種及びバクテロイド種において同定された。これらの生物の大部分に由来するプロリン特異的酵素はpH8付近で作用するが、アスペルギルスの酵素はpH5付近で最適に作用する。好ましい態様によると、7より低い最適pHを有する、好ましくは最適pH3.5〜6.5を有するプロリン特異的エンドプロテアーゼが、この酵素の技術的及び経済的利点から用いられる。本発明のプロリン特異的エンドプロテアーゼは、前記微生物種の一つ、特にアスペルギルス種から単離され得る。好ましくは、プロリン特異的エンドプロテアーゼがアスペルギルス・ニガーの菌株から単離される。より好ましくは、プロリン特異的エンドプロテアーゼをコードする遺伝子を過剰発現するように遺伝子工学で作り変えられたアスペルギルス・ニガー宿主からプロリン特異的エンドプロテアーゼが単離されるが、E.coliのような他の宿主も適切な発現ベクターである。例えば、特にE.coliにおけるフラボバクテリウム由来のプロリン特異的エンドプロテアーゼのクローニング及び過剰産生が、ある種のプロリン特異的エンドプロテアーゼを純粋な形態で入手することを可能にしている。このような過剰産生構築物の一例は、World Journal of Microbiology & Biotechnology,Vol11,pp209−212で提供される。アスペルギルス・ニガー宿主は、好ましくは、A.ニガープロリン特異的エンドプロテアーゼをコードする遺伝子の発現を操作するためにA.ニガープロモーターを利用する非組換え自己構築物を生産することに用いられる。
【0042】
プロリン特異的エンドプロテアーゼのクローニング及び産生に関連する科学文献の大部分は、生物的に活性なタンパク質の合成及び調節におけるこの酵素の役割に焦点を合わせている。この酵素を有用なタンパク質加水分解物の産生に結び付ける文献は多くなく、このことが、エキソプロテアーゼと組合せた前記酵素の使用に関わる。種々の日本の文献は、少ない苦味特性を有する加水分解物を生産し得る未精製な複合的酵素混合物におけるプロリン特異的エンドプロテアーゼ活性の存在に言及しているが、用いられた酵素混合物は常にエキソプロテアーゼを含んでいる。カルボキシペプチダーゼ又はアミノペプチダーゼのようなエキソプロテアーゼが存在しない場合の苦味除去とプロリン特異的エンドプロテアーゼ活性との間の直接的関連性は、本技術分野において示唆されていない。さらに、プロリン特異的エンドプロテアーゼ活性を用いて生産される、減少した免疫原性応答又は改良された酸可溶性を有する加水分解物に結びつくデータは、これまでに記述されていない。
【0043】
プロリン特異的エンドプロテアーゼを有する本発明のポリペプチドは、単離された形態で存在し得る。本明細書に定義するように、単離されたポリペプチドは内因的に産生されたポリペプチド又は組換えポリペプチドであって、本質的には他の非プロリン特異的エンドプロテアーゼポリペプチドを含まず、SDS−PAGEによって判定される場合に典型的には少なくとも約20%純粋であり、好ましくは少なくとも約40%純粋であり、より好ましくは少なくとも約60%純粋であり、さらに好ましくは少なくとも約80%純粋であり、なおさら好ましくは約90%純粋であり、最も好ましくは約95%純粋である。このポリペプチドは、遠心分離及びクロマトグラフ法、又は、未精製溶液から純粋なタンパク質を得るために本技術分野で知られる他の手法によって、単離され得る。ポリペプチドは、ポリペプチドが意図する目的に干渉しないキャリアー又は希釈物と混合され得ることが理解され、従ってこのような形態のポリペプチドであっても単離されているとみなされ得る。一般に、調製品にポリペプチドは20%より多く含まれ、調製品中のタンパク質の例えば30質量%、40質量%、50質量%、80質量%、90質量%、95質量%又は99質量%は、本発明のポリペプチドである。
【0044】
好ましくは、本発明のポリペプチドは、プロリン特異的エンドプロテアーゼ活性を有する酵素をコードする遺伝子を所有する微生物から得ることができる。より好ましくは前記微生物は真菌であり、最適には糸状真菌である。従って好ましい生物は、アスペルギルス・ニガー種の真菌のような、アルペルギルス属である。
【0045】
第一態様において本発明は、配列番号2の1〜526アミノ酸(すなわちポリペプチド)に対して少なくとも約40%、好ましくは少なくとも約50%、好ましくは少なくとも約60%、好ましくは少なくとも約65%、好ましくは少なくとも約70%、より好ましくは少なくとも約80%、さらに好ましくは少なくとも約90%、なおさら好ましくは少なくとも約95%、最も好ましくは少なくとも約97%のアミノ酸配列同一性を有するアミノ酸配列を有し、プロリン特異的エンドプロテアーゼ活性を有する単離ポリペプチドを提供する。
【0046】
本発明の目的のために、2つ以上のアミノ酸配列間における同一性の程度は、行列Blosum62及び期待閾値10を用いてBLAST Pタンパク質データベース検索プログラム(Altschul et al.,1997,Nucleic Acids Research 25:3389−3402)によって決定される。
【0047】
本発明のポリペプチドは、配列番号2若しくは実質的に相同な配列、又はプロリン特異的エンドプロテアーゼ活性を有する前記いずれかの配列の断片で示されるアミノ酸配列を含み得る。一般的に、配列番号2で示される天然に存在するアミノ酸配列が、好ましい。
【0048】
本発明のポリペプチドは、配列番号2のポリペプチドの、天然に存在する変異体又は種相同体も含み得る。
【0049】
変異体は、プロリン特異的エンドプロテアーゼ活性及び配列番号2のタンパク質と実質的な類似配列を有する変異体であって、例えば真菌細胞、細菌細胞、酵母菌細胞又は植物細胞において、天然に存在するポリペプチドである。「変異体」という用語は、配列番号2のプロリン特異的エンドプロテアーゼと同じ本質的特性又は基礎生物的機能を有するポリペプチドを言い、対立遺伝子の変異体を含む。配列番号2のプロリン特異的エンドプロテアーゼの本質的特性は、タンパク質又は(ポリ)ペプチドからアミノ末端アミノ酸を切断し得る酵素であることである。好ましくは、変異体ポリペプチドは、少なくとも配列番号2のポリペプチドと同レベルのプロリン特異的エンドプロテアーゼ活性を有する。変異体は、配列番号2のポリペプチドと同じ菌株、又は、同属若しくは同種の異なる菌株のいずれかに由来する対立遺伝子の変異体を含む。
【0050】
同様に、本発明のタンパク質の種相同体は、プロリン特異的エンドプロテアーゼであってアスペルギルスの別種において天然に存在する、類似配列の等価なタンパク質である。
【0051】
変異体及び種相同体は、本明細書に記述され配列番号2のポリペプチドを単離することに用いられる手段を用い、例えば細菌細胞、酵母菌細胞、真菌細胞又は植物細胞といった適切な細胞起源における前記手段を行って単離することができる。配列番号2のポリペプチドの変異体又は種相同体を発現しているクローンを得ることを目的として、酵母菌細胞、細菌細胞、真菌細胞又は植物細胞から作成したプローブライブラリーに対する本発明のプローブを用いることも可能である。これらのクローンは本発明のポリペプチドを作成する従来技術によって操作可能であり、その後前記ポリペプチドは本来知られた組換え技術又は合成技術によって生産され得る。
【0052】
配列番号2のポリペプチドの配列、並びに、その変異体及び種相同体は、本発明のポリペプチドを提供するために改変することも可能である。アミノ酸置換は、例えば1、2又は3〜10、20又は30の置換で行ってよい。同数の欠失及び挿入を行うこともできる。改変されたポリペプチドがそのプロリン特異的エンドプロテアーゼ活性を保持するように、これらの変更は、ポリペプチドの機能に対して重要な領域の外側で行なうことができる。
【0053】
本発明のポリペプチドは、配列番号2に示される配列の断片を含む、上述の完全長ポリペプチド又はそれら変異体断片を含む。そのような断片は、典型的にプロリン特異的エンドプロテアーゼとしての活性を維持するであろう。断片は、少なくとも50、100又は200のアミノ酸長であり得るか、又は、配列番号2に示される完全長配列の短いものである前記の数のアミノ酸であり得る。
【0054】
本発明のポリペプチドは、必要であれば合成方法によって生産することもできるが、通常は以下に記述するように組換え的に作られ得る。合成ポリペプチドは、例えば、同定若しくは精製を補助するためのヒスチジン残基付加若しくはT7タグ付加、又は、細胞からの分泌を促進するためのシグナル配列付加によって改変され得る。
【0055】
このように変異体配列は、配列番号2のポリペプチドが単離された菌株以外のアスペルギルス株に由来するものを含み得る。変異体は、本明細書に記述されるように、プロリン特異的エンドプロテアーゼ活性の探索、クローニング及びシークエンシングによって、その他アスペルギルス株から同定することができる。変異体は、配列番号2のプロリン特異的エンドプロテアーゼの基礎生物的機能性を維持するペプチドである限りは、タンパク質配列中の一アミノ酸又はアミノ酸群の、欠失、変異又は付加を含み得る。
【0056】
例えば1、2又は3〜10、20又は30のアミノ酸置換を行うことができる。改変ポリペプチドは、一般的にプロリン特異的エンドプロテアーゼ活性を維持する。保存的置換は、この技術分野においてよく知られるこのような置換を行い得る。置換は、ポリペプチドのフォールディング及び活性に影響しないのが好ましい。
【0057】
より短い長さのポリペプチド配列は、本発明の範囲に含まれる。例えば、少なくとも50アミノ酸又は60、70、80、100、150若しくは200アミノ酸までの長さのポリペプチドは、配列番号2のプロリン特異的エンドプロテアーゼの基礎生物的機能性を実証する限りは、本発明の範囲内に含まれると考える。特に本発明のこの側面は、タンパク質が完全タンパク質配列の断片である状況を含むが、これに限られない。
【0058】
第二態様では、本発明は、プロリン特異的エンドプロテアーゼ活性を有する単離ペプチドであって、低ストリンジェンシー条件下、より好ましくは中ストリンジェンシー条件下、最も好ましくは高ストリンジェンシー条件下で(i)配列番号1の核酸配列、又は、少なくとも配列番号1のc末端部分を含むが配列番号1の塩基の全部より少ない塩基若しくは異なる塩基を有する核酸断片、又は(ii)配列番号1に対して相補性である核酸鎖と、ハイブリダイズする又はハイブリダイズし得るポリヌクレオチドによってコードされる、前記単離ペプチドを提供する。
【0059】
「ハイブリダイズし得る」という用語は、本発明の標的ポリヌクレオチドが、プローブとして用いられた核酸(例えば、配列番号1に示されるヌクレオチド配列若しくはそれらの断片、又は、配列番号1の相補鎖)とバックグラウンドより実質的に上のレベルでハイブリダイズすることができることを意味する。本発明は、本発明のプロリン特異的エンドプロテアーゼをコードするポリヌクレオチド、及び、その相補的なヌクレオチド配列も含む。ヌクレオチド配列は、RNA、又は、ゲノムDNA、合成DNA若しくはcDNAを含むDNAであり得る。好ましくはヌクレオチド配列がDNAであり、最も好ましくはゲノムDNA配列である。
【0060】
典型的に本発明のポリヌクレオチドは、選択的条件下において配列番号1のコード配列、又は、配列番号1のコード配列の相補鎖にハイブリダイズし得るヌクレオチドの近接配列を含む。そのようなヌクレオチドは、本技術分野においてよく知られる方法に従って合成することができる。
【0061】
本発明のポリヌクレオチドは、配列番号1のコード配列、又は、配列番号1のコード配列の相補鎖とバックグラウンドより実質的に上のレベルでハイブリダイズすることができる。バックグラウンドのハイブリダイゼーションは、例えば、cDNAライブラリーに存在する他のcDNAによって、起り得る。本発明のポリヌクレオチドと、配列番号1のコード配列若しくは配列番号1のコード配列の相補鎖との間の相互作用によって生成されるシグナルレベルは、他のポリヌクレオチドと配列番号1のコード配列間相互作用の典型的には少なくとも10倍、好ましくは少なくとも20倍、より好ましくは少なくとも50倍、さらに好ましくは少なくとも100倍大きい。相互作用強度は、例えば32Pを用い、例えばプローブを放射能標識することによって測定し得る。選択的ハイブリダイゼーションは、典型的には、低ストリンジェンシー(0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム、約40℃)、中ストリンジェンシー(例えば、0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム、約50℃)、又は高ストリンジェンシー(例えば、0.3M塩化ナトリウム、0.03Mクエン酸ナトリウム、約60℃)条件を用いて達成され得る。
【0062】
修飾
本発明のポリヌクレオチドは、DNA又はRNAを含み得る。これらは、一重鎖又は二重鎖であり得る。これらは、ペプチド核酸を含む、合成ヌクレオチド又は修飾ヌクレオチドを、その中に含むポリヌクレオチドであってもよい。ポリヌクレオチドに対する幾つかの異なる種類の修飾が、本技術分野において知られている。それらは、メチルホスホネート骨格及びホスホロチオネート骨格、並びに、分子の3’及び/又は5’末端におけるアクリジン鎖又はポリリジン鎖の付加を含む。本発明の目的に対して、本明細書に記述されるポリヌクレオチドは、本技術分野において利用可能な方法によって修飾され得ることが理解されるべきである。
【0063】
当業者であれば、日常的な技術を用いて、本発明のポリヌクレオチドによってコードされるポリペプチド配列に影響を与えないヌクレオチド置換を行って、本発明のポリペプチドを発現させる特定の宿主生物のコドン使用頻度を反映させることができることを、理解するであろう。
【0064】
配列番号1のコード配列は、例えば1、2又は3〜10、25、50又は100置換といったヌクレオチド置換によって、改変され得る。配列番号1のポリヌクレオチドは、一つ以上の挿入及び/又は欠失、及び/又は、片方若しくは両方の末端における延長によって、選択的又は付加的に改変され得る。改変されたポリヌクレオチドは、一般的に、プロリン特異的エンドプロテアーゼ活性を有するポリペプチドをコードする。行われ得る縮退置換及び/又は行われ得る置換は、例えば後でポリペプチドに関連して議論されるように、修飾された配列を翻訳する際に保存的アミノ酸置換を生じさせるであろう。
【0065】
相同体
配列番号1のDNAコード配列相補鎖に対して選択的にハイブリダイズし得るヌクレオチド配列は、本発明に含まれ、一般的に、配列番号1の少なくとも60、好ましくは少なくとも100、より好ましくは少なくとも200の連続ヌクレオチド領域にわたるコード配列、最も好ましくは配列番号1の完全長にわたるコード配列に対して、少なくとも50%若しくは60%、少なくとも70%、少なくとも80%、少なくとも90%、少なくとも95%、少なくとも98%又は少なくとも99%の配列同一性を有し得る。同様に、活性プロリン特異的エンドプロテアーゼをコードし、配列番号1のDNAコード配列相補鎖断片に対して選択的にハイブリダイズし得るヌクレオチド配列も、本発明に包含される。60ヌクレオチド、好ましくは100ヌクレオチドにわたって少なくとも80%若しくは90%同一である、より好ましくは200ヌクレオチドにわたって少なくとも90%同一である配列番号1の核酸配列のC末端断片は、本発明に含まれる。
【0066】
上述の同一性の程度と最小サイズとの組合せは、好まれるさらにストリンジェントな組合せ(すなわち、高い同一性、及び、より長い全長)と共に、本発明のポリヌクレオチドを定義することに用いられ得る。このように、例えば、60ヌクレオチド、好ましくは100ヌクレオチドにわたって少なくとも80%又は90%同一であるポリヌクレオチドが、200ヌクレオチドにわたって少なくとも90%同一であるポリヌクレオチドといった本発明の一つの側面を形成する。
【0067】
UWGCGパッケージは、同一性を計算することに用いられ得る(例えば、このデフォルト設定に用いられる)BESTFITプログラムを提供する。
【0068】
PILEUPアルゴリズム及びBLAST Nアルゴリズムは、配列同一性を計算すること又は配列を整列させること(例えばそのデフォルト設定において、等価な配列又は対応する配列を同定することのような)にも用いることができる。
【0069】
BLAST解析を行うためのソフトウエアは、バイオテクノロジー情報のためのナショナル・センター(National Center for Biotechnology Information)(http://www.ncbi.nlm.nih.gov/)を通じて、公的に入手することが可能である。このアルゴリズムは最初に、データベース配列中の同じ長さのワードと整列させたときに、陽性と評価すべきある閾値(threshold)スコアTに適合する又は満たす長さWの短いワードを問い合わせ配列中に同定することによって、ハイスコアリング・シークエンスペア(HSP)を明らかにすることを含む。Tは、近傍(neighborhood)ワードスコア閾値と称される。これらの初期ヒット近傍ワードが、含まれるHSPを見出す検索を開始するためのシード(seed)として働く。ヒットしたワードは、累積アラインメントスコアを増加可能な範囲まで、各配列に沿って両方向に延長される。ヒットしたワードの各方向における延長は、次の場合に停止される:累積アラインメントスコアが、その最大達成値から量X低下した場合;一つ以上の負に評価された残基アラインメントの蓄積により、累積スコアが0若しくはそれより下った場合;又は、いずれかの配列の末端に到達した場合。BLASTアルゴリズムパラメーターW、T及びXは、アラインメントの感度及び速度を決定する。BLASTプログラムは、デフォルトとして、ワード長(W)11、BLOSUM62スコアリング行列アラインメント(B)50、期待値(E)10、M=5、N=4、及び両鎖の比較を用いる。
【0070】
BLASTアルゴリズムは、二つの配列間における類似性の統計的解析を行う。BLASTアルゴリズムによって提供された類似性の測定値の一つは最小合計確率(P(N))であり、これは二つのヌクレオチド配列間の適合又は二つのアミノ酸配列間の適合が偶然起こる確率の指標を提供する。例えば、第一配列の第二配列に対する比較において最小合計確率が約1より少なく、好ましくは約0.1より少なく、より好ましくは約0.01より少なく、最も好ましくは約0.001より少ない場合に、ある配列が別の配列に類似していると考えられる。
【0071】
プライマー及びプローブ
本発明のポリヌクレオチドは、例えばポリメラーゼ連鎖反応(PCR)プライマーとして、選択的増幅反応のためのプライマーとして、又は、例えば放射活性若しくは非放射活性標識を用いた従来方法により露呈標識で標識したプローブとして用いることができ、また、本ポリヌクレオチドはベクターにクローン化することができる。そのようなプライマー、プローブ及びその他断片は、長さが少なくとも15ヌクレオチド、例えば少なくとも20、25、30又は40ヌクレオチドであり得る。これらは、典型的には長さが40、50、60、70、100、150、200若しくは300までのヌクレオチド、又は、配列番号1のコード配列より僅かな数のヌクレオチド(5ヌクレオチド若しくは10ヌクレオチドのような)短いだけであり得る。
【0072】
一般的に、プライマーは、一度に一つのヌクレオチドのように、所望する核酸配列の段階的製造に関する合成方法によって生成され得る。この用いられる自動化されたプロトコルを達成するための技術は、本技術分野において容易に入手可能である。長いポリヌクレオチドは通常、例えばPCRクローニング技術の使用といった組換え方法を用いて作成される。これは、クローニングされるプロリン特異的エンドプロテアーゼの所望する領域を増幅するためのプライマー対(典型的には約15〜30ヌクレオチド)を作成すること、酵母菌細胞、細菌細胞、植物細胞、原核生物細胞又は真菌細胞、好ましくはアスペルギルス株の真菌細胞から得られたmRNA、cDNA又はゲノムDNAと前記プライマーを接触させること、所望する領域の増幅に適切な条件下でポリメラーゼ連鎖反応を行うこと、増幅した断片を単離すること(例えば、アガロースゲル上で反応混合物を精製することによって)、及び、増幅したDNAを回収することを含む。前記プライマーは、適切な制限酵素認識部位を含むように設計してもよく、それにより増幅されたDNAを適切なクローニングベクターにクローン化することができる。
【0073】
そのような技術は、本明細書に記述されるプロリン特異的エンドプロテアーゼ配列をコードするポリヌクレオチドの全部又は一部を得ることに用いられ得る。イントロン、プロモーター及び終端領域は本発明の範囲内に含まれ、真菌細胞、酵母菌細胞、細菌細胞、植物細胞又は原核生物細胞からのゲノムDNAを始めとする類似様式(例えば、組換え方法、PCR又はクローニング技術によって)でも得られ得る。
【0074】
ポリヌクレオチド又はプライマーは、露呈標識を有し得る。適切な標識は、32P若しくは35Sのような放射性同位体、酵素標識、又は、ビオチンのようなその他タンパク質標識を含む。そのような標識は、本発明のポリヌクレオチド又はプライマーに付け加えられ、当業者に知られた技術を用いて検出し得る。
【0075】
標識若しくは非標識のポリヌクレオチド若しくはプライマー(又はそれらの断片)は、真菌サンプル中のプロリン特異的エンドプロテアーゼ若しくはその変異体を検出若しくはシークエンシングするために、核酸を基礎とする試験に用いられ得る。このような検出試験は、一般的に、対象とするDNAを含むことが疑われる真菌サンプルを本発明のポリヌクレオチド又はプライマーを含むプローブと共にハイブリダイズする条件下で接触させること、及び、サンプル中のプローブと核酸間で形成された二重鎖を検出することを含むであろう。PCRのような技術を用いて、又は、固形支持体にプローブを固定しプローブとハイブリダイズしないサンプル中の核酸を除去してプローブとハイブリダイズする核酸を検出することによって、検出を達成し得る。あるいは、サンプルの核酸を固形支持体に固定し、プローブをハイブリダイズさせ、結合しないプロープを除去した後の前記支持体に結合したプローブの量を検出してもよい。
【0076】
本発明のプローブは、適切な容器に入った試験キットの形態で使用し易く包装され得る。このキットにおいて、設計されたキットのためにアッセイ形式が必要とする場合、プローブは固体支持体に結合され得る。このキットは、探索されるサンプルを処理するのに適切な試薬、プローブをサンプル中の核酸とハイブリダイズさせるのに適切な試薬、制御試薬、取り扱い説明書等も含み得る。本発明のプローブ及びポリヌクレオチドは、微量検定法にも用いられ得る。
【0077】
好ましくは、本発明のポリヌクレオチドは、ポリペプチドと同じ生物、例えば真菌、特にアスペルギルス属の真菌のような、から得ることができる。
【0078】
本発明のポリヌクレオチドは、プロリン特異的エンドプロテアーゼ活性を有するポリペプチドをコードする配列番号1の配列の変異体も含む。変異体は、付加、置換、及び/又は、欠失によって形成され得る。従って、配列番号1のコード配列の前記変異体は、プロリンのカルボキシ末端側でポリペプチド鎖を消化する能力を有するポリペプチドをコードし得る。
【0079】
ポリヌクレオチドの生成
配列番号1と100%の同一性を有していないが本発明の範囲内に含まれるポリヌクレオチドは、幾つかの手段によって得ることができる。従って、本明細書に記述されるプロリン特異的エンドプロテアーゼ配列の変異体は、例えば、本発明のポリペプチドの起源として議論されるような範囲の生物から作成されるゲノムDNAライブラリーの探索によって得られ得る。加えて、他の真菌、植物または原核生物のプロリン特異的エンドプロテアーゼ相同体が得られ、このような相同体及びそれらの断片は、一般的に配列番号1とハイブリダイズし得る。このような配列は、他の種に由来するcDNAライブラリー又はゲノムDNAライブラリーの探索、及び、低、中〜高ストリンジェンシー条件下(先に述べたような)での配列番号1の全部又は一部を含むプローブを有する前記ライブラリーの探索によって得られ得る。配列番号1の全部又は一部を含む核酸プローブは、本発明のポリペプチドの起源として記述されるような他の種から、cDNAライブラリー又はゲノムライブラリーを探索することに用いられ得る。
【0080】
種相同体は、保存されたアミノ酸配列をコードする変異体及び相同体に含まれる配列を標的とするように設計されたプライマーを用いる、縮退PCRを用いても得られ得る。このプライマーは、一つ以上の縮退位置を含むことができ、既知配列に対する単一配列プライマーで配列をクローニングするために用いられるよりも低いストリンジェンシー条件で用いられるであろう。
【0081】
あるいは、そのようなポリヌクレオチドは、プロリン特異的エンドプロテアーゼ配列又はそれらの変異体の部位特異的変異誘発によって得られ得る。これは、例えば、ポリヌクレオチド配列が発現している特定の宿主細胞に対してコドン優先度を最適化する配列へのサイレントコドンの交換が必要とされる場合に、有用であり得る。他の配列変化は、制限酵素認識部位を導入すること、又は、ポリヌクレオチドによってコードされたポリペプチドの特性若しくは機能を変えることを目的として、行われ得る。
【0082】
本発明は、本発明のポリヌクレオチド及びその相補鎖を含む、二重鎖ポリヌクレオチドを含む。
【0083】
本発明は、上述の本発明のポリペプチドをコードするポリヌクレオチドも、提供する。そのようなポリヌクレオチドは、本発明のポリペプチドの組換え的産生のための配列として有用であり、通常は望ましいであろうが、配列番号1の配列とハイブリダイズする能力を必要としない。そうでなければ、そのようなポリヌクレオチドは、必要に応じて上述のように標識され、使用され、作成され得る。
【0084】
組換えポリヌクレオチド
本発明は、クローニングベクター及び発現ベクターを含む本発明のポリヌクレオチドを含むベクター、及び、別の側面においては例えば、本発明のポリペプチドが発現する若しくは本発明の配列によってコードされるポリペプチドが発現する条件下で適切な宿主細胞において前記ベクターを増殖させる方法、トランスフォーメーションする方法若しくはトランスフェクションする方法も提供する。本発明のポリヌクレオチド又はベクターを含む宿主細胞も提供され、このポリヌクレオチドは宿主細胞ゲノムに対して異種である。「異種」という用語は、通常宿主細胞に関連し、宿主細胞ゲノムに天然に存在しないポリヌクレオチド、又は、宿主細胞により天然に産生されないポリペプチドを意味する。好ましくは、宿主細胞は酵母菌細胞であり、例えばクルイベロマイセス(Kluyveromyces)属若しくはサッカロマイセス(Saccharomyces)属の酵母菌細胞、又は、例えばアスペルギルス属の糸状真菌細胞である。
【0085】
本発明のポリヌクレオチドは、例えばクローニングベクター又は発現ベクターといった組換え複製可能なベクターに組み込むことができる。このベクターは、適合性の宿主細胞において核酸を複製することに用いられ得る。従って、さらなる態様で本発明は、本発明のポリヌクレオチドを複製可能なベクターに導入すること、前記ベクターを適合性の宿主細胞に導入すること、及び、前記ベクターの複製を誘発する条件下で前記宿主細胞を増殖させることによって、本発明のポリヌクレオチドを作成する方法を提供する。このベクターは、宿主細胞から回収され得る。適切な宿主細胞は、発現ベクターと関連させて以下に記述する。
【0086】
ベクター
本発明の発現カセットに挿入されるベクターは、便利に組換えDNA手段に供し得るベクターであり、ベクターの選択は、多くの場合導入される宿主細胞に依存し得る。従ってこのベクターは、自己複製ベクター、すなわち染色体外存在物として存在し、その複製は染色体複製から独立である、プラスミドのようなベクターであり得る。あるいは、ベクターは、宿主細胞に導入される際に宿主細胞ゲノムに組み込まれ、組み込まれた染色体と一緒に複製するものであり得る。
【0087】
好ましくは、本発明のポリヌクレオチドがベクター中に存在する場合、このポリヌクレオチドは、宿主細胞によるコード配列発現を提供し得る調節配列に機能可能に連結される、すなわちこのベクターは発現ベクターである。「機能可能に連結される」という用語は、並置に言及し、記述する構成成分がその意図する様式で機能することを可能にする関係にあることを言う。プロモーター、エンハンサー又はその他発現調節シグナルのような、コード配列に「機能可能に連結された」調節配列は、制御配列に適合する条件下でコード配列発現を達成するように配置される。
【0088】
ベクターは、例えばプラスミド、コスミド、ウイルス又はファージベクターの場合、複製開始点と共に、任意でポリヌクレオチド発現のためのプロモーターを備えていてもよく、任意でプロモーターのエンハンサー及び/又はレギュレーターを備えていてもよい。ターミネーター配列は、ポリアデニル化配列として存在し得る。ベクターは、例えば細菌プラスミドの場合はアンピシリン耐性遺伝子、又は、哺乳類ベクターに対してはネオマイシン耐性遺伝子といった、一つ以上の選択マーカー遺伝子を含み得る。ベクターは、in vitroで例えばRNAの産生のため用いられてもよく、又は、宿主細胞へのトランスフォーメーション若しくはトランスフェクションに用いることができる。
【0089】
ポリペプチドをコードするDNA配列は、好ましくは、DNA配列が宿主細胞において前記DNA配列の発現を指令し得る発現シグナルに機能可能に連結された発現構築物の一部として、適切な宿主細胞に導入される。発現構築物を有する適切な宿主細胞のトランスフォーメーションのために、当業者によく知られたトランスフォーメーション手段が利用可能である。発現構築物は、選択マーカーを有するベクターの一部として宿主のトランスフォーメーションに用いることが可能であり、又は、選択マーカーを有するベクターと共に個別の分子としてコトランスフォーメーションされる。このベクターは、一つ以上の選択マーカー遺伝子を含み得る。
【0090】
好ましい選択マーカーは、宿主細胞における欠損を相補するもの又は薬物に対する耐性を与えるものを含むが、これらに限定されない。これらは、例えばアセトアミダーゼ遺伝子又はcDNA(amdS、niaD、facA遺伝子又はA.ニドゥランス(nidulans)、A.オリザエ(oryzae)若しくはA.ニガーに由来するcDNA)のような糸状真菌及び酵母菌の大部分のトランスフォーメーションに対して用いることができる多用途マーカー遺伝子、又は、G418、ハイグロマイシン、ブレオマイシン、カナマイシン、フレオマイシン(phleomycin)のような抗生物質に対する耐性若しくはベノミル耐性(benA)を提供する遺伝子を含む。あるいは、例えばURA3(S.セレビシエ(cerevisiae)由来、又はその他酵母菌由来の類似遺伝子)、pyrG若しくはpyrA(A.ニドゥランス若しくはA.ニガー由来)、argB(A.ニドゥランス若しくはA.ニガー由来)又はtrpCといった、対応する変異体宿主株を必要とする栄養要求性マーカーのような、特異的選択マーカーを用いることができる。好ましい態様では、トランスフォーメーションされた宿主細胞が選択マーカー遺伝子を含まないポリペプチドを産生し得るように、選択マーカーは、発現構築物の導入後にトランスフォーメーションされた宿主細胞から削除される。
【0091】
他のマーカーは、ATP合成サブユニット9(oliC)、オロチジン−5’−ホスフェート−デカルボキシラーゼ(pvrA)、細菌性G418耐性遺伝子(酵母菌に有用であるが、糸状真菌には有用でない)、アンピシリン耐性遺伝子(E.coli)、ネオマイシン耐性遺伝子(バチルス)及びグルクロニダーゼ(GUS)をコードしているE.coliのuidA遺伝子を含む。ベクターは、例えばRNAの産生又は宿主細胞へのトランスフェクション若しくはトランスフォーメーションに対して、in vitroで用いられ得る。
【0092】
糸状真菌及び酵母菌の大部分に対して、発現構築物は、好ましくは安定な形質転換体を得るために宿主細胞ゲノムに組み込まれる。しかしながら、ある種の酵母菌に対しては、安定で高レベルな発現のために発現構築物を組込むことのできる、適切なエピソーム性ベクター系も利用可能である。これらの例は、それぞれサッカロマイセス又はクルイベロマイセスの2μm、CEN、及びpKD1プラスミドに由来するベクター、又は、AMA配列(例えば、アスペルギルス由来のAMA1)を含むベクターを含む。発現構築物が宿主細胞ゲノムに組込まれる場合、この構築物は、ゲノム中ランダムな遺伝子座、又は、予定する標的遺伝子座のいずれかに相同組換えを用いて組込まれる。後者の場合は、標的遺伝子座は、好ましくは高発現される遺伝子を含む。高発現される遺伝子は、例えば誘導条件下そのmRNAが細胞の総mRNAの少なくとも0.01%(w/w)を構成できる遺伝子、あるいは、その遺伝子産物が細胞のタンパク質全体の少なくとも0.2%(w/w)を構成できる遺伝子、若しくは、分泌される遺伝子産物の場合は少なくとも0.05g/lのレベルまで分泌可能できる遺伝子である。
【0093】
所定の宿主細胞に対する発現構築物は、通常、第一側面のポリペプチドをコードする配列のコード鎖に関して5’末端から3’末端への連続した順番で、相互に機能可能に連結された次の要素:(1)所定の宿主細胞においてポリペプチドをコードするDNA配列の転写を指令し得るプロモーター配列、(2)好ましくは、5’非翻訳領域(リーダー)、(3)場合により、所定の宿主細胞から培地へポリペプチドの分泌を指令し得るシグナル配列、(4)ポリペプチドの成熟型及び好ましくは活性型をコードするDNA配列、及び好ましくは(5)ポリペプチドをコードするDNA配列の下流の転写を終結し得る転写終結領域(ターミネーター)も、含み得る。
【0094】
ポリペプチドをコードするDNA配列の下流に、発現構築物は、好ましくは一つ以上の転写終結部位を含む3’非翻訳領域を含み、前記部位はターミネーターとも呼ばれる。ターミネーターの起源は、それほど重要ではない。ターミネーターは、例えば、ポリペプチドをコードするDNA配列本来のものであり得る。しかしながら、好ましくは、酵母菌ターミネーターは酵母菌宿主細胞で用いられ、糸状真菌ターミネーターは糸状真菌宿主細胞で用いられる。さらに好ましくは、ポリペプチドをコードするDNA配列が発現される宿主細胞に対して、ターミネーターは内因性である。
【0095】
本発明のポリペプチドをコードするヌクレオチドの増強発現は、選択発現宿主からの目的タンパク質の発現レベル及び必要に応じて分泌レベルの増加を補助し、及び/又は、本発明のポリペプチド発現の誘導性制御を提供する、例えばプロモーター、シグナル配列及びターミネーター領域といった、異種調節領域の選択によっても達成され得る。
【0096】
本発明のポリペプチドをコードする遺伝子本来のプロモーターのほかに、他のプロモーターも、本発明のポリペプチド発現を指令するために用いられ得る。プロモーターは、所望する発現宿主における本発明のポリペプチド発現を指令する効率によって、選択され得る。
【0097】
プロモーター/エンハンサー及びその他発現調節シグナルは、設計される発現ベクターが宿主細胞に対して適合性であるように、選択され得る。例えば原核生物プロモーターは、特にその使用に適切なE.coli株で用いられ得る。本発明のポリペプチド発現が哺乳類細胞で行われる場合は、哺乳類プロモーターが用いられ得る。例えば肝細胞特異的プロモーターといった組織特異的プロモーターも、用いられ得る。例えばモロニーマウス白血病ウイルス末端反復配列(MMLV LTR)、ラウス肉腫ウイルス(RSV)LTRプロモーター、SV40プロモーター、ヒトサイトメガロウイルス(CMV)IEプロモーター、単純ヘルペスウイルスプロモーター又はアデノウイルスプロモーターといったウイルスプロモーターも、用いられ得る。
【0098】
適切な酵母菌プロモーターは、S.セレビシエのGAL4プロモーター及びADHプロモーター、並びに、S.ポンベ(pombe)のnmt1プロモーター及びadhプロモーターを含む。哺乳類プロモーターは、カドミウムのような重金属に応答して誘導し得るメタロチオネインプロモーターを含む。SV40ラージT抗原プロモーター又はアデノウイルスプロモーターのようなウイルスプロモーターも、用いられ得る。これらのプロモーターは全て、本技術分野において容易に入手可能である。
【0099】
β−アクチンプロモーターのような哺乳類プロモーターも、用いられ得る。組織特異的プロモーター、特に内皮細胞特異的プロモーター又は神経細胞特異的プロモーター(例えば、DDAHI及びDDAHIIプロモーター)、が特に好ましい。例えばモロニーマウス白血病ウイルス末端反復配列(MMLV LTR)、ラウス肉腫ウイルス(RSV) LTRプロモーター、SV40プロモーター、ヒトサイトメガロウイルス(CMV) IEプロモーター、アデノウイルスプロモーター、HSVプロモーター(HSV IEプロモーターのような)又はHPVプロモーター、特にHPV上流調節領域(URR)といったウイルスプロモーターも、用いられ得る。ウイルスプロモーターは、本技術分野において容易に入手可能である。
【0100】
本発明の宿主細胞において転写を指令し得る種々のプロモーターを、用いることができる。好ましくは、プロモーター配列は、既に定義した高発現される遺伝子に由来する。プロモーターが好ましくは由来する、及び/又は、発現構築物の組込みに対する好ましい所定標的遺伝座に含まれる、好ましい高発現遺伝子の例は、トリオースリン酸イソメラーゼ(TPI)、グリセルアルデヒドリン酸デヒドロゲナーゼ(GAPDH)、ホスホグリセリン酸キナーゼ(PGK)、ピルビン酸キナーゼ(PYK)、アルコールデヒドロゲナーゼ(ADH)のような糖分解酵素をコードする遺伝子、並びに、アミラーゼ、グルコアミラーゼ、プロテアーゼ、キシラナーゼ、セロビオヒドラーゼ、β−ガラクトシダーゼ、アルコール(メタノール)オキシダーゼ、延長因子及びリポソ―ムタンパク質をコードする遺伝子を含むが、これに限られない。適切な高発現遺伝子の特有な例は、例えば、クルイベロマイセス種由来のLAC4遺伝子、それぞれハンゼヌラ由来及びピチア由来のメタノールオキシダーゼ遺伝子(AOX及びMOX)、A.ニガー及びA.アワモリ(awamori)由来のグリコアミラーゼ(glaA)遺伝子、A.オリザエのTAKA−アミラーゼ遺伝子、A.ニドゥランス(nidulans)のgpdA遺伝子及びT.リエッセイ(reesei)のセロビオヒドラーゼ遺伝子を含む。
【0101】
真菌発現宿主において用いられるのが好ましい強力な構成性及び/又は誘導性のプロモーターの例は、キシラナーゼ(xlnA)、フィターゼ、ATP合成酵素サブユニット9(oliC)、トリオースリン酸イソメラーゼ(tpi)、アルコールデヒドロゲナーゼ(AdhA)、アミラーゼ(amy)、アミログルコシダーゼ(AG由来のglaA遺伝子)、アセトアミダーゼ(amdS)及びグリセロアルデヒド3リン酸デヒドロゲナーゼ(gpd)プロモーターといった真菌遺伝子から得ることができるものである。
【0102】
用いられ得る強力な酵母菌プロモーターの例は、アルコールデヒドロゲナーゼ、ラクターゼ、3ホスホグリセリン酸キナーゼ及びトリオースリン酸イソメラーゼといった遺伝子から得ることができるものを含む。
【0103】
用いられ得る強力な細菌プロモーターの例は、アミラーゼプロモーター、SPo2プロモーター及び細胞外プロテアーゼ遺伝子由来のプロモーターを含む。
【0104】
用いられ得る植物細胞に適切なプロモーターは、ナパリン(napaline)シンターゼ(nos)、オクトピンシンターゼ(ocs)、マンノピンシンターゼ(mas)、リブローススモールサブユニット(rubisco ssu)、ヒストン、コメアクチン、ファゼオリン、カリフラワーモザイクウイルス(CMV)の35S及び19S、並びに、サルコウイルス(circovirus)プロモーターを含む。
【0105】
ベクターは、さらに、RNAを生じるポリヌクレオチドにフランキングする配列であって、真核生物ゲノム配列、好ましくは哺乳類ゲノム配列又はウイルスゲノム配列由来の配列に対する相同配列を含む前記配列を含み得る。このことは、本発明のポリヌクレオチドの、相同組換えによる真核生物細胞又はウイルスのゲノムへの導入を可能にするであろう。特に、ウイルス配列にフランキングされた発現カセットを含むプラスミドベクターは、本発明のポリヌクレオチドを哺乳類細胞に供給するのに適切なウイルスベクターを調製することに用いることができる。適切なウイルスベクターの他の例は、ヘルペス単純ウイルスベクター、並びに、レンチウイルス、アデノウイルス、アデノ随伴ウイルス及びHPVウイルス(HPV−16又はHPV−18のような)を含むレトロウイルスベクターを含む。これらのウイルスを用いる遺伝子導入技術は、当業者に知られている。レトロウイルスベクターは、例えば、宿主ゲノムにアンチセンスRNAを生じるポリヌクレオチドを安定に組込むことに用いられ得る。複製欠陥アデノウイルスベクターは、対照的に、エピソーム性を維持し一過性の発現を可能にする。
【0106】
ベクターは、アンチセンスRNAの産生を提供するアンチセンス方向に配向された本発明のポリヌクレオチドを含み得る。これは、必要に応じて、ポリペプチドの発現レベルを減少することに用いられ得る。
【0107】
宿主細胞及び発現
さらなる側面で本発明は、ポリペプチドをコードするコード配列ベクターにより上述のような発現ベクターでトランスフォーメーション又はトランスフェクションされた宿主細胞を発現に適切な条件下で培養すること、及び、発現したポリペプチドを回収することを含む、本発明のポリペプチドを調製するための工程を提供する。本発明のポリヌクレオチドは、発現ベクターのような組換え複製可能なベクターに組込むことが可能である。ベクターは、適合性の宿主細胞において核酸を複製することに用いられ得る。従って、さらなる態様において本発明は、本発明のポリヌクレオチドを複製可能なベクターに導入すること、このベクターを適合性の宿主細胞に導入すること、及び、ベクターの複製を誘発する条件下で宿主細胞を増殖させることによって、本発明のポリヌクレオチドを作成する方法を提供する。このベクターは、宿主細胞から回収し得る。適切な宿主細胞は、E.coliのような細菌株、酵母菌株、哺乳類細胞株、並びに、例えばSf9細胞のような昆虫細胞及び(例えば、糸状)真菌細胞といった、その他真核生物細胞を含む。
【0108】
ポリペプチドは分泌タンパク質として産生されるのが好ましく、その場合、発現構築物中の成熟型ポリペプチドをコードするDNA配列は、シグナル配列をコードするDNA配列に機能可能に連結される。分泌タンパク質をコードする遺伝子が野生株においてシグナル配列を有する場合、用いられるシグナル配列は、ポリペプチドをコードするDNA配列本来のもの(同種性)であるのが好ましい。あるいは、シグナル配列がポリペプチドをコードするDNA配列に対して外来性(異種性)の場合、シグナル配列は、DNA配列が発現する宿主細胞に内因性であるのが好ましい。酵母菌宿主細胞に適切なシグナル配列の例は、酵母菌MFα遺伝子に由来するシグナル配列である。同様に、糸状真菌に適切なシグナル配列は、例えば、A.ニガーのglaA遺伝子といった糸状真菌アミログルコシダーゼ(AG)遺伝子に由来するシグナル配列である。このシグナル配列は、アミログルコシダーゼ((グルコ)アミラーゼとも呼ばれる)プロモーター自身と組合せて、また他のプロモーターと組合せて、用いられ得る。ハイブリッドシグナル配列も、本発明に関連して用いられ得る。
【0109】
好ましい異種性分泌リーダー配列は、真菌アミログルコシダーゼ(AG)遺伝子(例えばアスペルギルス由来の、glaAの18および24アミノ酸両変異型)、MFα遺伝子(例えばサッカロマイセス及びクルイベロマイセスといった、酵母菌)又はα−アミラーゼ遺伝子(バチルス)に由来するものである。
【0110】
ベクターは、本発明のポリペプチド発現を提供するために、上述のような適切な宿主細胞にトランスフォーメーション又はトランスフェクションされ得る。この工程は、ポリペプチド発現に適切な条件下で、上述のような発現ベクターでトランスフォーメーションされた宿主細胞を培養することを含んでよく、場合により、発現したポリペプチドを回収することも含んでよい。
【0111】
従って本発明のさらなる側面は、本発明のポリヌクレオチド若しくはベクターでトランスフォーム若しくはトランスフェクションされた宿主細胞、又は、本発明のポリヌクレオチド若しくはベクターを含む宿主細胞を提供する。好ましくは、本ポリヌクレオチドは、ポリヌクレオチドの複製及び発現を可能にするベクター中に保持される。細胞は、前記ベクターに適合性であるように選ばれ、例えば原核生物細胞(例えば細菌)又は真核生物の真菌細胞、酵母菌細胞又は植物細胞であり得る。
【0112】
本発明は、ポリペプチドをコードするDNA配列の組換え発現方法による、本発明のポリペプチド産生のための工程を含む。この目的のための本発明のDNA配列は、適切な同種宿主細胞又は異種宿主細胞におけるポリペプチドの経済的産生を可能にすることを目的として、遺伝子増幅、及び/又は、プロモーター、分泌シグナル配列のような発現シグナルの交換に対して用いることができる。同種宿主細胞は、本明細書において、DNA配列が由来する種と同種又は同種の範囲内に含まれる変異体である宿主細胞として定義される。
【0113】
適切な宿主細胞は、好ましくは細菌のような原核微生物、又は、さらに好ましくは例えば、酵母菌細胞若しくは糸状真菌細胞のような真菌細胞又は植物細胞といった真核生物である。操作することが容易であるために、一般的に糸状真菌よりも酵母細胞が好まれる。しかしながら、幾つかのタンパク質は、酵母菌からの分泌が乏しかったり、時には適切に加工されなかったりする(例えば、酵母菌におけるハイパー・グリコシル化)。これらの例では、糸状真菌宿主生物が選択されるべきである。
【0114】
バチルス属に由来する細菌は、培地中にタンパク質を分泌する能力のため、異種性宿主として非常に適している。宿主として適切な他の細菌は、ストレプトマイセス属及びシュードモナス属に由来する細菌である。ポリペプチドをコードするDNA配列の発現に対して好ましい酵母菌宿主細胞は、サッカロマイセス、クルイベロマイセス、ハンゼヌラ、ピチア、ヤロワイア(Yarrowia)又はシゾサッカロマイセス(Shizosaccharomyces)属の酵母菌である。さらに好ましくは、酵母菌宿主細胞は、サッカロマイセス・セレビシエ、クルイベロマイセス・ラクティス(lactis)(クルイベロマイセス・マルキアヌス(marxianus)var.ラクティスとしても知られる)、ハンゼヌラ・ポリモルファ(polymorpha)、ピチア・パストリス(pastoris)、ヤロワイア・リポリティカ(lipolytica)及びシゾサッカロマイセス・ポンベ種からなる群より選択される。
【0115】
しかしながら、ポリペプチドをコードするDNA配列の発現に対して最も好ましいのは、糸状真菌宿主細胞である。好ましい糸状真菌宿主細胞は、アスペルギルス、トリコデルマ、フザリウム、ジスポロトリクム(Disporotrichum)、ぺニシリウム、アクレモニウム、ニューロスポラ、サーモアサクス(Thermoascus)、マイセリオフォトラ(Myceliophtora)、スポロトリクム、チエラビア(Thielavia)及びタラロマイセス(Talaromyces)属からなる群より選択される。さらに好ましくは、アスペルギルス・オリザエ、アスペルギルス・ソジェ(sojae)若しくはアスペルギルス・ニデュランス(nidulans)種、又は、アスペルギルス・ニガー族(ラパー(Raper)及びフェンネル(Fennell) The Genus Aspergillus,The Williams & Wilkins Company,Baltimore,pp293−344,1965によって定義される)に由来する種の、糸状真菌宿主細胞である。これらは、アスペルギルス・ニガー、アスペルギルス・アワモリ、アスペルギルス・チューブジェンシス(tubigensis)、アスペルギルス・アクリーティス(aculeateus)、アスペルギルス・フォエチダス(foetidus)、アスペルギルス・ニデュランス、アスペルギルス・ジャポニカス(japonicus)、アスペルギルス・オリザエ及びアスペルギルス・フィクウム(ficuum)を含み、並びに、トリコデルマ・レセイ(reesei)、フザリウム・グラミネアルム(graminearum)、ぺニシリウム・クリソゲナム(chrysogenum)、アクレモニウム・アラバメンス(alabamense)、ニューロスポラ・クラサ(crassa)、マイセリオフォトラ・サーモフィルム(thermophilum)、スポロトリクム・セルロフィルム(cellulophilum)、ジスポロトリクム・ジモルフォスポラム(dimorphosporum)及びチエラビア・テレストリス(terrestris)種を含むが、これに限らない。
【0116】
本発明の範囲内の好ましい発現宿主の例は、アスペルギルス種(特にEP−A−184,438及びEP−A−284,603に記述されるもの)及びトリコデルマ種のような真菌;バチルス種(特にEP−A−134,048及びEP−A−253,455に記述されるもの)、特にバチルス・サブチリス(subtilis)、バチルス・リケニホルミス(licheniformis)、シュードモナス種のような細菌;及び、クルイベロマイセス種(特にクルイベロマイセス・ラクティスのようなEP−A−096,430に記述されるもの、及び、EP−A−301,670に記述されるもの)及びサッカロマイセス・セレビシエのようなサッカロマイセス種のような酵母菌である。
【0117】
本発明の宿主細胞は植物細胞を含み、従って本発明は、本発明の一つ以上の細胞を含む植物及びその部分のような、トランスジェニック生物に及ぶ。この細胞は、本発明のポリペプチドを異種性に発現し得るか、又は、一つ以上の本発明のポリヌクレオチドを異種性に含み得る。従って前記トランスジェニック(又は遺伝子改変の)植物は、本発明のポリペプチドをコードする配列を(通常は安定に)そのゲノムに挿入されていてよい。植物細胞のトランスフォーメーションは、例えばアグロバクテリウム・ツメファシエンス(tumefaciens)由来のTiプラスミド又はRiプラスミドを用いるといった、知られた技術を用いて行うことができる。従ってプラスミド(又はベクター)は、植物を感染させるのに必要な配列を含んでよく、Tiプラスミドの誘導体及び/又はRiプラスミドの誘導体が用いられ得る。
【0118】
宿主細胞はポリペプチドを過剰発現することができ、また過剰発現エンジニアリングのための技術は、よく知られており、本発明で用いることができる。従って宿主は、ポリヌクレオチドの二つ以上のコピーを有し得る。
【0119】
あるいは、葉、根又は茎のような植物器官を直接感染させることが可能である。この技術において感染させられる植物は、例えばカミソリで植物を切ること、針で植物を刺すこと、又は、研磨剤で植物を擦ることによって、傷つけることができる。次にこの傷は、アグロバクテリウムを接種される。次に、この植物又は植物器官は、適切な培地で生育することが可能であり、充分成長した植物に発育可能である。トランスフォーメーションされた細胞の遺伝子改変植物への再生は、例えば抗生物質を用いてトランスフォーメーションされたシュートを選択すること、及び、植物ホルモン等の適切な栄養を含む培養液でシュートを継代培養することといった、知られた技術を用いることによって達成可能である。
【0120】
宿主細胞の培養及び組換え産生
本発明は、プロリン特異的エンドプロテアーゼ又はその変異体を発現するように改変された細胞も含む。そのような細胞は、一過性に改変された、又は、好ましくは安定に改変された哺乳細胞若しくは昆虫細胞のような高等な真核生物細胞株、酵母菌細胞及び糸状真菌細胞のような低等な真核生物細胞、又は、細菌細胞のような原核生物細胞を含む。
【0121】
本発明のポリペプチドに対して、バキュロウイルス発現系におけるように細胞株内又は細胞膜上で一過性に発現させることも可能である。本発明のタンパク質を発現することに適応されるそのような系も、本発明の範囲内に含まれる。
【0122】
本発明によると、本発明のポリペプチドの産生は、本発明の一つ以上のポリヌクレオチドをトランスフォーメーションされた微生物発現宿主を従来の栄養発酵培地で培養することによって誘発することができる。
【0123】
本発明の組換え宿主細胞は、本技術分野において知られる手段を用いて培養され得る。プロモーターと宿主細胞との各組合せに対して、ポリペプチドをコードするDNA配列の発現に対して適合性である培養条件が、利用可能である。所望の細胞密度又は所望のポリペプチドのタイターを達成した後に、培養を止めて、ポリペプチドを既知の手段を用いて回収する。
【0124】
発酵培地は、炭素源(例えば、グルコース、マルトース、モラセス等)、窒素源(例えば、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウム等)、有機性窒素源(例えば、イーストエクストラクト、モルトエクストラクト、ペプトン等)及び無機栄養源(例えば、リン酸塩、マグネシウム、カリウム、亜鉛、鉄等)を含む既知の培地を含むことができる。任意で、誘導物質(用いた発現構築物に依存する)を含んでもよく、続いて添加してもよい。
【0125】
適切な培地の選択は、発現宿主の選択及び/又は発現構築物の調節性要求に基づき得る。適切な培地は、当業者によく知られている。培地は、必要に応じて、他の潜在的に混入している微生物より、トランスフォーメーションされた発現宿主に好都合となる付加的構成成分を含み得る。
【0126】
発酵は、0.5〜30日の期間にわたって行われ得る。発酵は、0℃〜45℃の範囲の適切な温度において、例えばpH2〜10で、バッチ工程、連続工程又は流加工程であり得る。好ましい発酵条件は、20℃〜37℃の範囲の温度及び/又はpH3〜9を含む。適切な条件は、通常、発現宿主及び発現されるタンパク質の選択に基づく。
【0127】
発酵の後、必要に応じて、遠心分離又は濾過の方法によって、発酵ブロスから細胞を回収することができる。発酵を停止させた後又は細胞の除去後に、本発明のポリペプチドを回収し、必要に応じて従来方法によって精製し単離する。本発明のプロリン特異的エンドプロテアーゼは、真菌菌糸体から、又は、培養した真菌細胞によりプロリン特異的エンドプロテアーゼが放出された培養ブロスから、精製することができる。
【0128】
好ましい態様では、ポリペプチドは真菌から、より好ましくはアスペルギルスから、最も好ましくはアスペルギルス・ニガーから得られる。
【0129】
改変
本発明のポリペプチドは化学的に改変することができ、例えば翻訳後に改変される。例えば、本発明のポリペプチドは、グリコシル化され得る(一回以上)又は改変されたアミノ酸残基を含み得る。本発明のポリペプチドは、精製を補助するためのヒスチジン残基の付加によっても改変され得る、又は、細胞からの分泌を促進するためのシグナル配列の付加によっても改変され得る。本ポリペプチドは、アミノ末端メチオニン残基、約20〜25残基までの小型のリンカーペプチド、又は、ポリヒスチジン領域、抗原性エピトープ若しくは結合ドメインのような精製を容易にする短い延長といった、アミノ末端又はカルボキシ末端の延長を有する。
【0130】
本発明のポリペプチドは、露呈標識を用いて標識され得る。露呈標識は、ポリペプチドの検出を可能にする適切な標識であり得る。適切な標識は、例えば125I、35Sといった放射性同位体、酵素、抗体、ポリヌクレオチド及びビオチンのようなリンカーを含む。
【0131】
ポリペプチドは、天然に存在しないアミノ酸を含むため又はポリペプチドの安定性を強めるために改変され得る。タンパク質又はペプチドが合成方法によって生産される場合、前記アミノ酸は生産の間に導入され得る。タンパク質又はペプチドは、合成的又は組換え的のいずれかによって産生された後に改変されてもよい。
【0132】
本発明のポリペプチドは、D−アミノ酸を用いても生産され得る。この場合アミノ酸は、C末端からN末端方向に逆方向配列に連結され得る。このことは、前記タンパク質又はペプチドを生産するための本技術分野において一般的である。
【0133】
幾つかの側鎖改変が本技術分野において知られており、これにより本発明のタンパク質又はペプチドの側鎖が作成され得る。そのような改変は、例えば、アルデヒドとの反応に続くNaBHとの還元、メチルアセトイミデート(methylacetimidate)とのアミド化(amidination)又は無水酢酸とのアシル化による、還元的アルキル化によるアミノ酸の改変を含む。
【0134】
本発明によって提供される配列は、「第二世代」酵素の構築に対して出発材料としても用いられ得る。「第二世代」プロリン特異的プロテアーゼは、変異誘発技術によって(例えば、部位特異的変異誘発)変化させられ、野生型プロリン特異的プロテアーゼ又は本発明によって産生された組換えプロリン特異的プロテアーゼと異なる性質を有する、プロリン特異的プロテアーゼである。例えば、最適温度、最適pH、特異的活性、基質親和性又は熱安定性は、特殊な工程における使用に対して適するように変化され得る。
【0135】
本発明のプロリン特異的プロテアーゼ活性に必要不可欠なアミノ酸、及び、それによって好ましい置換対象となるアミノ酸は、部位特異的変異誘発又はアラニンスキャニング変異誘発といった本技術分野において知られる手段に従って、同定され得る。後者の技術では、この分子の全残基に変異が導入され、得られた変異体分子を生物的活性(例えば、プロリン特異的エンドプロテアーゼ活性)に対して試験して、この分子の活性に対して重要なアミノ酸残基を同定する。酵素−基質相互作用部位は、核磁気共鳴、結晶解析又は光親和性標識のような技術によって決定される結晶構造解析によっても、決定することができる。
【0136】
酵母菌宿主細胞及び糸状真菌宿主細胞の使用は、本発明の組換え発現産物に最適な生物的活性を与えることを必要とし得る場合に、前記翻訳後改変(例えば、タンパク質分解性プロセッシング、ミリスチル化(myristilation)、グリコシル化、短縮、及び、チロシンリン酸化、セリンリン酸化又はスレオニンリン酸化)を提供することが期待される。
【0137】
調製品
本発明のポリペプチドは、単離された形態で存在し得る。このポリペプチドは、ポリペプチドの意図する目的に干渉しないキャリアー又は希釈剤と混合されてよく、それでもなお単離物とみなされ得る。本発明のポリペプチドは実質的に精製された形態で存在することもでき、この場合、一般的に調製品は70%より多くポリペプチドを含み、例えば調製品におけるタンパク質の80%より多く、90%、95%、98%又は99%が本発明のポリペプチドである。
【0138】
本発明のポリペプチドは、本来の細胞環境の外側に存在する形態で、提供され得る。従って本発明のポリペプチドは、上述のように実質的に単離され得る若しくは精製され得る、又は、例えば他の真菌種、動物、植物又は細菌の細胞といった天然では前記ポリペプチドが存在しない細胞内に存在し得る。
【0139】
プロリン特異的エンドプロテアーゼ活性の除去又は減少
本発明は、ポリペプチド又はそれらの制御配列をコードする内因性核酸配列の破壊又は欠失を含む、親細胞の変異体細胞を生産するための方法にも関係しており、親細胞より少ないポリペプチドを産生する変異体細胞を生じる。
【0140】
プロリン特異的エンドプロテアーゼ活性を減少させた菌株の構築は、細胞内でのプロリン特異的エンドプロテアーゼ発現のために必要な核酸配列の改変又は不活性化によって、都合よく達成され得る。改変される又は不活性化される核酸配列は、例えば、プロリン特異的エンドプロテアーゼ活性を示すために必要不可欠なポリペプチドをコードする核酸配列若しくはその一部、又は、核酸配列のコード配列からのポリペプチドの発現に必要とされる調節機能を有し得る核酸配列であり得る。このような調節配列又は制御配列の例は、プロモーター配列、又は、その機能的部分、すなわちポリペプチド発現に影響を及ぼすのに充分な部分であり得る。改変され得る他の制御配列は、リーダー配列、ポリアデニル化配列、プロペプチド配列、シグナル配列及びターミネーター配列を含むが、これに限らない。
【0141】
核酸配列の改変又は不活性化は、細胞に変異誘発を受けさせ、プロリン特異的エンドプロテアーゼ産生能力が減少されている又は除去されている細胞を選択することによって行われ得る。変異誘発は、特異的又はランダムであってもよく、例えば、物理的又は化学的に変異を起こさせる適切な物質の使用、適切なオリゴヌクレオチドの使用、又は、DNA配列にPCR変異誘発を受けさせるといったことによって行われ得る。さらに変異誘発は、これら変異を起こさせる物質の組合せの使用によっても行われ得る。
【0142】
本発明の目的に適切な物理的又は化学的に変異を起こさせる物質の例は、紫外線(UV)照射、ヒドロキシルアミン、N−メチル−N’−ニトロ−N−ニトロソグアニジン(MNNG)、O−メチルヒドロキシルアミン、亜硝酸、エチルメタンスルホネート(EMS)、重硫酸ナトリウム、蟻酸及びヌクレオチドアナログを含む。
【0143】
このような物質を用いる場合、変異誘発は典型的に、適切な条件において最適な変異誘発物質の存在下で変異を起こさせる細胞をインキュベートし、プロリン特異的エンドプロテアーゼ活性発現を減少している又は非発現していることを示す細胞を選択することによって行われる。
【0144】
本発明のポリペプチド産生の改変又は不活性化は、ポリペプチドをコードする核酸配列中、又は、転写若しくはその翻訳に必要とされる調節要素核酸配列中で一つ以上のヌクレオチドを導入、置換又は除去することによって達成され得る。例えば、ヌクレオチドは、停止コドンの導入、開始コドンの除去又はオープンリーディングフレームの変更を生じるように、挿入又は除去され得る。このような改変又は不活性化は、本技術分野で知られる方法に従って、部位特異的変異誘発又はPCR変異誘発によって達成され得る。
【0145】
原理上、改変はin vivo、すなわち改変されるべき核酸配列を発現している細胞上で直接的に行われ得るが、改変は以下に例証するようにin vitroで行われるのが好ましい。
【0146】
最適な宿主細胞によるプロリン特異的エンドプロテアーゼ産生を不活性化させる又は減少させるために都合のよい方法の例は、遺伝子置換技術又は遺伝子妨害技術に基づく。例えば、遺伝子遮断方法において、対象の内因性遺伝子又は内因性遺伝子断片に対応する核酸配列は、欠損核酸配列を生じるようにin vitroで変異誘発され、次に宿主細胞にトランスフォーメーションされて欠損遺伝子を生じる。相同組換えによって欠損核酸配列は、内因性遺伝子又は内因性遺伝子断片と置き換わる。好ましくは、欠損遺伝子又は欠損遺伝子断片は、改変された又は破壊されたポリペプチドをコードする遺伝子が存在する形質転換体を選択することに用いられ得るマーカーもコードする。
【0147】
あるいは、本発明のポリペプチドをコードする核酸配列の改変又は不活性化は、ポリペプチドをコードする配列に対して相補的なヌクレオチド配列を用いる確立されたアンチセンス技術によって達成され得る。さらに具体的には、ポリペプチドをコードする核酸配列に対して相補的な核酸配列を導入することによって、細胞によるポリペプチドの産生は減少され得る、又は除去され得る。アンチセンスポリヌクレオチドは、典型的には細胞内で転写されて、プロリン特異的エンドプロテアーゼをコードするmRNAとハイブリダイズするであろう。相補的なアンチセンスヌクレオチド配列がmRNAとハイブリダイズすることを可能にする条件下で、細胞内で産生されるプロリン特異的エンドプロテアーゼ量は、減少される又は除去されるであろう。
【0148】
本発明の方法に従って改変される細胞は、例えば真菌株といった微生物由来であって、所望するタンパク質産物が細胞にとって同種又は異種のいずれであっても、その産生に適切であるのが好ましい。
【0149】
本発明はさらに、ポリペプチドをコードする細胞内因性の核酸配列又はその制御配列破壊又は削除を含み、親細胞より少ないポリペプチドを産生する変異体細胞を生じさせる、親細胞の変異体細胞に関する。
【0150】
そのように作り出されたポリペプチド欠損変異体細胞は、同種ポリペプチド発現及び/又は異種ポリペプチド発現のための宿主細胞として特に有用である。従って、本発明はさらに、(a)ポリペプチド産生のために適合する条件下で変異体細胞を培養すること;及び(b)ポリペプチドを回収すること、を含む同種ポリペプチド又は異種ポリペプチドを生産するための方法に関する。本発明に関連して「異種ポリペプチド」という用語は、宿主細胞本来のものでないポリペプチド、天然配列を変えるために行われた改変が存在する天然タンパク質であるポリペプチド、又は、組換えDNA技術による宿主細胞操作の結果として発現を量的に変えられた天然タンパク質であるペプチド、として本明細書中に定義される。
【0151】
さらなる側面において本発明は、本発明のプロリン特異的エンドプロテアーゼポリペプチド及び対象タンパク質産物の両方を産生する細胞の発酵によって、プロリン特異的エンドプロテアーゼ活性を本質的に含まないタンパク質製品を生産するための方法を提供する。この方法は、発酵の最中又は発酵完了後のいずれかにおいて発酵ブロスにプロリン特異的エンドプロテアーゼ活性を阻害し得る物質を有効量添加すること、発酵ブロスから対象産物を回収すること、及び、場合により回収した産物にさらなる精製を受けさせることを含む。あるいは、培養後得られた培養ブロスは、プロリン特異的エンドプロテアーゼ活性を実質的に減少するようにpH処理又は温度処理を行なうことができ、培養ブロスからの産物の回収も可能である。組合せるpH処理又は温度処理は、培養ブロスから回収されたタンパク質調製品に対して行ってもよい。
【0152】
本質的にプロリン特異的エンドプロテアーゼを含まない産物を生産するための本発明の方法は、真核生物ポリペプチドの生産において特に興味深く、とりわけ酵素のような真菌タンパク質の生産において興味深い。プロリン特異的エンドプロテアーゼ欠損細胞は、食品産業のための対象異種タンパク質又は医薬的対象異種タンパク質を発現することにも用いられ得る。
【0153】
プロリン特異的エンドプロテアーゼのための好ましい供給源は、プロリン特異的エンドプロテアーゼをコードする微生物遺伝子を微生物宿主生物にクローニングすることによって得られる。プロリン特異的エンドプロテアーゼのためのさらに好ましい供給源は、プロリン特異的エンドプロテアーゼをコードするアスペルギルス由来の遺伝子をアスペルギルス属に属する宿主にプロリン特異的エンドプロテアーゼ遺伝子を過剰発現し得るようにクローニングすることによって得られる。
【0154】
医療上の必要性を伴わない消費者を標的とするタンパク質加水分解物を含む製品のカテゴリーにおいて、運動選手のための製品におけるタンパク質加水分解物を使用する隙間市場が、急速に拡大している。この製品カテゴリーでは、最終製品のアレルゲン性は問題ではない。代わりに味、栄養価及び耐久性を補助し練習後に生理的回復を刺激する特定アミノ酸の存在といった側面がそのような加水分解物にとって重要なパラメータであり、特にスポーツ飲料に用いられる場合はそうである。例えば、グルタミンは、代謝ストレスに対抗することに関係するが、遊離アミノ酸が溶液中で安定でないため、短いペプチドでのみ供給することができる。本発明に従って生産されたタンパク質加水分解物は、例えばスポーツ飲料といった酸性pH優勢な条件下での非常に高い可溶性のために、運動選手関連製品における使用に対し非常に適している。この判断基準の重要な意味は、本発明に従って生産された高レベルの加水分解物を、滅菌法及び長期的保存におけるタンパク質沈殿の欠点を伴わずに栄養スポーツ飲料に包含できることである。従ってスポーツ製品の賞味期限は、本発明のタンパク質加水分解物の添加によって延長され得る。
【0155】
本発明の酵素混合物は、全乳、脱脂粉乳、カゼイン、乳清タンパク質、又は、カゼインと乳清タンパク質との混合物のような動物由来のタンパク質性材料を加水分解することに用いられ得る。そのようなカゼインと乳清タンパク質との混合物は、例えば、人乳に見出される比と同様の比で用いられ得る。さらに、コラーゲンに基礎をおく動物性タンパク質は、それらタンパク質をより小さい分子に分解し、これによる動物性肉抽出物の苦味除去の可能性又は運動選手の関節に対して利益を有するプロリン残基及びヒドロキシプロリン残基の取り込みを改良する可能性があるので、基質となる。本発明の酵素混合物は、例えば小麦グルテン、ビールを作るために用いられる麦芽処理したオオムギ、麦芽未処理のオオムギ又は他の穀物、豆乳、これらの濃縮物又は単離物、メイズタンパク質濃縮物又はその単離物、及び、コメタンパク質のような植物由来のタンパク質性材料を加水分解することにも用いられ得る。
【実施例】
【0156】
本発明は、次の非限定的実施例によって、さらに説明されるであろう。
【0157】
材料及び方法
最低90%β−カゼインを有する、牛乳由来のβ−カゼイン(凍結乾燥され、本質的に塩を含まない粉末)はSigmaから入手した。コラーゲン(タイプ1、ウシのアキレス腱由来で不溶性)もSigmaから入手した。
【0158】
カゼイン酸ナトリウム(ミプロダン(Miprodan)30(登録商標))はMD Foods(Viby,Denmark)から入手した。低温殺菌を行っていない、10%ds、35%タンパク質のスイート・ホエー濃縮物は、Borculo Domo(Zwolle,The Netherlands)から入手した。
【0159】
苦味の少ない乳清加水分解物ビタラーモア(Vitalarmor)(登録商標)800LB及びβ−ラクトグロブリンに富む乳清タンパク質(プロターモア(Protarmor)(登録商標)905)は、Armor Proteines(Saint−Briceen−Cogles,France)から入手した。その他市販の加水分解物は、生産者から入手するか、又は薬局で購入した。
【0160】
ダイズ単離物は、Lucas Meyer,Hamburg,Germanyからソイアミン(Soyamin)(登録商標)90HVとして入手した。
【0161】
B.リケニホルミス(licheniformis)由来のサブチリシン(デルボラーゼ(Delvolase)(登録商標)、560000DU/g)はDSM Food Specialities(Seclin,France)から入手した。スミザイム(Sumizyme)(登録商標)LP75.000はShin Nihon(Anjyo,Japan)から入手した。フレーバーザイム(Flavourzyme)(登録商標)1000LはNOVO Industries,Bagsvaerd,Denmarkから入手した。サーモリシン(サーモエース(thermoase);バチルス・サーモプロテオリチカス(thermoproteolyticus)・ロッコ(Rokko)由来の熱安定性メタロ−エンドプロテアーゼであって、14000PU/mgの活性を有しDaiwa Kasei,Osaka,Japanにより生産された)。
【0162】
フラボバクテリウム・メニンゴセプチカム(meningosepticum)由来のプロリン特異的エンドプロテアーゼ及びそのE.coliにクローン化したものは、既知のプラスミド構築物及び酵素精製方法を用いて単離した(T.Diefenthal及びH.Dargatz,World Journal of Microbiology & Biotechnology 11,209−212(1995))。この酵素活性は、0.1Mリン酸緩衝液中、pH7.0、25℃においてCBZ−Gly−Pro−pNA0.26mMに対して試験した。この酵素の最適pHはpH6.0より高いために、この試験ではpH7.0を用いた。生成物は、分光光度法を用い410nmでモニターした。ユニット数は、これらの条件下で1分あたり1マイクロモルのp−ニトロアニリドの放出を刺激する酵素量として定義した。
【0163】
アスペルギルス由来のプロリン特異的エンドプロテアーゼは、日本の特許JP5015314に記述される方法に小改変を加えたものに従って測定した。簡単に言うと、酵素活性を、クエン酸/ニナトリウム緩衝液pH5中、37℃においてCBZ−Gly−Pro−pNAに対して試験する。この試験において、この酵素の最適pHはpH6より低いため、pH5.0を選択する。反応生成物も、分光光度法を用い410nmでモニターを行った。
【0164】
二次元ゲル電気泳動
アスペルギルス・ニガー由来のプロリン特異的エンドペプチダーゼの二次元ゲル電気泳動及び部分的アミノ酸シークエンシング。
【0165】
A.ニガーG−306由来のプロリン特異的エンドプロテアーゼを、実施例4に概略を述べたように産生させ単離した。完全な精製は、二次元ゲル電気泳動を用いて行った。そのために、スーパーデックス(Superdex)75カラムから単離した活性物質を最初に10mM Tris/HCl緩衝液pH6.8で希釈する(約20倍)ことによって脱塩し、次にセントリコン(Centricon)30kDミニコンセントレーター(Amicon)で濃縮した。
【0166】
基本的に、二次元電気泳動は「固定化したpHグラジエントを用いた2−D電気泳動;原理及び方法;Amersham Pharmacia Biotech 80−6429−60 Rev A/10−98」に記述されるように行った。第一次元(IEF)は、pH範囲3〜6の11cm IPGストリップ(BioRad)を用いてIPGphor(Amersham−Pharmacia)上で行った。脱塩され3倍に濃縮されたサンプルを、8M尿素(6M尿素及び2Mチオ尿素)に希釈した。これを、6M尿素、2Mチオ尿素、20%CHAPS、5%IPG、緩衝範囲3〜10を含む10X濃縮再水和緩衝液18.5マイクロリットルと混合した。この全量をIPGストリップの再水和に用いた。集束は、ガイドラインとしてストリップに付属されたBioradの小冊子に記述されたプロトコルを用いて、29.320Vhにて行った。
【0167】
第二次元(SDS)は、BioRadから購入した12%プレキャスト・ゲル(Type Prep+2Comb)を用いてクライテリオン・ミニ・バーティカル・セル(Criterion Mini Vertical Cell)(BioRad)上で行った。
【0168】
IPGストリップは、最初にDTT(1%)を含むSDS平衡化緩衝液中にインキュベートし、2度目にヨードアセトアミド(2.5%)を含む緩衝液にインキュベートした。両方のインキュベーションは、20℃にて15分間行った。SDS平衡化緩衝液は、50mM Tris/HCl、pH8.8、6M尿素、30%(v/v)グリセロール、2%(w/v)SDS及び微量のブロモフェノールブルーで構成した。
【0169】
インキュベーションの後、IPGストリップを上述のゲル型にフィットするように整えて、10倍希釈したTGS緩衝液(BioRad)で泳動した。泳動後、ゲルをシプロ・ルビー(Sypro Ruby)(分子プローブ、Leiden,The Netherlands)を用いて3〜4時間染色し、ミリQ水で2時間洗滌した。イメージングはイメージャー(Imager)(Appligene)上で行った。最大スポットを切り取り、50ミリモル/リットルの炭酸水素アンモニウムで数回洗滌して、シークエンシンググレードのトリプシン(nr.1047841,Boehringer Mannheim)と共に37℃で一晩インキュベートした。蟻酸を含むアセトニトリル/水(アセトニトリル/水/蟻酸、50/50/5、v/v/v)で数回洗滌することによって、ペプチドをゲル片から抽出した。このサンプルを真空遠心分離(New Brunswick Scientific,The Netherlands)を用いて乾燥させ、分析まで−20℃で保存した。
【0170】
LC/MS分析
Qtof−2(Micromass,Manchester,UK)質量分析計を用いたHPLC(高性能液体クロマトグラフィー)を、トリプシンによる消化の間に形成されたペプチドを分離することに使用した。5マイクロリットルのペプチド溶液を、0.1%蟻酸を含むミリQ水を用いて流速20マイクロリットル/分でマイクロ−プレカラムC18、5*0.3mm(MCA30−05−C18,LC Packings,Amsterdam,Netherlands)上にトラップした。次に、このペプチドを、0.1%蟻酸を含むミリQ水(Millipore,Bedford,MA,USA;溶液A)と0.1%蟻酸を含むアセトニトリル(溶液B)との高速グラジエントを用いてプレカラムから溶離した。グラジエントは100%の溶液Aから開始して、20分で溶液Bを60%まで増加させ、後者の比率でさらに5分間維持した。ペプチドの溶離の間に用いた流速は、200nl/分であった。LC/MS/MS分析を用い、適切なペプチドのシークエンシングを改めて行うことにより、A.ニガーのプロリン特異的エンドペプチダーゼの部分的アミノ酸配列を決定することができた。
【0171】
P4000ポンプ(サーモクエスト(Thermoquest)(商標),Breda,The Netherlands)と連結したイオントラップ質量分析計(サーモクエスト(商標),Breda, The Netherlands)を用いたHPLCを、本発明の酵素混合物により生産された酵素タンパク質加水分解物を特徴付けることに使用した。形成されたペプチドは、溶離のためにPEPMAP C18 300A(MIC−15−03−C18−PM,LC Packings,Amsterdam,The Netherlands)カラムを用いて、0.1%蟻酸を含むミリQ水(Millipore,Bedford,MA,USA;溶液A)と0.1%蟻酸を含むアセトニトリル(溶液B)との組合せで分離した。グラジエントは100%の溶液Aから開始して、45分で溶液Bを70%まで増加させ、後者の比率でさらに5分間維持した。用いた注入量は50マイクロリットル、流速は50マイクロリットル/分であり、カラム温度は30℃で維持した。注入したサンプルのタンパク質濃度は約50マイクログラム/ミリリットルであった。
【0172】
個々のペプチドに関する詳細な情報は、イオントラップ質量分析計のための特徴的なアルゴリズムである“スキャン依存性”MS/MSアルゴリズムを用いることによって得られた。
【0173】
フルスキャン分析に続いて、フルスキャン質量範囲における最大強度イオンの電荷状態を決定するためのズームスキャン分析を行った。続く後者イオンのMS/MS分析は部分的ペプチド配列情報をもたらし、これはXcalibur Bioworksが提供するSEQUESTアプリケーション(サーモクエスト(商標),Breda,The Netherlands)を用いるデータベース検索に対して使用することができた。用いたデータバンクは、NCBI(National Centre for Biotechnology informatics)で利用可能であって、用いたアプリケーションに対する対象タンパク質を含むOWL.fastaデータバンクから抽出した。乳清タンパク質又はカゼインのような、よく特徴付けられたタンパク質基質を測定した実験において、50%より少ない配列適合度のMS/MSスペクトルを除外することによって、分析技術の精度を増加させた。
【0174】
約400〜2000ダルトンの範囲にわたる質量を有するペプチドのみが、MSシークエンシングによるさらなる分析に適切であると考えた。
【0175】
アンジオテンシン(M=1295.6)をMSモードにおける最適感度及びMS/MSモードにおける最適断片化に合わせて調整することに用い、60μg/mlの持続注入を行って、MSモードにおける主に二重及び三重に荷電した種、並びに、MS/MSモードにおける約35%の最適衝突エネルギーが得られた。
【0176】
幼児用調製粉乳及び市販のタンパク質加水分解物のLC/MS分析
LC/MSに先立って、幼児用調製粉乳から脂肪性材料を除去しなければならない。そのために、完全な栄養サンプル(100mlミリQ水中に13.5g粉末)を30mlヘキサンで3回抽出した。溶媒層の分離を改良するために、少量のNaClを添加した。5mlの水層が得られ、凍結乾燥を行った。分析に先立って、サンプルを25mlのミリQ水に再溶解し、遠心分離(13000rpm)を2回行い、0.22μmのフィルターを通して濾過した。純粋な加水分解サンプルから400mgを100mlのミリQ水に再溶解し、遠心分離(13000rpm)を2回行い、0.22μmのフィルターを通して濾過した。市販のタンパク質加水分解物に存在するペプチドを特徴付けるために、本発明の酵素混合物によって形成された酵素加水分解物に対して上述する同様のストラテジーに従った、すなわち濾過した加水分解物をHPLCカラムに装荷し、400〜2000ダルトンの分子質量を有する個々のペプチドをMS/MS分析によってさらに特徴付けた。しかしながら、乳清又はカゼインペプチドに由来する加水分解物の配列情報を得るために用いたデータバンクは、牛乳タンパク質配列のみで構成した。
【0177】
カルボキシ末端プロリンを有するペプチドのモル分率(%)の決定
LC/MS/MSは、ペプチドC末端の分析に対して用いることができる。ペプチド分子質量(LC/MSで分析した)及びその(部分的)アミノ酸配列(LC/MS/MSで分析した)がタンパク質データバンク内部の自動検索プロシージャにリンクしたアルゴリズムにより、複雑なペプチド混合物を分析することができる。これらのオプションは、カルボキシ末端プロリン残基を有するペプチドの発生率を定量することを可能とする。用いたPEPMAPペプチド分離カラムによって定められる制限により、分子量およそ400〜2000ダルトンを有するペプチドのみが、この技術を用いて分析される。幸いにも、タンパク質加水分解物中のペプチドの大部分が、そのような分子量を有する。
【0178】
タンパク質加水分解物中のカルボキシ末端プロリンを有するペプチドのモル分率を決定するために、PEPMAPカラムから溶離した個々のペプチドピークを選択し、上に明記した技術を用いて、部分的カルボキシ末端アミノ酸配列を決定した。従って、少なくとも20、好ましくは少なくとも30、より好ましくは40〜60、例えば50の最も豊富なランダムに選択されたペプチドの分析が、生じるペプチドのカルボキシ末端にプロリン残基を有するペプチドの頻度における洞察を与える。従って、カルボキシ末端プロリン残基を有することが見出されたペプチド数の割合×100、及び、分析したペプチド総数が、カルボキシ末端プロリンを有するペプチドのモル分率を与える。
【0179】
加水分解物を生成することに用いたタンパク質基質におけるプロリンのモル分率(%)の決定
幼児用調製粉乳に存在し得る脂肪性材料を、幼児用調製粉乳及び市販のタンパク質加水分解物のLC/MS分析を記述した節において詳細に述べたように、ヘキサン抽出によって最初に除去した。2ミリリットルの6N HCl中に100ミリグラムのタンパク質性材料が含まれる懸濁液の作成によって、存在するタンパク質を遊離アミノ酸に変換するためのタンパク質基質の酸性加水分解を達成した。酸性加水分解は、無酸素雰囲気下112度で22時間行った。遠心分離後、上清を希塩酸で10倍に希釈した。この加水分解の後、アミノ酸を誘導体化し、the Amino Acid Analysis System of Waters(Milford MA,USA)のオペレーターマニュアルに明記されるようにピコタグ(Picotag)法に従って分析した。存在するプロリンのレベルはHPLC法を用いて定量した。サンプル中のプロリンのモル分率(%)を決定するために、存在したプロリンのマイクロモル数×100を、分析したサンプル中に存在する全アミノ酸のマイクロモルの合計で割った。酸性加水分解の間にTrp及びCysが破壊されるため、これら二つのアミノ酸は全アミノ酸のマイクロモルの合計に含まれない。
【0180】
タンパク質加水分解物又は幼児用調製粉乳における遊離アミノ酸レベルの決定
タンパク質性材料の正確に重量測定したサンプルを希酸に溶解し、沈殿をエッペンドルフ遠心分離機での遠心分離によって除去した。アミノ酸分析は、透明な上清に対して、the Amino Acid Analysis System of Waters(Milford MA,USA)のオペレーターマニュアルに明記されるようにピコタグ法に従って行った。このために、適切なサンプルを液体から得て、希酸に加えて、ホモジェナイズした。後者の液体から新しいサンプルを取り、乾燥し、フェニルイソチオシアネートを用いて誘導体化した。存在する種々の誘導体化アミノ酸は、HPLC法を用いて定量し、合計して重量測定したサンプル中における遊離アミノ酸全体のレベルを計算した。
【0181】
このサンプル中の遊離アミノ酸全体のレベルをこのサンプルから遊離可能なアミノ酸全体のレベルと関連付けるため、上述したようにサンプルも酸性加水分解を行って、続いて存在する遊離アミノ酸全体の定量を行った。
【0182】
実施例1
F.メニンゴセプチカム由来のプロリン特異的エンドプロテアーゼと組合せてサブチリシンを用いたβ−カゼインの加水分解
β−カゼインは、牛乳の主要カゼイン画分の一つを代表する。このタンパク質はアミノ酸配列の点でよく特徴付けられており、ほぼ純粋な形態で商業的に入手可能である。そのような理由で、β−カゼインは、酵素切断部位と酵素加水分解の際に形成される種々のペプチドの長さとの関係を研究するための優れた試験基質を提供する。
【0183】
本実施例は、サブチリシンの広いスペクトル特性に関わらず、プロリン特異的エンドプロテアーゼのような非常に特異的な酵素の添加が、形成されるβ−カゼイン断片のサイズに主要な影響を与え得ることを実証する。プロリン特異的エンドプロテアーゼと組合せてサブチリシンと共にインキュベーションすることによって、その結果、カゼイン画分に対して改良された収率を得ることができた。酸性加水分解に続いて材料及び方法の節に従って行ったアミノ酸分析がプロリンのモル分率が14%であること(材料及び方法の節で明記したように、プロリンのモル数/全アミノ酸のモル数)を明らかにしたように、β−カゼインは相対的にプロリンに富む。
【0184】
β−カゼイン粉末(Sigma)を、10%(w/w)の濃度で0.1%(w/w)デルボラーゼ(商標)と共に0.1モル/リットルのリン酸緩衝液pH7.0に溶解した。湯浴で振とうしながら45℃で24時間インキュベーションした後、溶液を90℃で15分間加熱することによって、反応を停止させた。溶液の半分(100ミリグラムのβ−カゼインを含む1ml)に対してF.メニンゴセプチカム由来のプロリン特異的エンドプロテアーゼ100マイクロリットル(World Journal of Microbiology & Biotechnology,Vol11,pp209−212に記述された手順によると、4ユニットに相当する)を加えて、反応を45℃でさらに24時間継続させた。90℃でのさらなるヒートショックの後、β−カゼイン材料を処理したデルボラーゼ(商標)及びデルボラーゼ(商標)+プロリン特異的エンドプロテアーゼの両サンプルを、材料及び方法の節に明記したようにLC/MS装置によって分析した。
【0185】
デルボラーゼ単独で消化したサンプルにおいて、LC/MS/MS分析はβ−カゼイン分子の種々の部分を含む40ペプチドを同定した。これらのペプチドは総合して、β−カゼイン配列全体の79%を占めた。C18カラム上でのペプチドの異なる保持時間は、2〜23アミノ酸残基の範囲にわたるペプチドの長さに由来し得る。グルタミンが、最も頻繁にカルボキシ末端残基に存在していることが明らかとなった(40ペプチドのうち10)。分析したペプチドはどれも、カルボキシ末端残基にプロリンを有することを示さなかった。
【0186】
対照的に、デルボラーゼ(商標)及びプロリン特異的エンドプロテアーゼで消化したサンプルは、β−カゼインから28の同定可能なペプチドを生成した。これらのペプチドは総合して、β−カゼインタンパク質配列全体の63%に及んだ。ペプチドは長さが3〜9残基の範囲だけにわたり、ペプチドのサイズ分布は著しく均一であった。このペプチド集団の中で、3ペプチドのみにおいてグルタミンがカルボキシ末端残基であり、プロリンが最多数のカルボキシ末端残基であることが判明した(分析した28ペプチドのうち17において)。この結果は、プロリン特異的エンドプロテアーゼを用いて作成した加水分解物において、カルボキシ末端プロリン残基を有するペプチドは、400〜2000ダルトンの範囲の分子量を有する存在するペプチド全体の61%のモル分率に相当することを示す。従って、β−カゼインのプロリン特異的エンドプロテアーゼとのインキュベーションは、カルボキシ末端残基としてプロリンを有するペプチドの生成をもたらす。さらに、サブチリシンにプロリン特異的エンドプロテアーゼを加えた組合せは、生成した種々のペプチドの著しく均一なサイズ分布をもたらし、そのような加水分解物の限外濾過における生成物の高収率を示唆する。
【0187】
実施例2
β−カゼインの加水分解物及び苦味
実施例1はペプチドサイズ及びカルボキシ末端アミノ酸残基としてプロリンを有するペプチドの割合に対するプロリン特異的エンドプロテアーゼの効果を説明するが、苦味に対するこの酵素の効果は実施例1で評価しなかった。周知のことであるがカゼイン加水分解物は苦く、この性質は相対的に高含有量の疎水性アミノ酸残基に関係している。
【0188】
サブチリシンにより加水分解したβ−カゼインの味に対するプロリン特異的エンドプロテアーゼの効果を試験するため、実施例1に記述するようにデルボラーゼ(商標)、及び、プロリン特異的エンドプロテアーゼ酵素を伴ったデルボラーゼ(商標)を用いて、酵素インキュベーションを行った。サブチリシン及びプロリン特異的エンドプロテアーゼ両方の熱不活性化に続いて、サンプルを室温に冷却し、4%(w/w)の最終カゼイン濃度を与えるように滅菌水を加えた。次に、この溶液の味を、経験を積んだテイスターの一団によって評価した。テイスター達は、サブチリシンにプロリン特異的エンドプロテアーゼを加えた組合せによって得られた加水分解物は、サブチリシンを単独で用いて得られた加水分解物よりも著しく苦味が少なかったという結論で一致した。
【0189】
従って、プロリン特異的エンドプロテアーゼを用いたカゼイン加水分解物の処理は、最終生成物の苦味を実質的に減少させる。
【0190】
実施例3
アスペルギルス・ニガーからのプロリン特異的エンドプロテアーゼの単離
黒色胞子を形成し得るカビの大きな集団を、1.0グラムのKHPO、0.5グラムのKHPO、0.5グラムのKCl、0.5グラムのMgSO・7HO、0.01グラムのFeSO・7HO、5グラムのグルコース、15グラムのコラーゲン(Sigma)及び1リットルの体積が得られるまで加えた滅菌水を含むpH6.5の培地中で生長させた。各実験のための種菌は、寒天斜面上で生長させた真菌胞子(5日経過)を5ミリリットルの滅菌水に溶解する方法によって調製した。この懸濁液の2%(v/v)を、pH6.5の培地のインキュベーションに対して用いた。生長は28℃で100時間振とうさせておき、その後培養液を濾過して、透明な濾液のサンプルを合成ペプチドZ−Ala−Pro−pNA(Bachem;Bubendorf,Switzerland)とpH5.0、50℃でインキュベートした。pNAを放出し得るサンプルは、410nmでの吸光度の増加を測定することによって同定した。相対的に高い活性が得られている陽性株を、さらに研究した。
【0191】
菌株G−306は、プロリン特異的エンドプロテアーゼを放出し、アスペルギルス・ニガー・ヴァンティゲム(Van Tieghem)var.ニガーとして同定された。この特定の菌株を、プロリン特異的エンドプロテアーゼの単離、精製及びさらなる特徴付けに対して用いた。酵素を精製するために、培養上清1リットルを0.05M酢酸ナトリウムpH5.0で平衡化した400mlのバシトラシン−サイロクロム(silochrome)・カラムに装荷した。カラムに結合したプロテアーゼは、1M NaCl及び10%(v/v)イソプロパノールを補充した酢酸緩衝液を用いて溶離した(J.Appl.Biochem.,1983 pp420−428)。活性画分を収集して滅菌水に透析し、酢酸緩衝液で再び平衡化した200mlのバシトラシン−セファロース・カラムに装荷した。先のように、溶離は、NaCl及びイソプロパノールを補充した酢酸緩衝液を用いて行った。活性画分を収集し、5M酢酸緩衝液pH5.0に透析し、次にアミコン(Amicon)PM−10メンブレンを用いた限外濾過によって濃縮した。ほぼ完全に純粋なプロリン特異的エンドプロテアーゼを得るため、0.5M NaClを補充した0.05M酢酸ナトリウム緩衝液pH5.0で平衡化したスーパーデックス(商標)75カラムによって、この濃縮した液体をクロマトグラフィー分離した。
【0192】
さらなる実験を、66.6kD付近の分子量、pH4.2付近のIEP、最適pH5.0付近、50℃4時間のインキュベーションにおいてほぼ100%の熱安定性を示す、精製した酵素で行った。
【0193】
酵素の部分的アミノ酸配列を得るために、材料及び方法の節で記述した手順に従って、単離した酵素調製品を最初に二次元ゲル電気泳動にかけた。最大スポットを切り取ってトリプシンと共にインキュベートし、溶離した。回収したペプチドを次にLC/MS/MS分析にかけて、材料及び方法の節で述べたように、部分的アミノ酸配列を決定した。
【0194】
次のアミノ酸配列は、アスペルギルス・ニガーのプロリン特異的エンドプロテアーゼに由来した:
NH−ATTGEAYFE−COOH
NH−ATVNSWTGGWDFTR−COOH
NH−DGAPEGTST−COOH
NH−EREAGAAVTP−COOH。
【0195】
これらのアミノ酸配列は、アスペルギルス・ニガー由来のプロリン特異的エンドプロテアーゼをコードする遺伝子の単離のために必要とされるDNA配列を合成することに用いた。
【0196】
後の実験で(実施例10を参照)、配列NH−ATTGEAYFE−COOHが成熟プロリン特異的エンドプロテアーゼのアミノ末端を表すことが示された。
【0197】
実施例4
プロリン特異的エンドプロテアーゼ、及び、前記プロテアーゼのダイズタンパク質加水分解に対する効果
日本の特許JP501314は、大量の非特異的エンドプロテアーゼ活性と少量のプロリン特異的エンドプロテアーゼ活性及びカルボキシペプチダーゼ活性を示す、アスペルギルス・オリザFS1−32から得られた未精製酵素調製品を記述する。この未精製酵素調製品とのダイズタンパク質のインキュベーションは、プロリン特異的エンドプロテアーゼとカルボキシペプチダーゼとの組合せを欠く別のプロテアーゼ調製品で得られるダイズ加水分解物よりも、著しく苦味の少ない加水分解物を得ることをクレームする。JP5015314では、プロリン特異的エンドプロテアーゼ活性は、続いてカルボキシペプチダーゼにより除去されるプロリン残基を露出することを示唆する。これら疎水性カルボキシ末端プロリン残基のカルボキシペプチダーゼによる除去は、苦味の少ない加水分解物を得るために必要不可欠であると考えられている。
【0198】
この記述を試験するため、JP5015314で提供された実施例の一つを繰り返し行って、得られたダイズ加水分解物を、味に対する効果を評価するのではなく上述のLC/MS技術を用いて分析した。
【0199】
JP5015314によると、アスペルギルス・オリザエFS1−32を用いたインキュベーションは、基質1gあたり次の酵素活性を含んでいた。
プロテアーゼ:約650PU程度;カルボキシペプチダーゼ:約0.01ユニット程度;及び、プロリン特異的エンドペプチダーゼ:約0.03ミリユニット程度。
【0200】
原物のアスペルギルス・オリザエFS1−32調製品は入手できなかったので、本実施例では、アスペルギルス・オリザエ由来の二つの市販酵素調製品を用いた。さらに、アスペルギルス・ニガーから単離しクロマトグラフィーで精製したプロリン特異的エンドプロテアーゼ(実施例3を参照)を、酸性プロリン特異的エンドプロテアーゼの過剰投与を達成するために用いた。
【0201】
種々の調製品の酵素活性をJP5015314で提供される手順に従って測定し、以下に提供する。
【0202】
−スミザイムLP75.000、エンドプロテアーゼ活性に富むことが知られる市販のアスペルギルス・オリザエ酵素調製品。
JP5015314の方法に従って評価した酵素活性:
プロテアーゼ:226PU/g製品;カルボキシペプチダーゼ:21ユニット/g製品;プロリル−エンドペプチダーゼ:430ミリユニット/g製品。
【0203】
−フレーバーザイム1000L、エキソプロテアーゼ活性に富むことが知られる市販のアスペルギルス・オリザエ酵素調製品。
JP5015314の方法に従って評価した酵素活性:
プロテアーゼ:332PU/g製品;カルボキシペプチダーゼ:10ユニット/g製品;プロリル−エンドペプチダーゼ:不検出。
【0204】
−実施例3に記述したように単離した、アスペルギルス・ニガーから得られたクロマトグラフ的に純粋なプロリン特異的エンドプロテアーゼ。
JP5015314の方法に従って評価した酵素活性:
プロテアーゼ:不検出;カルボキシペプチダーゼ:不検出;プロリル−エンドペプチダーゼ:45ミリユニット/ml。
【0205】
これらのデータから、スミザイム及びフレーバーザイムはその高いタンパク質分解活性でよく知られているが、JP5015314に引用されたのと同様な非常に高い(エンド)プロテアーゼ活性のカルボキシペプチダーゼ活性との比率を提供できないことは、明らかである。
【0206】
驚くことに、スミザイムLP75.000は、JP5015314に報告されたものより、かなり高い活性のプロリン特異的エンドプロテアーゼを含むことが見出された。
【0207】
種々の酵素調製品は、JP5015314に記述されたプロトコルに従ってインキュベートしたが、所望するカルボキシペプチダーゼ活性(0.01U/g基質)に従って標準化を行った。ダイズ単離物(ソイアミン90HV)を、これらの反応における基質として用いた。50℃、pH5で5時間インキュベートした後、サンプルを遠心分離し、その上清をLC/MS分析まで凍結保存した。
【0208】
LC/MS分析は、材料及び方法の節で明記したように行った。
【0209】
本実験において、タンパク質データバンクは、ダイズタンパク質のみから構成した。得られた結果を表1に明記する。
【0210】
【表1】

【0211】
スミザイムLP75.000は、菌株FS1−32で記録されたプロリン特異的エンドプロテアーゼ活性より約7倍高いプロリン特異的エンドプロテアーゼ活性を含み、約10%モル分率のカルボキシ末端プロリンを有するダイズペプチドを産生する。アスペルギルス・ニガーから単離したプロリン特異的エンドプロテアーゼに富むスミザイムLP75.000は、菌株FS1−32で記録された活性より約50倍高いプロリン特異的エンドプロテアーゼ活性を含むが、これも約10%モル分率のカルボキシ末端プロリンを有するダイズペプチドを産生する。これらのデータは、カルボキシ末端位置でなく、ペプチドに存在するプロリン残基の数の分析によって確認された。フレーバーザイムは検出可能なプロリン特異的エンドプロテアーゼを含まないが、生成したペプチドでLC/MS技術を用いる分析に適切なもののうち、カルボキシ末端にプロリンを有するペプチドを6%モル分率産生する。このダイズタンパク質単離物の約5%プロリン含有量と併せると、これら三つの知見は、カルボキシペプチダーゼ活性と組合せたプロリン特異的エンドプロテアーゼの存在及び活性は、カルボキシ末端プロリン残基のモル分率に小さな効果を有するに過ぎないことを示す。従って、JP5015314に記述され0.03ミリユニットのみのプロリン特異的エンドプロテアーゼ活性に帰すると記述された苦味除去効果が、カルボキシ末端アミノ酸残基としてプロリンを有するペプチドの高発生率に結びつけられることを想像することは、困難である。
【0212】
実施例5
プロリン特異的エンドプロテアーゼの増加用量、及び、そのダイズタンパク質加水分解に対する効果
本実施例において、カルボキシ末端プロリン残基を有するペプチドをかなりの量含むダイズ加水分解物を生成させるために、高レベルのプロリン特異的エンドプロテアーゼが必要とされることを実証する。これらの実験の全体的計画は、実施例4に記述したものと同一である。再度ダイズタンパク質単離物を、ダイズタンパク質1gあたり0.01ユニットの所望するカルボキシペプチダーゼ活性に従って標準化したスミザイムLP75.000と、JP5015314に記述された条件下でインキュベートした。このインキュベーションは、pH5、50℃において、2.5時間又は5時間のいずれかで行い、材料を100℃で10分間保つことによって停止させた。続いて5時間インキュベートした幾つかの材料を取得し、そのpHを7.0まで上げた。この材料から3つのサンプルを取得し、異なる分配でE.coliが産生したF.メニンゴセプチカムのプロリン特異的エンドプロテアーゼを加えた。プロリン特異的エンドプロテアーゼ(JP5015314に従ったが、E.coli由来のプロリン特異的エンドプロテアーゼの最適pH及び最適温度に適応させるためにpH7.0及び30℃で測定した)は、第一のサンプルに対して1.5ミリユニットを加え、第二のサンプルに対して150ミリユニットを加え、第三のサンプルに対して15000ミリユニットを加えて、次にこれらサンプルを40℃で2時間再度インキュベートした。インキュベーションの後にサンプルを遠心分離し、その上清をLC/MS分析まで凍結保存した。LC/MS分析は、既に明記したように行った。得られた結果を表2に明記する。
【0213】
【表2】

【0214】
得られた結果は、加水分解物中のカルボキシ末端プロリン残基を有するペプチドの発生率における著しい増加が、プロリン特異的エンドプロテアーゼの添加に完全に依存することを、明らかに説明する。しかしながら、JP5015314で言及された活性及びスミザイムLP75.000に存在する活性を数オーダー超える活性のみが、これを行い得る。この知見の意味は、純粋な単離されたプロリン特異的エンドプロテアーゼが加水分解物の所望のペプチド組成を得るために必要不可欠であることである。
【0215】
実施例6
市販の加水分解物における、カルボキシ末端残基としてプロリンを有するペプチドのモル分率
既に記述したように、LC/MS/MSは、ペプチドC末端の分析のために用いることができる。ペプチド分子質量(LC/MSで分析した)及びその(部分的)アミノ酸配列(LC/MS/MSで分析した)がタンパク質データバンク内部の自動検索プロシージャにリンクしたアルゴリズムにより、複雑なペプチド混合物を分析することができる。
【0216】
本実施例ではこれらの可能性を、400〜2000ダルトンの分子量を有するカルボキシ末端プロリン残基を有するペプチドのモル分率に対して、幾つかの市販幼児用調製粉乳及び市販のタンパク質加水分解物を分析することに用いた。
【0217】
次の製品を分析した。
1.ニーダル(Nidal)(登録商標)HA1(Nestle)、100g粉末あたり11.5gの乳清タンパク質加水分解物を含む。
2.アルファレ(Alfare)(登録商標)(Nestle)、100g粉末あたり16.5gの乳清タンパク質を含む。
3.ニュートリロン(Nutrilon)(登録商標)ペプチ・プラス(Pepti Plus)(Nutricia)、100g粉末あたり13.5gの乳清タンパク質を含む。
4.ニュートリロン(Nutrilon)(登録商標)ペプチ・ジュニア(Pepti Junior)(Nutricia)、100g粉末あたり16.5gの乳清タンパク質加水分解物を含む。
5.アプタミル(Aptamil)(登録商標)HA(Milupa)、100g粉末あたり12.3gの乳清タンパク質加水分解物及びカゼイン加水分解物を含む。
6.プレゴミン(Pregomin)(登録商標)(Milupa)、100g粉末あたり13.3gのおそらくはダイズ加水分解物及びコラーゲン加水分解物を含む。
7.ニュートルアミジェン(Nutramigen)(登録商標)(Mead Johnson)、100g粉末あたり14.0gのおそらくはカゼイン加水分解物を含む。
8.ビタラーモア(商標登録)800LB(Armor Proteines)、100%の乳清タンパク質加水分解物を含む。
9.WPH916(New Zealand Milk Products)、100%の乳清タンパク質加水分解物を含む。
10.WE80BG(DMV International)、100%の乳清タンパク質加水分解物を含む。
【0218】
幼児用調製粉乳は約15%のタンパク質加水分解物に加えて、脂肪(25%)及び炭水化物(50%)を含むため、脂肪相を除去するためのこの製品のヘキサン抽出が必須であることがわかる。純粋な加水分解物は、そのままで用いられた。
【0219】
得られた部分的タンパク質配列を既知タンパク質配列と結びつけるために、プレゴミンのサンプルを除く全てのサンプルに対して、牛乳タンパク質配列のみを含むデータバンクを用いた。プレゴミンのサンプルは、ダイズ特異的な配列データ及びコラーゲン特異的な配列データを含むデータバンクを用いて分析した。分析上の理由からLC/MS分析は400〜約2000ダルトンの範囲にわたる分子量を有するペプチドに焦点を絞り、この範囲外のペプチドを考慮しない。
【0220】
各サンプルにおいて、用いられた加水分解タンパク質の配列情報を含む32〜76ペプチドが、同定できた。大部分のサンプルにおいて、クロマトグラムにおいて最大強度である25ピークの95%より多くが、乳タンパク質の配列情報に関連していた。プレゴミンのサンプルでは、最大強度である25ピークの65%のみが、ダイズタンパク質及びコラーゲンタンパク質の配列情報に関連していた。このことに対して考えられる理由は、タンパク質主成分における他のタンパク質源の組込み、又は、小さいピーク又は共溶出しているピークによる乏しいMS/MSデータである。
【0221】
この系の反復率及び再現性を試験するために、ニュートリロン・ペプチ・プラスのサンプルを二回抽出し、三つ組で分析した(一連の最初、途中、最後)。カルボキシ末端アミノ酸残基の分布に関する種々の分析から得られたデータは、よく一致していることが見出された。
【0222】
種々の市販製品におけるカルボキシ末端プロリン残基を有するペプチドのモル分率を、表3で提供する。このようなペプチドのモル分率は、加水分解物を調製するために用いたタンパク質性原材料のプロリン含有量にも関係する。例えばカゼイン及びコラーゲンは、乳清タンパク質又はダイズタンパク質よりもかなり高いプロリン含有量を有する。この点を考慮すると、各市販製品に対して用いられたタンパク質主成分中に存在するアミノ酸中のプロリンのモル分率は、酸性加水分解に続く材料及び方法の節に記述するような技術を用いたアミノ酸分析を用いても推論される。さらに用いられた原材料は、例えば特定の繰り返しアミノ酸配列の存在といった理由により、酵素切断に対してその感受性が異なることがあり得る。
【0223】
【表3】

【0224】
表3に表したデータから、一般に普及している乳清加水分解物におけるカルボキシ末端プロリン残基を有するペプチドのモル分率が低いことは明らかである。乳清のプロリン含有量を考慮したとしても、乳清に基礎をおく市販製品は、タンパク質主成分中に存在するプロリンのモル分率より高いカルボキシ末端プロリン残基を有するペプチドのモル分率を含まないことを結論する。これら乳清に基礎をおく市販製品中のカルボキシ末端プロリンを有するペプチドの典型的なモル分率は、5%以下である。
【0225】
ニュートルアミジェンのようなカゼインに基礎をおく製品中のカルボキシ末端プロリン残基のモル分率に注目すると、カゼインの相対的に高いプロリン含有量を考慮しても、乳清に基礎をおく製品に見出されるよりも実質的に高いレベルであることが理解される。しかしながら、一方ニュートルアミジェン製品を、サブチリシン及びプロリン特異的エンドプロテアーゼとのインキュベーションによって作成したβ−カゼイン加水分解物(実施例1を参照)と比較すると、現存する市販のカゼイン加水分解物と本発明のカゼイン加水分解物との間に生じる非常に大きな成分的違いが示される。市販製品(すなわち、ニュートルアミジェン)は22%のカルボキシ末端プロリン残基を有するペプチドのモル分率を示す一方、実施例1のカゼイン加水分解物に対するその数字は61%である。
【0226】
実施例7
カルボキシ末端プロリンを有する乳清ペプチドのモル分率の、添加されたプロリン特異的エンドプロテアーゼ濃度に対する関係
本実施例では、市販乳清タンパク質を、E.coliによって生産したプロリン特異的エンドプロテアーゼと共に種々の条件下でインキュベートした。得られた加水分解物において、カルボキシ末端プロリン残基を有するペプチドのモル分率を決定した。
【0227】
プロターモア905(Armor Proteins)の水溶液(10%w/w)を、2.5%(酵素質量/基質質量)デルボラーゼ存在下pH8.5で1時間、25℃から60℃に穏やかに加熱した。1時間後溶液を急速に80℃まで熱して、直後に60℃まで冷却した後、新しく2.5%用量のデルボラーゼを添加した。この加水分解をさらに1時間そのまま進行させ、次に5分間95℃に加熱して、再び冷却した。pH7.4に調整した後にプロリン特異的エンドプロテアーゼを0、87及び170ユニット/基質グラム(表4ではU/g;World Journal of Microbiology & Biotechnology,Vol11,pp209−212に記述された手段による、ユニット数)の濃度で添加して、加水分解を45℃でさらに3時間進行させた。最後に、酵素を不活性化するため及び溶液を低温殺菌するために、この溶液を5分間95℃に保った。形成されたペプチド中のカルボキシ末端プロリン残基のモル分率を決定するために、得られた加水分解物を既に記述したようにLC/MSによって分析した。得られた結果を表4に表す。
【0228】
【表4】

【0229】
この表から、45℃においてC末端にプロリンを有するペプチドのモル分率は、プロリン特異的エンドプロテアーゼの用量と共に増加することが明らかである。最も高用量の酵素を用いると、この乳清製品から得られるペプチドの50%に至るまでが、カルボキシ末端プロリンを有することが示された。30℃でインキュベーションを行う場合、カルボキシ末端プロリン残基を有するペプチドのモル分率は、87ユニット/基質グラムで52%に達することができ、より高用量の酵素でほとんど増加しなかった。45℃に比べて、30℃において87U/gで達成されたさらに高い発生率は、E.coli酵素の低い熱安定性によって説明することができる。
【0230】
実施例8
プロリン特異的エンドプロテアーゼを用いて生産した、及び、用いないで生産した乳清加水分解物の味と組成
本実施例では、E.coliから得られたプロリン特異的エンドプロテアーゼをサブチリシン(デルボラーゼ)と組合せて用いて、苦味の少ない乳清加水分解物を生産した。実施例7で生じたデータを用いて、プロリン特異的エンドプロテアーゼ用量は、カルボキシ末端プロリン残基を有するペプチドが少しだけ増加することが期待され得る量を選択した。プロリン特異的エンドプロテアーゼを用いて形成された加水分解物を、プロリン特異的エンドプロテアーゼを用いずに形成された同様の加水分解物及び市販の低苦味乳清加水分解物と比較した。全三つの生成物は、味及びカルボキシ末端プロリン残基を有するペプチド含有量の点で特徴付けた。
【0231】
プロターモア905(Armor Proteins)の水溶液(10%w/w)を、2.5%(酵素質量/基質質量)デルボラーゼの存在下pH8.5で1時間25℃から60℃まで穏やかに加熱した。1時間後溶液を急速に80℃まで熱して、直後に60℃まで冷却した後、新しく2.5%用量のデルボラーゼを添加した。この加水分解をさらに1時間そのまま進行させ、次に5分間95℃に熱し、再び冷却した。pHを7.4に調整した後に、プロリン特異的エンドプロテアーゼを50ユニット/基質グラムの濃度で添加した。これを3時間45℃で静置した。実施例7で得られたデータによると、これらの条件は、カルボキシ末端プロリン残基を有するペプチドを僅かに増加させるだけである。最後に、酵素を不活性化させるため及び溶液の低温殺菌のため、この溶液を5分間95℃に維持した。次に溶液を冷却した。同じ処理を別のサンプルに対しても適用したが、プロリン特異的エンドプロテアーゼの添加はしなかった。
【0232】
加水分解の官能試験は、いわゆる二対比較試験(two−paired comparison test)で行った。このタイプの試験は、全米醸造化学会(the American Society of Brewers Chemists(ASBC))によって2つの異なるビールの苦味を比較するために用いられる。このような片側検定において5%の誤差のリスクを容認すれば、統計上格差を有するための閾値は24の返答のうち17である。各試験において、加水分解物を2.5%乾物濃度で試験し、各溶液の1mlを使い捨てのバイアルに入れた。各査定者には、嚥下せずに苦味のレベルを見積もること、及び、その後水で口をすすぐことを依頼した。全サンプルは符号化し、査定者の間にランダムに分配した。
【0233】
第一の試験は、サブチリシン単独、対、サブチリシンとプロリン特異的エンドプロテアーゼとの組合せの利益を評価することを目的とした。第二の試験は、サブチリシンとプロリン特異的エンドプロテアーゼとの組合せによって得られた加水分解物の苦味、対、市販の低苦味加水分解物(ビタラーモア800LB)の苦味を評価することを目的とした。そのために、ビタラーモア800LBを他の加水分解物に対して用いた同じ緩衝液で希釈し、比較可能なタンパク質濃度を得た。
【0234】
第一の試験に参加した24人のうち、17人はサブチリシンとプロリン特異的エンドプロテアーゼとの組合せを用いて得られたサンプルは、サブチリシン単独を用いて得られたサンプルよりも苦味が少ないと見積もった。この結果は統計上有意であり、相対的に低い濃度で適用しても、プロリン特異的エンドプロテアーゼの苦味除去活性を認めている(実施例7を参照)。言及する価値のあることは、これらの“低い”酵素濃度が、特許JP5015314に適用され苦味除去効果をクレームした酵素用量より数オーダー高いことである。
【0235】
第二の対にしたサンプル比較では、24の参加者のうち19の参加者が、サブチリシンとプロリン特異的エンドプロテアーゼとの組合せを用いて処理したサンプルが、市販のビタラーモア800LBより苦味が少ないと見積もった。この後者の知見は統計上も有意であり、本発明の加水分解物及び酵素混合物の経済的価値を説明する。
【0236】
プロリン特異的エンドプロテアーゼを用いて得られた加水分解物及び用いないで得られた加水分解物を、既に記述したようにLC/MSによって分析した。サブチリシンを単独で用いて得られた加水分解物では、41ペプチドを分析した。18ペプチドが少なくとも一つのプロリン残基を含むことを示した事実にも関わらず、これらのペプチドはどれもカルボキシ末端プロリン残基を保有しないことが明らかになった。
【0237】
サブチリシンとプロリン特異的エンドプロテアーゼとの組合せを用いて得られた加水分解物では31ペプチドを分析して、6つはカルボキシ末端プロリン残基を有することが示された。この知見は実施例6で得られた結果に基づいて予想されたことと合致し、プロリン特異的エンドプロテアーゼを用いたインキュベーションの結果として、カルボキシ末端プロリン残基を有しているペプチドのモル分率が0から19%に増加したことを示す。後者生成物の官能試験は統計上有意に減少した苦味を実証していることから、この実験は明らかにカルボキシ末端プロリン残基の僅かな増加を、減少した苦味と結びつける。
【0238】
苦味のレベルの減少に加えて、低レベルのプロリン特異的エンドプロテアーゼを用いたこのインキュベーションは、加水分解物のペプチドの長さを減少することも示し得る。デルボラーゼを単独で用いて処理した加水分解物では、LC/MS分析は、これらペプチドが7.5アミノ酸の平均長を伴って4〜14アミノ酸の長さで変動することを明らかにした。デルボラーゼとプロリン特異的エンドプロテアーゼとの組合せを用いて処理した加水分解物では、ペプチドの長さが6.1アミノ酸の平均長を伴って4〜12アミノ酸で変動することが示された。このような減少したアミノ酸の長さは、加水分解物生産処理の収率を改良するだけでなく、加水分解物の全体的なアレルゲン性を減少し酸性条件下での沈殿を最小限にするであろう。
【0239】
実施例9
アスペルギルス・ニガー由来のプロリン特異的エンドプロテアーゼのクローニング
順方向及び逆方向のオリゴヌクレオチドプライマーを、実施例3で解明したペプチド配列を用いて作成した。このプライマーの縮退を減少するために、イノシン塩基を種々の位置に導入した。これはプール中でPCR反応を開始することができるオリゴヌクレオチドプライマーの存在量を増加するが、不都合なことは反応の特異性が減少することである。
【0240】
A.ニガーG306(2001年9月10日にCBSへCBS109712として寄託した)由来のゲノムDNAを標準的な技術を用いて単離し、テンプレートとしてPCR反応に表5に表示したプライマーと共に用いた。
【0241】
【表5】

【0242】
実験では、順方向及び逆方向のプライマーの可能な全組合せを、A.ニガー由来のプロリン特異的エンドプロテアーゼをコードする遺伝子を増幅することに用いた。最初の実験は、標準的PCR条件下(94℃で変性、55℃でアニーリング、及び72℃で伸長)で行った。驚くべきことに、これらの実験では特異的なPCR産物が得られなかった。否定的な結果はテンプレートDNA中の不純物によるものでもあったと考えて、異なるが既知である種々のA.ニガー遺伝子のためのPCRプライマーを用いてコントロールPCR反応を行った。比較可能な反応において、この後者遺伝子をA.ニガーG306ゲノムDNAからうまく増幅することができ、エンド−プロプライマーを用いて断片を増幅することが不可能であるのは、ゲノムDNA調製品中の不純物のためでないことが示された。
【0243】
続いて、アニーリング温度を45℃まで下げることによって、PCR反応のストリンジェンシーを減少することを決定した。結論としてはPCRの特異性が減少し種々のバンドが増幅されたが、これらのバンドの大部分はプライマーの一つを欠くコントロールPCR反応でも検出された。これらPCR産物の幾つかを一般的なクローニングベクターpCR2.1(Invitrogen,Groningen,The Netherlands)にクローン化し、これらの断片のDNA配列を決定した。不運なことに、クローン化した断片は、どれもプロリン特異的エンドプロテアーゼをコードする遺伝子をコードしていなかった。
【0244】
加えて、異なるポリメラーゼの使用、プライマー又はテンプレート濃度の増加、タッチダウンPCR及びホットスタートの導入のような多くの他の調整をPCRプロトコールに対して行ったが、これらのプロトコールは、どれもプロリン特異的エンドプロテアーゼをコードする遺伝子の特定断片を産生しなかった。この正確でないアプローチの明らかな危険性を最小限にするために、別のあまり知られていないクローニング手段を試みることを決定した。
【0245】
3’−RACE
A.ニガーG306ゲノムDNAからプロリン特異的エンドプロテアーゼをコードする遺伝子を増幅する試みがどれも成功しなかったことから、RNAをcDNA合成のためのテンプレートとして用いる異なったアプローチを使用することを決定した。3’−RACE、5’−RACE及び完全なオープンリーディングフレームの増幅を用いて未知遺伝子をクローニングするアプローチは、WO9938956に記述されている。上述した直接的PCR手段と比較すると、この手段の利点はcDNAの3’末端に付加プライミング部位を導入することであり、従ってコード配列部分を増幅するために、二つの縮退したプライマーの代わりに一つの遺伝子特異的オリゴヌクレオチドに加えて一つの普遍的プライマーのみを必要とする。加えて、cDNAをテンプレートとして用いることは、増幅においてイントロンによる問題を回避する。増幅反応におけるテンプレートとしてのcDNAの使用は、ゲノムDNAからの増幅と比較してテンプレート濃度も増加させる。
【0246】
このアプローチに従って、A.ニガーG306はコラーゲンを唯一の炭素源として含む培地で培養し、プロリン特異的エンドプロテアーゼをコードする遺伝子の発現を誘導した。培地の組成は、材料及び方法の節に記述する。若い菌糸体を34℃で48時間生長させた後に収穫して、総RNAの単離のために用いた。このために、菌糸体はミラクロス・フィルトレーション・ラップを通す濾過を用いて収穫し、半分の氷冷滅菌水で洗滌した。菌糸体(250mg)を液体窒素中で即時に凍結し、乳鉢と乳棒を用いて微細な白色粉末に粉砕した。この白色粉末を15mlの滅菌グライナー(Greiner)管に移し、供給者(Life Technologies,Paisley,UK)による記述に厳密に従ってトリゾル(Trizol)法で総RNAを単離した。
【0247】
このRNA調製品は3’−RACEキット(AP;Life Technologies)のアンカープライマーからcDNAを合成することに用い、mRNAのポリA鎖からcDNAを伸長させた。RNaseH処理後、短縮普遍的増幅プライマー(AUAP;Life Technologies)及び上述のイノシン置換した遺伝子特異的順方向プライマー(No.1、3、5及び7)を用いたPCRによって、cDNAを増幅した。プライマーNo.1に加えてAUAPを用いた場合にのみ、〜1.4kbの特異的増幅産物をA.ニガーG306RNAから増幅できた。他のプライマーでは低ストリンジェンシーにおいてのみ、非特異的増幅が得られた。この1.4KbのcDNA断片をpCR2.1にクローン化し、DNA配列を決定した。
【0248】
5’−RACE
この配列から、遺伝子の5’側のさらなる増幅のために三つの遺伝子特異的プライマーを設計した。三つのプライマー全て、5’−TTCAGTACTCCACCAGTACCTC−3’、5’−TGGGAAAAGGTGCCCTTCTCC−3’、及び、5’−GGATTATGATGGTCCAGCAGC−3’は、プロリン特異的エンドプロテアーゼをコードする遺伝子のコード配列に対して、相補的かつ逆方向である。
【0249】
A.ニガーG306由来の総RNAを、プライマー5’−TTCAGTACTCCACCAGTACCTC−3’を用い5’−RACEキット(Life Technologies)でcDNAを合成することに用いた。RNase処理後、cDNAはグラスマックス(Glasmax)カートリッジ(Life Technologies)を用いて精製した。ターミナルトランスフェラーゼ(TdT;Life Technologies)を用いて、ポリdC鎖をcDNAに付加した。このcDNAを、短縮アンカープライマー(AAP;Life Technologies)及び第一入れ子プライマー5’−TGGGAAAAGGTGCCCTTCTCC−3’を用いたPCR反応で増幅した。AUAPプライマー及び第二プライマー5’−GGATTATGATGGTCCAGCAGC−3’を用いた第二増幅反応は、〜0.25kbの特異的増幅産物を得るために必要であった。この断片をアガロースゲル電気泳動によって精製してpCR2.1にクローン化し、DNA配列を決定した。これにより、この断片がプロリン特異的エンドプロテアーゼをコードする遺伝子の5’側を含むことが示された。
【0250】
遺伝子の特徴付け
3’−RACE及び5’−RACEの重複配列の併用は、プロリン特異的エンドプロテアーゼをコードする遺伝子の完全なコード配列を生じる。配列番号1は、この遺伝子のオープンリーディングフレームの全体配列を示す。推論された526アミノ酸のタンパク質配列は、配列番号2に示す。ペプチドATTGEAYFEは、完全に正しいことが判明した。ペプチドDGAPEGTSTも正しいが、イントロンによって遮断されるゲノムDNAによってコードされる(配列番号15、及び、アスペルギルス・ニガーCBS513.88のクローニング及びゲノムDNA配列に関する実施例11を参照)。それらの特徴付けに対して用いたLC/MS/MSアプローチが原因で、他の二つのペプチドはエラーを取込んでいる(実施例3を参照)。これらの不確定性にもかかわらず、初めて、アスペルギルス由来のプロリン特異的エンドプロテアーゼをコードする所望の遺伝情報の選択及び同定に成功した。
【0251】
アスペルギルス由来のプロリン特異的エンドプロテアーゼの新規性は、SwissProt、PIR及びtrEMBLのようなよく知られたデータベースに対するBLAST検索によって確認した。タンパク質配列データベースと比較した際、このタンパク質と他のタンパク質との高い同一性は検出できなかった。
【0252】
実施例10
プロリン特異的エンドプロテアーゼをコードする遺伝子の過剰発現、及び、プロリン特異的エンドプロテアーゼの単離
プロリン特異的エンドプロテアーゼをコードする遺伝子のオープンリーディングフレーム全体を、プライマー5’−ATGCGTGCCTTCTCCGCTGTC−3’及びAUAPプライマー(Life Technologies)を用いてA.ニガーG306のcDNAからPCR増幅した。得られたPCR断片をクローニングベクターpCR2.1(Invitrogen)にクローン化した。得られたプラスミドをEcoRIを用いて消化し、エンド−プロ遺伝子を含む断片を発現ベクターpGBFIN−11(WO9932617)のEcoRI部位にクローン化した。得られたクローンは、XhoIを用いた制限酵素切断によって確認した。前記断片が正しい配向で挿入された場合、〜0.65kbの断片が得られる。この得られたプラスミドを図1に示し、pGBFIN11−EPOと命名した。
【0253】
A.ニガーCBS513.88を、プロリン特異的エンドプロテアーゼをコードする遺伝子の過剰発現のための宿主として用いた。従って、発現ベクターpGBFIN11−EPOをNotIでの消化によって線形化して、発現ベクターからE.coliに由来する配列全部を除去した。消化されたDNAを、フェノール:クロロホルム:イソアミルアルコール(24:23:1)抽出及びエタノール沈殿を用いて精製した。A.ニガーのトランスフォーメーション手順は、WO98/46772に詳しく記述されている。これは、アセトアミドを含む寒天プレート上の形質転換体に対する選択方法、及び、標的とするマルチコピー成分の選択方法も記述する。好ましくは、サンプル材料のさらなる生成に対して、発現カセットのマルチコピーを含むA.ニガー形質転換体を選択する。
【0254】
培養及びプロテアーゼの単離
振とうフラスコ培養液中の菌株培養による発現カセットのマルチコピーを含むA.ニガー株を、クロマトグラフィーによるサンプル材料生成のために用いた。A.ニガー株の培養、及び、培養ブロスからの菌糸体単離のために有用な方法は、WO98/46772に記述されている。得られた培養ブロスを、図2に示すSDS−PAGEによって分析した。続いて培養ブロスを用いて、混入するいかなるエンド−及びエキソプロテアーゼ活性をも除去するためにプロテアーゼのクロマトグラフィー精製を行った。このため、最初に発酵ブロスを遠心分離して真菌の塊の大部分を除去し、次にその上清を前述した孔サイズの何枚かのフィルターに通して全細胞断片を除去した。最終的に、得られた限外濾過物を20ミリモル/リットルの酢酸ナトリウムpH5.1で10倍に希釈し、Q−セファロースFFカラムに装荷した。タンパク質は、20ミリモル/リットルの酢酸ナトリウムpH5.1中0〜0.4モル/リットルNaClのグラジエントで溶離させた。World Journal of Microbiology & Biotechnology 11,209−212(1995)に記述されるプロトコルに従ったが僅かに改変したアッセイ条件下において、Z−Gly−Pro−pNA(Bachem,Switzerland)切断に活性を示すピーク画分を集めてプールした。A.ニガーに由来するプロリン特異的エンドプロテアーゼの酸性の最適pHを考慮して、酵素アッセイはクエン酸/リン酸緩衝液中で37℃、pH5において行った。活性画分のプールに続けて、これを濃縮し、最終的にSDS−PAGEにおける単一バンド及びHP−SECにおける一つのピークのみを示す調製品が得られた。疎水性相互作用クロマトグラフィーによるさらなる分析で、得られた酵素調製品の純度を確かめた。
【0255】
さらに、精製したプロリン特異的エンドプロテアーゼを、エドマン分解による成熟タンパク質アミノ末端決定のために用いた。成熟プロリン特異的エンドプロテアーゼのアミノ末端は、配列番号2及び配列番号17における位置42から開始している。
【0256】
実施例11
プロリン特異的エンドプロテアーゼをコードする遺伝子の存在に関する、A.ニガー以外の真菌種のスクリーニング
プロリン特異的エンドプロテアーゼをコードするF.メニンゴセプチカム遺伝子及びA.ニガー遺伝子間の低いヌクレオチド配列相同性に基づいて、これら二つの遺伝子間のクロスハイブリダイゼーションを排除することができる。より近縁な微生物におけるA.ニガー特異的ヌクレオチド配列保存の痕跡を得るために、次の菌株をハイブリダイゼーション実験に対して選択した。真菌種アスペルギルス・ニガーCBS102.12、アスペルギルス・ニガーCBS513.88、アスペルギルス・ニガーG306、アスペルギルス・カルボナリウス(carbonarius)ATCC1025、アスペルギルス・ソジェDSM2809、アスペルギルス・オクラセウス(ochraceus)ATCC18500、アスペルギルス・アクリーティスCBS101.43、バーティシリウム・プサリオタエ(psalliotae)CBS396.58、フィアロファオラ・ムステア(Phialophaora mustea)CBS142.41、ぺニシリウム・クリソジェナム(chrysogenum)URCM237、フォーマ・イグジグア(exigua)CBS431.74、ミクロスポリウム・ガリナエ(gallinae)CBS221.55、アクレモニウム・ストリクタム(strictum)ATCC20371、リゾムコール・ミエハイ(Rhizomucor miehei)CBS370.65、アルテルナリア・アルテルネイト(alternata)CBS103.33、タラロマイセス・エメルソニィ(emersonii)CBS393.64、クラドスポリウム・クロロセファラム(chlorocephalum)CBS213.73、クラドスポリウム・テヌイスシナム(tenuissinum)CBS117.79及びトリコデルマ・リエシィ(reesii)ATCC26921を、100mlのPDB(ポテト・デキストロース・ブロス、Difco)中30℃(50℃で増殖するタラロマイセスを除いて)、220rpmで振とう培養した。
【0257】
培養物が充分に増殖してからミラクロースフィルターを通す濾過によって菌糸体の塊を収穫し、これを10mM KPi緩衝液(pH7.0)で洗滌し、濾紙の間で乾燥させた。液体窒素下、乳鉢及び乳棒を用いて微細な白色粉末が得られるまで、菌糸体を粉砕した。続いて、ピュアジーン(PureGene)キット(Gentra Systems,Minneapolis USA)を用い供給元の指示に従って、染色体DNAを単離した。
【0258】
サッカロマイセス・セレビシエATCC20785をネガティブコントロールとして実験に用い、YePD中30℃、220rpmで振とう培養した。
【0259】
サザンブロットの準備のため、全部の種の染色体DNAをXhoIで消化し、制限断片をTAE緩衝液中0.8%アガロースゲル上においてアガロースゲル電気泳動によって分離した。分離後、DNA断片を従来的手段(Sambrook et al.(1982):Molecular cloning;a labortory manual,ISBN 0−87969−309−6)によってニトロセルロース(0.2μm、Schleicher & Schuell)膜上にブロッキングし、このブロットを80℃で2時間真空乾燥した。
【0260】
ハイブリダイゼーションのためのプローブは、プライマー5’−ATGCGTGCCTTCTCCGCTGTC−3’及びAUAPプライマーを用いてpGBFIN11−EPOをテンプレートとするPCRで合成した。供給元の指示に従ってラッドプライム(RadPrime)DNAラベリングシステム(Life Technologies)を用い、約30ナノグラムのcDNA断片を32P−α−dATP(Amersham,England)で標識した。標識した後、スパンカラム法(Sambrook et al.,1982)に従ってプローブ断片をセファデックスG−50カラムにかけて精製することにより、組込まれなかったdNTPを除去した。
【0261】
ハイブリダイゼーション混合物の添加に先立って、精製したプローブを熱湯に5分間インキュベーションすることによって変性させ、続いて氷で急激に冷却して、即時に用いた。
【0262】
ブロットのプレハイブリダイゼーションは、50mlの6×SSC、0.5%SDS、5×デンハルト、0.1mg/mlニシン精子DNA(Life Technologies)中50℃で1時間、継続的に攪拌した。このブロットを200mlの6×SSC、0.1%SDSを用いて室温30分間で2回、200mlの6×SSC、0.1%SDSを用いて50℃30分間で1回洗滌し、ブロットに対する非特異的な(aspecific)ハイブリダイゼーションを除去した。X−OmatAR(Kodak)フィルムを用いて、ハイブリダイゼーションを視覚化した。
【0263】
実験の結果を表6に示す。A.ニガー株及びA.カルボナリアス株は、プローブとの強固なハイブリダイゼーションを示す。A.ソジェ、A.オクラセウス及びA.アクリーティスのような他のアスペルギルス株も、プローブとのハイブリダイゼーションを示す。明らかに、プロリン特異的エンドプロテアーゼをコードする遺伝子はアスペルギルス属においてよく保存されている。驚いたことに、フィアロファオラ・ムステア、リゾムコール・ミエハイ、アルテルナリア・アルテルネイト、タラロマイセス・エメルソニィ及びトリコデルマ・リエシィのようなアルペルギルスからさらに遠い真菌も、プロリン特異的エンドプロテアーゼのcDNAと充分なハイブリダイゼーションを示す。ネガティブコントロールとして含まれるサッカロマイセス・セレビシエ、及び、他の少数の種は、A.ニガー由来のcDNAとのハイブリダイゼーションを示さない(表6を参照)。この結果はプロリン特異的エンドプロテアーゼをコードする遺伝子が多数の真菌種で保存されることを示し、当業者であれば、検出方法として本明細書に示した異種性ハイブリダイゼーションを用い、これらの種から遺伝子を単離可能であることを理解するであろう。
【0264】
これを説明するために、本実施例で用いたアスペルギルス・ニガーG306のcDNA断片を、アスペルギルス・ニガーCBS513.88ゲノムDNAライブラリーのスクリーニングのためのプローブとして用いた。当業者であれば、ゲノムDNAライブラリーを作成するため、及び、標識したDNAプローブを用いてこのようなライブラリーをスクリーニングするための知識を有するであろう。この手段は文献にも広く記述されている(Sambrook et al.(1989)Molecular Cloning;a laboratory manual.Cold Spring Harbor Laboratory Press)。スクリーニングにおける陽性クローンを精製して、そのDNAをシークエンシングした。プロリン特異的エンドプロテアーゼをコードするアスペルギルス・ニガーCBS513.88ゲノムDNAを、配列番号15に表す。本実施例は、アスペルギルス・ニガーG306に由来するプロリン特異的エンドプロテアーゼ遺伝子のcDNAに対するハイブリダイゼーションを用いて、他の種及び菌株からプロリン特異的エンドプロテアーゼをコードする遺伝子を単離できることを説明する。
【0265】
推論されたCBS513.88のプロリン特異的エンドプロテアーゼのコード配列及びアミノ酸配列は、それぞれ配列番号16及び配列番号17に示す。
【0266】
【表6】

【0267】
実施例12
アスペルギルス・オリザエFS1−32から得られた酵素混合物、及び、そのダイズタンパク質の加水分解における効果
日本の特許JP5015314は、大量の非特異的エンドプロテアーゼ活性及び少量のプロリン特異的エンドプロテアーゼを含むアスペルギルス・オリザエFS1−32から得られた未精製酵素調製品を開示する。この未精製調製品はさらに、実質的にカルボキシペプチダーゼ活性を含む。この未精製酵素調製品とダイズタンパク質とをインキュベーションすると、他のプロテアーゼ調製品を用いて得ることができるダイズ加水分解物より、著しく苦味が少ないと主張されるダイズタンパク質加水分解物が得られる。この有益な苦味除去効果に対してJP5015314で与えられた説明は、他のプロテアーゼ調製品はプロリン特異的エンドプロテアーゼとカルボキシペプチダーゼとの組合せの存在を欠いている、ということである。
【0268】
JP5015314は、苦味除去効果に対する根拠が、プロリン特異的エンドプロテアーゼ活性により露出されるのに続いてカルボキシペプチダーゼにより除去されるプロリン残基の除去であることを示唆する。
【0269】
本明細書の実施例4は、市販酵素混合物のダイズタンパク質に対する効果が、菌株A.オリザエFS1−32のプロテアーゼ活性の特性と似ていることを記述する。この実験研究の一つの結論は、菌株FS1−32で記録されたレベルでのプロリン特異的エンドプロテアーゼ活性の組込みは、カルボキシ末端プロリン残基を有するダイズペプチドの明らかな増加を生じないことである。この結論は本明細書に記述される苦味の無いタンパク質加水分解物に関する重要な意味を有することから、JP5015314に記述される条件下であるがA.オリザエFS1−32から得られた酵素を用いて実験を繰り返すことを決定した。
【0270】
アスペルギルス・オリザエFS1−32(微生物工学研究所寄託番号12193から得られた)をモルトエクストラクト寒天プレート上に蒔いて、35℃で4日間インキュベートし、次に4℃で1日間保存した。これらのプレートからの胞子を、デキストロース20グラム/kg、脱脂したダイズ粉15グラム/kg、低塩イーストエクストラクト5グラム/kg、KHPO 1グラム/kg及び消泡剤0.2グラム/kgを含む接種培地へ接種することに用いた。脱塩水に溶解させた後、硫酸を用いて培地のpHを5.5に調整し、次にバフルを備えた100ml振とうフラスコに20mlずつ分配した。培地の入った振とうフラスコを121℃で30分滅菌し、冷却した後に接種した。32℃で2日間振とうインキュベーションした後に、1mlを用いて別の100ml接種培地へ接種した。32℃でさらに1日間振とうインキュベーションした後、この培養液を培地に接種するために用いた。JP501314は用いた発酵手段に関する情報を提供していないので、EP0522428において提供された発酵のプロトコル及び培地を用いた。
【0271】
EP0522428の培地は次の構成成分を含む:酸性カゼイン(Armor Proteins,France)25.4グラム/リットル、炒ったダイズ粉(Cargill,Netherlands)8.6グラム/リットル、小麦ブラン(Zonnatura,Netherlands)15.0グラム/リットル、コーンスターチ20.0グラム/リットル、タンニン酸(Omnichem)16.0グラム/リットル及びKHPO26.6グラム/リットル。推奨のタンニン酸(プロリン特異的エンドプロテアーゼ形成を刺激するため)がEP0522428で特定されていなかったことから、2種類のタンニン酸すなわちブルータン(BREWTAN)C及びタナル(TANAL)W2(両方Omnichemから(Wetteren,Belgium))を用いた。最後にリン酸(20%)を用いて培地のpH値を4.5に調整し、次にバフルを備えた500ml振とうフラスコに100mlずつ分配した。フラスコは121℃で30分滅菌した。
【0272】
1ミリリットルの前培養接種培地を接種した後、この培養液を32℃、250rpmで2日間及び4日間インキュベートした。バイオマスを除去するために培養ブロスをワットマン・グラス・ミクロファイブレ(microfibre)フィルター(カタログ番号1820090)に通して濾過し、次に−20℃で保存した。この凍結材料の一部を凍結乾燥し、活性測定及びダイズタンパク質とのインキュベーションに対して用いた。
【0273】
凍結乾燥した材料に含まれるプロリル−エンドペプチダーゼ活性、カルボキシペプチダーゼ活性及びエンドプロテアーゼ活性を、正確にJP5015314に記述されたように測定した。2日間発酵させたサンプルは、推奨の4日間発酵されたサンプルより明らかに高い酵素活性レベルを示したことから、これら2日間のサンプルを最終的なダイズタンパク質とのインキュベーションに対して用いることを決定した。これらサンプルの最高プロリル−エンドペプチダーゼ活性を示している酵素活性データを、下に示す。
【0274】
【表7】

【0275】
サンプル1、3及び4において測定されたプロリル−エンドペプチダーゼ活性及びカルボキシペプチダーゼ活性は、JP5015314で提供される図と比較可能である。しかしながら、これらのサンプルで測定されたエンドプロテアーゼ活性は、JP5015314で示されるより約200倍低いことが判明した。種々の産業用酵素調製品で報告されたエンドプロテアーゼ活性を考慮すると(実施例4を参照)、A.オリザエFS1−32を用いて得られJP5015314で明記された極端に高いエンドプロテアーゼ活性は、おそらく非現実的である。
【0276】
JP5015314の実施例2を可能な限り正確に模倣する試みにおいて、次の実験を行った。ダイズタンパク質ソイアミン90HV(Lucas Meyer,Hamburg,Germany)10グラムを100ml脱塩水に懸濁し、4N NaOHを用いてpHを8.5に調整した。次にデルボラーゼ(DSM Food Specialities,Seclin,France)0.5gを添加し(Daiwa Kaseiからのプロチン(Protin)AYの代わり;デルボラーゼ及びプロチンAYの両方は、バチルス由来のアルカリ性エンドプロテアーゼである)、このタンパク質溶液を60℃で2時間インキュベートした(JP5015314において、プロチンAYを用いてのインキュベーションの時間及び温度は明記されていない)。最後にこの溶液を92℃で10分間加熱し、デルボラーゼを不活性化させた。
【0277】
次に得られたタンパク質加水分解物を、JP5015314に記述されたプロトコルに従って、しかし所望するカルボキシペプチダーゼ活性(基質グラムあたり0.01ユニット)に標準化して、酵素サンプル1、3及び4と共にインキュベートした。この意味するところは、凍結乾燥させた酵素サンプル1は2.0ミリグラム、凍結乾燥させた酵素サンプル3は2.7ミリグラム、凍結乾燥させた酵素サンプル4は1.3ミリグラムを、ダイズ単離物1グラムあたりに添加したということである。得られたエンドプロテアーゼ活性及びプロリル−エンドプロテアーゼ活性を、表8に示す。
【0278】
50℃、pH5で5時間インキュベーションした後、サンプルを遠心分離し、この上清はLC/MS分析まで凍結保存した。
【0279】
LC/MS分析は、材料及び方法の節に明記したように行った。
【0280】
この実験におけるタンパク質データバンクは、ダイズタンパク質のみから構成した。得られたペプチドにおいて検出されたカルボキシ末端プロリン残基の頻度は、下に明記する。
【0281】
【表8】

【0282】
得られたデータから、アスペルギルス・オリザエFS1−32から得られた未精製酵素調製品とダイズタンパク質とのインキュベーションが、カルボキシ末端プロリン残基を有するペプチドのモル分率の著しい増加を生じないことは明らかである。従って、JP5015314に記述された苦味除去効果は、最終加水分解物におけるこのようなペプチドの高発生率に起因し得ない。
【0283】
実施例13
アスペルギルスに由来するプロリン特異的エンドプロテアーゼとサーモリシンとの組合せによって得られた、苦味の無いカゼイン加水分解物
A.ニガーG306に由来するプロリン特異的エンドプロテアーゼを過剰産生させてクロマトグラフィー的に精製し(実施例10を参照)、続いて苦味の無いカゼイン加水分解物を生産することに用いた。このために、1リットルあたり60グラムのカゼイン酸ナトリウム(ミプロダン30)を含む溶液100mLに、サーモリシン(サーモエース)100mgを添加した。85℃、pH6.7でのインキュベーションによって即座に凝集し、カゼイン塩タンパク質の沈殿を生じた。2時間のインキュベーションは最終的に、依然幾らかの沈殿物を含んでいる透明な溶液を生じた。次に溶液のpHをpH5.0に調整し、95℃で45分加熱することによってサーモエースを不活性化させた。冷却した後、溶液の味をみて非常に苦いことが観察された。この段階において、カゼイン塩溶液のDH(加水分解の程度;TNBS法を用いて定められる)は約35%であった。ウシカゼイン塩に対するデータバンクを用いたLC/MS/MSによる64ペプチドの分析により、カルボキシ末端プロリン残基を有するペプチドのモル分率は14%であることが示された。
【0284】
次にA.ニガー由来のクロマトグラフィー的に精製したプロリン特異的エンドプロテアーゼの3ユニットを、加水分解物25ミリリットルに添加した。50℃で20時間インキュベーションした後、90℃30分間溶液を加熱することにより、さらなる酵素不活性化サイクルを行った。室温まで冷却した後で溶液をデカントし、透明な上清をpH値4.0に調整した;カゼイン塩加水分解物は、完全に溶解して透明に維持されることが見出された。テイスティングは、苦味又は異風味が存在しないことを実証した。この最終加水分解物のTNBS法を用いたDHは、約50%であった;64ペプチドのLC/MS/MS分析は、カルボキシ末端プロリン残基を有するペプチドのモル分率が45%に増加したことを示した。この45%は、ミプロダン基質に存在するプロリンのモル分率よりほぼ4倍高い。

【特許請求の範囲】
【請求項1】
カルボキシ末端プロリンを有するペプチドのモル分率(%)が、加水分解物を生成することに用いたタンパク質基質におけるプロリンのモル分率(%)の二倍より大きいペプチドを含む、タンパク質加水分解物。
【請求項2】
カルボキシ末端プロリンを有するペプチドのモル分率(%)が、タンパク質におけるプロリンのモル分率(%)の少なくとも三倍である、請求項1記載のタンパク質加水分解物。
【請求項3】
平均ペプチド全長が3〜9アミノ酸である、請求項1又は2に記載のタンパク質加水分解物。
【請求項4】
少なくとも10%のタンパク質基質が加水分解され、好ましくは20〜90%のタンパク質基質が加水分解される、請求項1〜3のいずれか1項に記載のタンパク質加水分解物。
【請求項5】
カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも8%、好ましくは少なくとも15%、さらに好ましくは30〜70%であるペプチドを含む、乳清加水分解物。
【請求項6】
カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも25%、好ましくは30〜70%であるペプチドを含む、カゼイン加水分解物。
【請求項7】
カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは30〜70%であるペプチドを含む、ダイズ加水分解物。
【請求項8】
カルボキシ末端プロリンを有するペプチドのモル分率が少なくとも20%、好ましくは30〜70%であるペプチドを含む、グルテン加水分解物。
【請求項9】
食品又は飲料における、請求項1〜8のいずれか1項に記載のタンパク質加水分解物の使用。
【請求項10】
食品又は飲料が5%〜10%(w/v)のタンパク質加水分解物を含む、請求項9に記載の使用。
【請求項11】
食品が減少した苦味及び/又は低抗原性を有する、請求項9又は10に記載の使用。
【請求項12】
食品が幼児用調製粉乳を含む、請求項11記載の使用。
【請求項13】
タンパク質基質から酵素的にタンパク質加水分解物を生産する方法であって、タンパク質基質をプロリン特異的エンドプロテアーゼと共にインキュベートし、カルボキシ末端プロリンを有するペプチドに富むタンパク質加水分解物を生産する前記方法。
【請求項14】
タンパク質基質をプロリン特異的エンドプロテアーゼ及び別のエンドプロテアーゼと共に、逐次的又は同時にインキュベートする、請求項13記載の方法。
【請求項15】
タンパク質基質をプロリン特異的エンドプロテアーゼ、及び、セリンエンドプロテアーゼ、メタロエンドプロテアーゼ又はセリンエンドプロテアーゼとメタロエンドプロテアーゼとの組合せである他のエンドプロテアーゼと共に、逐次的又は同時にインキュベートする、請求項13記載の方法。
【請求項16】
タンパク質加水分解物を限外濾過工程又は微量濾過工程を用いずに回収する、請求項13〜15のいずれか1項に記載の方法。
【請求項17】
タンパク質基質をプロリン特異的エンドプロテアーゼ、サブチリシン及びカルボキシペプチダーゼを含む酵素組成物と共にインキュベートする、請求項13〜16のいずれか1項に記載の方法。
【請求項18】
タンパク質加水分解物において、カルボキシ末端プロリンを有するペプチドのモル分率(%)がタンパク質基質におけるプロリンのモル分率(%)の二倍より大きい、請求項13〜17のいずれか1項に記載の方法。
【請求項19】
基質1グラムあたり、少なくとも150ミリユニットのプロリン特異的エンドプロテアーゼ、好ましくは少なくとも1ユニットのプロリン特異的エンドプロテアーゼを用いる、請求項13〜18のいずれか1項に記載の方法。
【請求項20】
プロリン特異的エンドプロテアーゼが7より低い最適pHを有する、請求項13〜19のいずれか1項に記載の方法。
【請求項21】
アスペルギルス・ニガー由来のプロリン特異的エンドプロテアーゼを用いる、請求項13〜20のいずれか1項に記載の方法。
【請求項22】
プロリン特異的エンドプロテアーゼを含む酵素組成物であって、タンパク質又は請求項1〜7のいずれか1項に定義する加水分解物において、カルボキシ末端プロリンを有するペプチドのモル分率(%)がプロリンのモル分率(%)の少なくとも二倍より大きいペプチドを含むタンパク質加水分解物を生産することができる前記組成物。
【請求項23】
組成物がサブチリシン及びカルボキシペプチダーゼからなる群より選択される少なくとも一つの成分をさらに含む、請求項22記載の酵素組成物。
【請求項24】
請求項1〜7のいずれか1項に記載のタンパク質加水分解物、又は、請求項13〜21のいずれか1項に記載の方法によって得ることができるタンパク質加水分解物を含む、食品原料。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−213703(P2010−213703A)
【公開日】平成22年9月30日(2010.9.30)
【国際特許分類】
【出願番号】特願2010−78003(P2010−78003)
【出願日】平成22年3月30日(2010.3.30)
【分割の表示】特願2002−547323(P2002−547323)の分割
【原出願日】平成13年12月6日(2001.12.6)
【出願人】(503220392)ディーエスエム アイピー アセッツ ビー.ブイ. (873)
【Fターム(参考)】