説明

ガスタービン翼

【課題】翼構造に起因するフィルム孔の加工制限に関わらず、冷却効率に優れたフィルム孔を備えたガスタービン翼を提供すること。
【解決手段】ガスパス60側に位置する第1翼面71と、冷却流路19,20,23,24側に位置する第2翼面72と、この2つの翼面71,72を連通するフィルム孔10とを備える。フィルム孔10は、第2翼面72に開口する入口部11と、入口部11に連通し第1翼面71に向かって流路断面積が拡大する出口部12とを有する。出口部12は、入口部11の中心軸Aが鋭角βで交差する面Bに対して対称に形成されており、対称面Bを挟んで対向する2つの平面13,14を側面として有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はガスタービンに使用されるガスタービン翼の冷却構造に関する。
【背景技術】
【0002】
ガスタービンは、圧縮機で圧縮された圧縮空気を燃焼器で燃料と混合して燃焼して高温高圧の作動媒体(燃焼ガス)を発生させ、この作動媒体を複数のタービン動翼及びタービン静翼を備えたタービンに導いてタービンを駆動させてタービンの回転動力(運動エネルギー)を得る熱機関である。例えば、タービンの回転動力は発電機を介して電力エネルギーに変換されることがある。
【0003】
ガスタービンでは、消費された燃料に対して得られる電気エネルギーはできるだけ多い方が望ましく、周知のごとくタービン入口における燃焼ガスの高温化による性能向上が期待されている。しかし、ガスタービンの燃焼ガス温度は、翼材が主にガス温度に起因する高温酸化腐食に耐え得る能力および熱応力に耐え得る能力によって制限される。そこで、燃焼ガス温度の高温化に際し、翼材の耐用温度を満足させるため、ガスタービン翼に冷却媒体を供給し、様々な手法でガスタービン翼を冷却する方法が採られている。
【0004】
燃焼ガス温度が高温となる翼の冷却構造としては、フィルム冷却が利用されることがある。フィルム冷却は、翼部の表面に設けたフィルム孔(フィルム冷却孔)から燃焼ガスが通過するガスパス部に冷却空気を放出し、翼表面の燃焼ガスの温度を低下させることで翼を冷却するものである。一般に、このフィルム孔は翼表面に線状に等間隔で配値されたフィルム孔列として翼面に加工される。フィルム孔の穴径と間隔は、その位置での熱負荷に応じて最適に選択することが好ましい。
【0005】
また、冷却孔の性能を向上させるために、翼表面に向かって流路断面積が拡大するようにフィルム孔を形成することで冷却流拡散を行うことがある。一般的に、フィルム孔からガスパスへ放出された冷却空気は、ただちに燃焼ガスに流されて、燃焼ガスの流線方向に沿って帯状に流れる。しかし、上記のように冷却流を拡散させると、フィルム孔からの冷却空気の吐出速度が低下するとともにその静圧が増大する。これにより冷却空気が翼表面上で膜状に広がることが促進されるので、単純な円孔のフィルム孔よりも冷却性能を向上できる。この種のフィルム孔(拡散冷却孔)は、適切なブローレシオ及び逆流マージンでフィルム冷却効率の向上を図った公知の技術で見られる。
【0006】
例えば、米国特許第5779437号(特許文献1)には、冷却空気の入口は円孔で、翼表面に近づくにつれて断面の面積比を適切に増大させた円錐形とした出口拡大部を設けることで冷却効率を高める円錐形の拡散フィルム孔の技術が開示されている。また、米国特許第5683600号、第5382133号(特許文献2,3)には矩形形状の拡散フィルム孔(拡散冷却孔)が開示されている。これらの矩形の拡散フィルム孔もまた、円錐形の拡散フィルム孔と同様に、冷却空気が翼面に沿って吐出されるときに、三次元の拡散を生じる。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第5779437号
【特許文献2】米国特許第5683600号
【特許文献3】米国特許第5382133号
【発明の概要】
【発明が解決しようとする課題】
【0008】
フィルム孔の位置や間隔は、翼材料の限界温度や限界強度を満たすように設計しなければならない。また、冷却空気は、一般に、ガスタービン圧縮機から抽気した空気の一部を利用するため、冷却空気の多量の消費はガスタービン効率の低下をきたす。そこでガスタービン翼の設計においては、出来る限り少ない空気を用いて効率良く冷却することが重要である。また、特に翼面の燃焼ガスの熱負荷が高い場所においては、翼面の全てを冷却空気で覆うようにフィルム孔を配置することが望ましい。
【0009】
ここで、拡散フィルム孔の配置設計について2つの要求が発生する。1つ目は、冷却空気を翼面に対して浅い角度でガスパスへ放出させることである。これは、冷却空気が翼面から剥離してしまうと冷却性能が著しく低下することがあるからである。
【0010】
次に2つ目の要求である。一般にガスタービン翼の表面付近の燃焼ガスの流線方向は、翼形状等に起因して場所によって異なるが、フィルム冷却による冷却性能を向上させる観点からは、その燃焼ガスの流線方向に応じて拡散フィルム孔からの冷却空気の拡散方向を設定することが好ましい。具体的には、冷却空気の拡散方向が燃焼ガス流に対して垂直に近づくように、拡散フィルム孔の出口拡大部を形成することが好ましい。このように拡散フィルム孔における出口拡大部を形成すると、冷却空気の拡散効果が最大化するので、翼表面を冷却空気で容易に覆うことができる。
【0011】
しかしながら、実際のガスタービン翼は翼形状が複雑なため、拡散フィルム孔を機械加工するための機器(例えば、放電加工における電極)と翼の関係や、上記の拡散フィルム孔の形状とその加工スペースの関係等により、フィルム孔の加工位置に制限が掛かって所望の位置に貫通孔(入口円孔部)が設けられないことがある。また、貫通孔自体を設けることができた場合であっても、上記文献の拡散フィルム孔のようには貫通孔(入口円孔部)と出口拡大部の形成方向が一致せず、燃焼ガス流の方向に合わせてフィルム孔を形成することが困難な場所も存在する。すなわち、実際のガスタービン翼では、上記各文献が開示する形状の拡散フィルム孔を上記2つの要望を満たしながら設けることが困難な場所が存在する。
【0012】
たとえば、ガスタービン静翼では、内部が中空の複数の翼部と、内径側エンドウォールと外径側エンドウォールが一体となったセグメント構造を採用している。そして、複数のセグメントを環状に配置することで燃焼ガスの流路を形成し、隣接する静翼エンドウォール同士の間には熱変形による応力集中を緩和するための間隙が設けられている。このような構造では、狭い領域にフィルム孔を配置しなければならない場所や、フィルム孔の形成方向が限定される場所が少なくない。狭い領域には仰角の浅いフィルム孔を設けることは困難であるし、フィルム孔の形成方向が限定される場所では出口拡大部の拡散方向を燃焼ガスの流線に対して垂直方向に設定できないため、冷却性能の低い場所が発生するおそれがある。このような場所の冷却性能を向上する方策としては、圧縮空気(冷却空気)の抽気量を増加するものがあるが、これではガスタービン効率が低下してしまう。
【0013】
本発明の目的は、翼構造に起因するフィルム孔の加工制限に関わらず、冷却効率に優れたフィルム孔を備えたガスタービン翼を提供することにある。
【課題を解決するための手段】
【0014】
本発明は、上記目的を達成するために、作動流体に曝される作動流体流路側に位置する第1翼面と、冷却媒体が流通する冷却流路側に位置する第2翼面と、前記第1翼面と前記第2翼面を連通するフィルム孔とを備え、前記フィルム孔は、前記第2翼面に開口する入口部と、当該入口部に連通し前記第1翼面に向かって流路断面積が拡大する出口部とを有し、前記出口部は、前記入口部の中心軸が鋭角βで交差する面Bに対して対称に形成されており、当該対称面Bを挟んで対向する2つの平面を側面として有するものとする。
【発明の効果】
【0015】
本発明によれば、翼構造に起因するフィルム孔の加工制限を緩和することができるので、フィルム冷却による冷却効率を向上させることができる。
【図面の簡単な説明】
【0016】
【図1】本発明の実施の形態に係るガスタービン静翼の斜視図。
【図2】本発明の実施の形態に係るガスタービン静翼のエンドウォール図。
【図3】本発明の実施の形態に係る拡散フィルム孔の上面図。
【図4】本発明の実施の形態に係る拡散フィルム孔における入口円孔部の中心断面図。
【図5】本発明の実施の形態に係る拡散フィルム孔における出口拡大部についての対称面Bにおける断面図。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態を図面を用いて説明する。図1は本発明の実施の形態に係るガスタービン静翼の斜視図であり、図2は図1中のII-II断面図(内径側エンドウォール図)である。なお、図1は、ガスタービンロータ(以下、ロータと称することがある)の外周に環状配列されたガスタービン静翼を構成する複数のセグメントのうちの1つを背側から斜視したものである。
【0018】
これらの図に示すガスタービン静翼1は、ロータの回転軸心を中心にして湾曲した外径側エンドウォール15及び内径側エンドウォール16と、これら2つのエンドウォール15,16の間に設けられた2つの翼部17,18を備えている。
【0019】
ガスタービン静翼1をガスタービンに組み込む際には、図1に示したセグメントをロータの円周方向に複数連ね、これにより2つのエンドウォール15,16によって仕切られた環状の作動流体(燃焼ガス)用の流路60(ガスパス)が形成される。これによりエンドウォール15,16及び翼部17,18において作動流体流路60側に位置する翼面(第1翼面71(図4等参照))は、ガスタービン稼働中に高温高圧の作動流体に曝されることになる。
【0020】
エンドウォール15,16の側面にはシール溝30が設けられている。シール溝30は、ロータ周方向及び/又は軸方向で隣接する他のセグメントのシール溝30との間にシール部材(例えば、プレート(図示せず))を架け渡すことで、ガスパス60からの作動流体の漏洩を抑制するためのものである。
【0021】
また、内径側エンドウォール16における内径側と外径側エンドウォール15の外径側にはそれぞれフック31が設けられている。外径側エンドウォール15はフック31を介してケーシング(図示せず)の内周壁に保持されており、内径側エンドウォール16はフック31を介して当該ケーシングに取り付けられたサポートリング(図示せず)に保持されている。これにより、外径側エンドウォール15の外径側とケーシングの内周壁との間には外径キャビティ23が形成され、内径側エンドウォール16の内径側とサポートリングの外周壁との間には内径キャビティ24が形成される。外径キャビティ23及び内径キャビティ24には静翼1を冷却するための冷却媒体が供給され、これらキャビティ23,24は冷却流路として機能する。なお、以下においては、外径キャビティ23及び内径キャビティ24をそれぞれ冷却流路23,24と表記することがある。
【0022】
また、図2に示すように、翼部17,18の内部には冷却媒体を流すための冷却流路19,20が設けられている。各冷却流路19,20はパーティション(隔壁)21,22によって仕切られている。特に図示しないが、冷却流路19,20は、エンドウォール15,16によって形成される冷却流路23,24の一方(又は双方)に開口しており、冷却流路23,24から冷却流路19,20内に冷却媒体が導入されるように構成されている。これによりエンドウォール15,16及び翼部17,18において冷却流路19,20,23,24側に位置する翼面(第2翼面72(図4等参照))は、ガスタービン稼働中に冷却媒体に曝されることになる。なお、冷却流路23,24に導入する冷却媒体としては、ガスタービン圧縮機(図示せず)から抽気した圧縮空気が利用できる。また、空気以外にも、蒸気などの冷媒を使用しても良い。
【0023】
翼部17,18及びエンドウォール15,16には、ガスパス60側に位置する第1翼面71に開口する複数の拡散フィルム孔10が設けられている。拡散フィルム孔10は、冷却流路19,20,23,24側に位置する第2翼面72と第1翼面71を連通する貫通孔であり、冷却流路19,20,23,24から供給される冷却媒体を第1翼面71側に導いて燃焼ガス8との間に温度境界層を形成することにより第1翼面71を冷却する。
【0024】
図3は本発明の実施の形態に係る拡散フィルム孔10の上面図(第1翼面71に鉛直な方向からフィルム孔10を見た図)であり、図4は拡散フィルム孔10における入口部11の中心断面図(すなわち、図3の紙面と直交し中心軸Aを通過するIV-IV面における断面図)であり、図5は拡散フィルム孔10における出口部12についての対称面B(V-V面)における断面図である。
【0025】
これらの図に示すように、拡散フィルム孔10は、第2翼面72に開口する入口部(円孔部)11と、入口部11に連通し第1翼面71(ガスパス60)に向かって流路面積が拡大する出口部(拡大部)12を備えている。冷却媒体は、冷却流路19,20,23,24から入口部11に流入し、出口部12を介して翼表面に放出される。
【0026】
出口部12は、第1翼面71に対して略直交する面(対称面)Bに対して面対称に形成されており、対称面Bを挟んで対向する2つの平面13,14を側面として有している。この2つの側面13,14が第1翼面71と交差して表れる2つの直線状の辺52,53は、出口部12の開口端51の一部を成すものであり、それぞれ対称面Bと同じ角度δを成している。すなわち、側面13,14は、静翼1の後縁側(図3中の右側)に向かって一定の角度δで対称面Bから遠ざかるように形成されている。
【0027】
このように出口部12を面対称に形成すると、ガスパス60に対して冷却媒体を略均等に放出させることができる。なお、本実施の形態の対称面Bは、第1翼面71に略垂直で、作動流体(燃焼ガス)の流通方向8(図3参照)と略平行に設定されているので、作動流体の流れに対して略均等に冷却媒体を放出させることができる。
【0028】
また、出口部12は、静翼1の後縁側で2つの側面13,14を接続する平面状の連結面54を備えている。連結面54が第1翼面71と交差して表れる直線状の辺55(すなわち、開口端51における後縁端の辺)は、開口端51の一部を成すもので、出口部12からガスパス60に放出される冷却媒体の拡散方向を規定する。すなわち、冷却媒体は辺55の軸方向と同方向に拡散される。そのため、辺55の近傍を流れる作動流体の流通方向8に合わせて辺55の向きを調節することが好ましい。冷却空気で第1翼面71を広く覆ってフィルム冷却効果を向上させる観点からは、辺55の近傍を流れる作動流体の流通方向8と辺55のなす角が直角に近づくように出口部12を形成することが好ましい。そのため図3の例では、作動媒体の流れ8に対して辺55が直交するように設定されている。
【0029】
ところで、本実施の形態における出口部12の開口端51は、図3に示すように等脚台形状に形成されており、出口部12は対称面Bを有する四角錐の一部で形成されている。すなわち、出口部12は、等脚台形状の開口端51を底面とし、冷却流路19,20,23,24側に頂点を有する四角錐の頂点側を省略した形状となっている。なお、ここでは四角錐状に形成された出口部12を例に挙げて説明するが、対称面Bに対して面対称に形成され、側面13,14及び連結面54を有するものであれば出口部12は他の形状でも良い。
【0030】
入口部11は中心軸A(図3,4参照)を有している。中心軸Aは、出口部12の対称面Bと鋭角βで交差している。このとき、中心軸Aは、対称面B上に存在しない連結点P(図3,4参照)において出口部12と交差する。
【0031】
また、図4に示すように、入口部11が第1翼面71に対して傾斜している角度をαとする(すなわち、αは入口部11の中心軸Aが第1翼面71と成す角)。このとき、フィルム孔10から第1翼面71に放出されたときに冷却媒体が第1翼面71から大きく剥離することを抑制する観点からは、角度αは40度以下とすることが好ましく、さらには30度以下にすることが好ましい。また、図5に示すように、出口部12における連結面54が第1翼面71に対して傾斜している角度をγとする(すなわち、γは連結面54が第1翼面71と成す角)。このとき、冷却媒体が第1翼面71から剥離しにくく、フィルム冷却効率を向上する観点からは、角度γが角度α以下になるように出口部11(連結面54)を形成することが好ましい。
【0032】
ところで、図3中に二点鎖線で示した形状41は、中心軸Aに沿って入口部11を第1翼面71まで仮想的に延長して形成したものである。図3に示すように、出口部12は当該形状41が内部に全て含まれるように形成されている。
【0033】
なお、本実施の形態では、出口部12の開口端51における前縁端の長さは入口部11の直径と略等しく、出口部12の開口端51における後縁端(辺55)の長さは入口部11の直径の略2倍に設定している。また、本実施の形態における入口部11は流路断面が円形の円筒状に形成されているが、入口部11はその他の形状でも良い。
【0034】
次に上記のように構成される拡散フィルム孔10の加工手順について説明する。ここでは、2つのエンドウォール15,16と2つの翼部17,18を鋳造等の加工方法で一体に成形した後に、電極を利用した放電加工で拡散フィルム孔10を機械加工する場合について説明する。
【0035】
まず、入口部11より先に出口部12を形成する場合について説明する。この場合には、対称面を介して左右対称に形成された四角錐からその頂点側の一部を省略した形状を有する第1の電極(すなわち、出口部12と同等の形状を有する電極)を用意し、当該対称面が第1翼面71と略直交するように当該第1の電極を保持しながら放電加工によって静翼1に出口部12(凹部)を形成する。そして、略円筒型の第2の電極を用意し、第2翼面72と出口部12(凹部)を連通する入口部11(貫通孔)を当該第2の電極で形成し、拡散フィルム孔10の加工を完了する。このように出口部12を先に加工すると、入口部11を加工するための第2の電極の位置決め精度を向上させることができるので、拡散フィルム孔10の加工精度を向上させることができる。
【0036】
次に、入口部11を先に形成する場合について説明する。この場合には、まず、第1翼面71と第2翼面72を連通する入口部11(貫通孔)を第2の電極で形成する。そして、入口部11の中心軸Aに第1の電極の対称面が鋭角βに交差し、かつ当該対称面が第1翼面71に直交するように第1の電極を保持することで、四角錐の一部を側面とする出口部12(凹部)を第1翼面71側に形成する。その際、先に形成しておいた貫通孔の第1翼面71側における断面積が拡大するように凹部を形成し、貫通孔の第1翼面71側が凹部によって除外されるようにする。このような順番で加工しても、拡散フィルム孔10を形成することができる。
【0037】
なお、ガスタービン翼へのフィルム孔の機械加工としては、上記の放電加工の他にレーザ穿孔法が知られているが、拡散フィルム10の加工にはこのうちのいずれの方法を用いても良い。
【0038】
ここで図1に戻り、上記のように構成した拡散フィルム孔10を翼部に17,18に設けたことによる作用及び効果について説明する。拡散フィルム孔10の位置、間隔、及び形状(入口部11の径及び第1翼面71に対する仰角、出口部12の形状等)等は、当該フィルム孔10の設置位置における熱負荷に応じて最適に選択することが好ましい。しかし、図1に示した静翼1では、翼部17,18内のパーティション21,22の存在によって拡散フィルム孔の設計が制限される。例えば、先述のように翼面とフィルム孔の成す角(仰角)は小さくすることが好ましいが、入口部と出口部の中心軸を略一致させた従来型の拡散フィルム孔では、パーティション21,22が存在すると翼コード長方向(前縁と後縁を結んだ直線方向)に延びる長いフィルム孔を設計することが難しいので、仰角を小さくすることが難しくなってしまう。また、フィルム孔の仰角を小さくすることを優先させる(例えば、翼高さ方向にフィルム孔を設ける)と、出口部からの冷却媒体の拡散方向が作動流体の流通方向と無関係になる可能性が高くなる。
【0039】
これに対して、本実施の形態では、図1に示すような拡散フィルム孔10を翼部17,18に設けた。この拡散フィルム孔10は、翼高さ方向に斜めに延びる入口部11と、冷却媒体の拡散方向と作動流体8の流通方向が直角に近づくように形成した出口部12を備えており、入口部11の中心軸と出口部12の対称面Bは鋭角βで交差している。すなわち、本実施の形態に係る拡散フィルム孔10では、入口部11と出口部12の形成方向が異なるものとした。このように拡散フィルム孔10を形成すると、拡散フィルム孔10の仰角が小さくなるように入口部11を設けることができるとともに、作動流体8の流通方向に冷却媒体の拡散方向が対応するように出口部12を設けることができる。すなわち、入口部11と出口部12のそれぞれを冷却に最適な形状にすることができるので、翼構造に起因する拡散フィルム孔の加工制限を緩和することができ、結果的にフィルム冷却の冷却効率を向上させることができる。
【0040】
次に、図2を用いて、上記のように構成した拡散フィルム孔10をエンドウォール15,16に設けた場合について説明する。エンドウォール15,16では、第1翼面71付近の作動流体の流通方向は翼部17,18の近傍と比較して非常に複雑になり、さらに、翼部17,18、シール溝30及びフック31といった構造に起因するフィルム孔の加工制限が多くなる。そのため、従来型の拡散フィルム孔によって最適なフィルム冷却を行うことはさらに困難になる。
【0041】
これに対して、本実施の形態では、図2に示すような拡散フィルム孔10をエンドウォール16に設けた。この図に示すように、各拡散フィルム孔10の出口部12からの冷却媒体の拡散方向は作動流体8の流通方向に合わせて調節されており、拡散フィルム孔10の仰角が小さくなるように長く設けた入口部11を介して各出口部12と冷却流路23は連通されている。これにより図1の場合と同様にフィルム冷却の冷却効率を向上させることができる。
【0042】
以上のように、本実施の形態によれば、翼構造に起因するフィルム孔の加工制限を緩和することができるので、フィルム冷却による冷却効率を向上させることができる。これにより冷却媒体に圧縮機からの圧縮空気を利用している場合には、圧縮空気の抽気量を低減させることができるので、ガスタービン効率を向上させることができる。さらには、冷却効率の向上により、長期の運転に対しても、高温酸化による腐食や、温度差に起因する翼の局所熱応力による亀裂等の発生を抑制できるので、ガスタービン翼の信頼性を向上させることができる。
【0043】
ところで、発明者らは、角度βが角度δの2倍以下になるように拡散フィルム孔10を形成すると、中心軸Aに沿って入口部11を第1翼面71まで仮想的に延長して形成した形状41(図3参照)が出口部12の内部に全て含まれることを三次元形状の検討により知見した。したがって、このように拡散フィルム孔10の形状を定義すれば、拡散フィルム孔10の設計を容易に行うことができる。
【0044】
なお、本実施の形態では翼部17,18及びエンドウォール15,16のすべてに拡散フィルム孔10を設けた場合について説明したが、この中の少なくとも1つに拡散フィルム孔10を設けて静翼1を構成しても良い。さらに、本実施の形態では静翼1を例に挙げて説明したが、ガスタービン動翼の翼部に拡散フィルム孔10を設けても上記の実施の形態と同様の効果が得られることは言うまでもない。
【符号の説明】
【0045】
1 ガスタービン静翼
8 作動流体(燃焼ガス)
10 拡散フィルム孔
11 入口部(円孔部)
12 出口部(拡大部)
13,14 出口部12の側面
15 外径側エンドウォール
16 内径側エンドウォール
17,18 翼部
19,20,23,24 冷却流路
41 入口部11の仮想形状
51 出口部12の開口端
54 出口部12の連結面
52,53,55 開口端51の辺
60 作動流体流路(ガスパス)
71 第1翼面(高温翼面)
72 第2翼面(低温翼面)
A 入口部11の中心軸
B 出口部12の対称面
P 連結点
β 対称面Bと中心軸Aのなす角
δ 辺52,53と対称面Bのなす角

【特許請求の範囲】
【請求項1】
作動流体に曝される作動流体流路側に位置する第1翼面と、
冷却媒体が流通する冷却流路側に位置する第2翼面と、
前記第1翼面と前記第2翼面を連通するフィルム孔とを備え、
前記フィルム孔は、前記第2翼面に開口する入口部と、当該入口部に連通し前記第1翼面に向かって流路断面積が拡大する出口部とを有し、
前記出口部は、前記入口部の中心軸が鋭角βで交差する面Bに対して対称に形成されており、当該対称面Bを挟んで対向する2つの平面を側面として有することを特徴とするガスタービン翼。
【請求項2】
請求項1に記載のガスタービン翼において、
前記出口部における前記2つの平面が前記第1翼面と交差して表れる2つの直線がそれぞれ前記対称面Bと成す角をδとすると、
前記角度βは、前記角度δの2倍以下であることを特徴とするガスタービン翼。
【請求項3】
請求項1又は2に記載のガスタービン翼において、
前記出口部は、前記ガスタービン翼の後縁側で前記2つの側面を接続する平面状の連結面をさらに備え、
前記出口部は、前記連結面が前記第1翼面と交差して表れる直線と当該直線近傍における作動媒体の流通方向とのなす角が直角に近づくように形成されていることを特徴とするガスタービン翼。
【請求項4】
請求項1から3のいずれかに記載のガスタービン翼において、
前記出口部は、前記中心軸に沿って前記入口部を前記第1翼面まで仮想的に延長して形成した形状が前記出口部の内部に全て含まれるように形成されていることを特徴とするガスタービン翼。
【請求項5】
請求項1から4のいずれかに記載のガスタービン翼において、
前記入口部の中心軸と前記出口部の連結点は、前記対称面B上に存在しないことを特徴とするガスタービン翼。
【請求項6】
請求項1から5のいずれかに記載のガスタービン翼において、
前記対称面Bは、前記第1翼面に対して略直交していることを特徴とするガスタービン翼。
【請求項7】
請求項1から6のいずれかに記載のガスタービン翼において、
前記入口部の中心軸が前記第1翼面となす角は40度以下であることを特徴とするガスタービン翼。
【請求項8】
ガスタービン翼において作動流体に曝される第1翼面に対して、当該第1翼面に略直交する面Bに対して面対称の四角錐の一部を側面とする凹部を形成する第1手順と、
前記ガスタービン翼において冷却媒体に曝される第2翼面と前記凹部とを連通する貫通孔であって、前記対称面Bに鋭角βで交差する中心軸を有するものを形成する第2手順とを含むことを特徴とするガスタービン翼の製造方法。
【請求項9】
ガスタービン翼において作動流体に曝される第1翼面と冷却媒体に曝される第2翼面を連通する貫通孔を形成する第1手順と、
前記貫通孔の中心軸に鋭角βで交差する面Bに対して面対称の四角錐の一部を側面とする凹部を前記第1翼面に形成し、これにより前記貫通孔における前記第1翼面側の断面積を拡大する第2手順とを含むことを特徴とするガスタービン翼の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−79588(P2013−79588A)
【公開日】平成25年5月2日(2013.5.2)
【国際特許分類】
【出願番号】特願2011−219133(P2011−219133)
【出願日】平成23年10月3日(2011.10.3)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】