説明

ガス絶縁開閉装置の故障点標定装置および方法

【課題】ガス絶縁開閉装置に適用する故障点標定装置は、故障時の圧力上昇の小さな場合には、外界の圧力変動の影響が大きく、判定が困難である。
【解決手段】ガス絶縁開閉装置1に設けられた圧力センサ5により内部のガス圧力を検出し、故障点標定装置20により保護リレー12の情報と組み合わせて故障部位を標定する。現時点の圧力と所定時間前の圧力との差分である指標1と、圧力の微分量を用いた積算値の差分である指標2と、圧力の微分量の急変率である指標3とを求め、指標1、2及び3を前記保護リレー情報とを組み合わせて故障有無の判定を行う。いずれか2個以上の指標が成立した時、故障区画の標定確定とする。ただし、標定確定区画が複数となる場合には、候補区画として扱う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、SF6ガス等を絶縁媒体とするガス絶縁開閉装置(以下、GISと称す)内での地絡、短絡故障区画を特定する故障点標定装置及び方法に関する。
【背景技術】
【0002】
変電所等で使用される高電圧用開閉機器は、接地容器内を複数のガス区画に分割し、SF6ガス等のガスを充填し、固体絶縁物により高電圧課電導体部分や開閉機器類を機械的に保持するGISが主流となっている。GISは密閉構造となるため信頼性が高い。しかし、万一内部で地絡、短絡などの故障が発生しても、故障電流の大きさによっては外観から部位を特定することが困難である。通常は、保護リレーの情報から大まかに故障範囲を予想し、予想された範囲にあるガス区画に対し、ガスチェッカーなどにより内部ガスを抽出して、故障電流のエネルギーにより分解するガス生成物の有無で故障点を判定している。このため、故障区画を特定するのに時間がかかり、特に変電所の母線事故のように対象となる範囲が広い場合、故障区画を特定するまでに多大の時間を要し、迅速な復旧の妨げになっている。
【0003】
図8にGISの典型的な回線構成例を示す。母線1の内、1a側を甲母線、1b側を乙母線と称したとき、断路器31がON、断路器32がOFFの場合、当該回線は甲母線運転中となる。即ち、当該回線で母線を充電中の場合、図示されない送電線からの電流が導体4eから遮断器30を通り導体4d、4c、断路器31を介して導体4aの両側に流れ、甲母線に接続されている他の回線(図示されない)に供給される。
【0004】
いま、故障点50で地絡または短絡事故が生じた場合、変流器33を含む当該母線全体の母線保護用変流器の電流情報を基に、図示されない母線保護リレー装置が甲母線1aでの故障発生と判定する。そして、甲母線1aに接続されている全ての回線の遮断器にトリップ指令が出され、甲母線停止となる。
【0005】
しかしながら、複数の回線が甲母線で運転中である場合、どこの回線のどの区画で故障が発生したのかを直ちに特定するのは困難である。故障区画を瞬時に特定できれば、その回線を切り離すことで母線の復旧を早め、片母線での運転状態を短縮でき、電力供給信頼性を維持することができる。
【0006】
また、本故障点50の例では、保護リレーでは甲母線故障として動作するが、実際にダメージを受けた部分は、GISの構造上は乙母線区画になっている。このため、運用としては断路器31をOFFとして当該回線を甲母線から切り離すとともに、現在乙母線で運転中の回線を全て甲母線側に切り替え、甲母線による運転に切り替える。とともに、当該回線の乙母線側の復旧を促進する必要がある。これらの操作は、故障部位が確定して初めて実施されるため、故障部位探査の時間の短縮が故障時の迅速な復旧のためには最も重要である。
【0007】
これを少しでも改善するため、圧力センサによる故障区画自動判定装置が重要な変電所に適用されており、故障電流の大きな系統では、復旧の迅速化に寄与している。この従来技術として半導体圧力センサを用いた特許文献1の記載がある。
【0008】
即ち、常時圧力センサの信号変動を取り込み、あらかじめ設定した時間幅(Δt)間の圧力上昇量(ΔP)を演算する。上昇量が設定値を超過してあらかじめ定めた時間以上に継続した場合に、当該区画で圧力上昇が発生、即ち当該ガス区画での故障発生と判定するものである。この方法は、故障による圧力上昇が比較的大きい場合に安定した検出機能を発揮し、実際に多くの装置が運用に供されている。
【0009】
【特許文献1】特公平6−91701号公報。
【発明の開示】
【発明が解決しようとする課題】
【0010】
従来の技術による故障点標定装置では、故障時の圧力上昇値が小さな系統に対しては誤動作・誤不動作要因が多い。すなわち、非有効接地系統での一線地絡事故のように故障電流が小さく、圧力上昇が小さい対象においては適用が困難である。
【0011】
たとえば、非有効接地系での一線地絡故障電流は、100A程度であり、これが約200ms流れて遮断されるとすると、圧力上昇は式(1)で示される。
ΔP=C・I・t/(V×9,800) …(1)
ただし、ΔP:圧力上昇値(MPa)、C:構造係数、I:故障電流(kA)、t:故障電流継続時間(ms)、V:故障区画の容積(m)。
【0012】
ここで、故障電流は系統構成における変電所の設置場所と設置方式で決まり、基幹系統と称する変電所では直接接地系統になり最小故障電流が数kA程度となる。一方、市内導入系統となる変電所では、非接地系統になり一線地絡時の最小故障電流は、通常100A程度にしかならない。
【0013】
市内導入系統用のGISではC=0.2程度であり、故障区画の容積をV=2m、故障電流継続時間t=220msとすると、式(1)から、ΔPは0.0002MPa程度となる。通常のガス区画の圧力は、絶縁特性維持の面から0.4MPa程度になっており、0.0002MPaの変化分は0.05%に相当し、これを検出するには困難を伴う。
【0014】
故障時の圧力上昇を高めるためには、式(1)で判るようにガス区画の容積Vを小さくする方法がある。しかしながら、ガス区画を小さくするために区分用のスペーサが増大する。それと共に、独立したガス区画数の増加に対してそれぞれ圧力センサを設ける必要があり、コスト上昇に伴い経済性が低下するばかりか、センサ数の増加やガスシール面の増大などで、信頼性の低下を招くといった問題がある。
【0015】
また、このような微小圧力の検出に対しては、通常の周囲温度変化や環境変化の影響も無視できない。即ち、ガスの圧力は、おおむね式(2)で示されるように温度の影響を受ける。
P(T)=P20×(1+α×(T−293)) …(2)
ただし、P(T):絶対温度T(k)における圧力(MPa)、P20:温度20℃における圧力(MPa)、α:ガスの温度係数(ガス圧力が0.4MPa付近では約0.00207)、T:ガスの温度(k)。
【0016】
即ち、ガスの温度係数αから、故障時の圧力上昇に等しい圧力(約200Pa前後)の変動は、SFガス自身の温度変動分で見ると高々0.2K程度であることがわかる。
【0017】
したがって、屋外に設置された変電所の場合、曇りの状態から急に晴れて日射が直接GISに当たったときや、逆に晴れの状態から急に降雨となってGISの表面が雨に濡れた場合など、内部のガス温度が著しく変化して圧力変動を呈する。特に、後者の条件では、急激な降雨と共に襲雷が伴うケースが想定され、雷サージの侵入による地絡事故の確率が高まり、このような気象条件下での故障点標定機能が必要とされる。
【0018】
以上のように、特許文献1のような従来技術を、市内導入系統の非接地系統のGISに適用した場合、運転状態での誤動作・誤不動作要因が高くなると言う問題がある。
【0019】
本発明の目的は、上記従来技術の問題点を克服し、故障電流が小さく圧力上昇も低い小規模系統において、誤動作や誤不動作が無く復旧の迅速化に役立つガス絶縁開閉装置の故障点標定装置を提供することにある。
【課題を解決するための手段】
【0020】
上記目的を達成するための本発明は、ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定装置において、現時点の圧力と所定時間前の圧力との差分(以下では、指標1と呼ぶ)と、圧力の微分量を用いた積算値の差分(以下では、指標2と呼ぶ)および圧力の微分量の急変率(以下では、指標3と呼ぶ)とを求め、前記指標1、2及び3は予め設定されている設定値を超えたとき判定成立とし、該判定成立または判定不成立の指標1、2及び3を前記保護リレー情報とを組み合わせて故障有無の判定を行うことを特徴とする。
【0021】
前記指標2は、前記指標1の時間幅と同じ時間幅で差分を求める。前記指標3は、保護リレー動作時点の前後の圧力微分値を用いて生成する。
【0022】
また、各指標の組み合わせによる故障点標定結果を、故障が確定したことを示す確定区画と故障の可能性を示す候補区画に判別して出力することを特徴とする。これにより、故障を明確に決定できるケースと、誤動作の可能性がありうるパターンとに分け、確定区画、候補区画として出力する。
【0023】
また、3個の指標のうち指標1と2または、指標1と3の判定成立による組み合わせは、故障点標定結果を確定区画と候補区画に判別して出力することを特徴とする。
【発明の効果】
【0024】
本発明の故障点標定装置によれば、故障時の圧力上昇が小さな場合においても、環境変動による微小な圧力変動と地絡故障による微小圧力上昇とを判別することができ、故障点標定装置の信頼性を向上し、可用性を高めることができる。
【0025】
また、GISの地絡、短絡故障時には、確定または候補のガス区画を標定することができるので、一律に標定不能や誤不動作となる従来装置に比して現場での確認作業の省力化と、復旧の迅速化に貢献できる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、各図を通して同様の機能には同一の符号を付してある。
【0027】
図1は本発明の一実施例による故障点標定装置20の構成図である。1は耐圧力性を有す金属容器で、1a、1b、1c・・・・のように断面が円筒形状からなる接地金属容器が組み合わされ、全体で密閉されたGISを形成する。容器1内には、電流の通路となる導体4が貫通し、その他図示されていない遮断器、断路器、変成器など必要な変電所系統構成機器が収納配置されている。さらに、直管形状や分岐形状の接地容器を組み合わせることにより所要の開閉装置が構成され、全体として図示されない架台上に設置される。
【0028】
絶縁スペーサ3は、3a、3b・・・・のように保守上の切り離し箇所や、開閉装置の構造上の必要な箇所に配置され、容器1内を複数のガス空間(区画)に分割するとともに、導体4の構造上の機械的強度と電気的な絶縁耐力とを保つ。各区画に封入されたSFなどの絶縁ガス25によって、各課電部と接地電位にある容器1との間の電気的絶縁が保たれ、これにより全体としてGISが構成される。
【0029】
各区画に封入された絶縁ガス25は、絶縁性能を維持するために圧力を管理する必要があり、このための圧力監視装置が必要である。たとえば5a、5b・・・のように各区画に対応してガス圧力センサ5が設置される。絶縁スペーサ3やガス圧力センサ5は、機密信頼性の面ならびに経済性の面から、極力必要最小限の箇所となるよう配慮されている。このため、図1の例では、配管6により両区画を連結し、一括してガス圧力センサ5dで監視するようになっており圧力センサの削減が図られている。
【0030】
各独立した区画に設けられたガス圧力センサ5a、5b・・・の出力信号は、センサ信号受信部7a、7b・・・を介してA/D変換部8に取り込まれディジタル量に変換される。センサ信号受信部7は、ローパスフイルタ機能により圧力センサ5の出力信号から高周波振動成分や外部ノイズの影響を除去し、サンプリングによる誤差が圧力上昇判定に影響を及ぼさないよう工夫されている。
【0031】
故障点標定部11は圧力データ加工部11a、指標演算部11b、故障点判定部11cのブロックで構成される。故障点標定部11は一般にCPUで構成され、常時図2に示す処理フローによって故障点標定機能を果たしている。
【0032】
また、12は保護リレー、13は保護リレー信号を取り込む無電圧接点、14は上位系と通信するための通信ユニット、15は上位系の支援システム、16は伝送路である。
【0033】
図2は一実施例による故障点標定処理のフローチャートである。まず、各センサから得られる圧力のディジタルデータを移動平均などの平均化処理し(s101)、圧力変動の傾向を抽出できるように編集される。次に、平均処理された圧力データが、常時上書きされながら所定時間分が保存され時系列のデータとして編集される(s102)。これらは現在と所定時間前の値との差分演算に利用される。s101,102が圧力データ加工部11aの機能となる。
【0034】
次にあらかじめ定義された方法により指標1、2、3を作成する(s103)。これは指標演算部11bの機能である。ここでは、時系列データを用いて圧力センサ毎に、図3に示すように定義の指標を求める。各圧力センサと故障点標定区画とは1対1で対応しており、指標の判定結果に応じて故障区画の確定、候補の区分に反映される。
【0035】
次に、保護リレー12の動作結果を取得し(s104)、指標演算部11bで求まる各指標の状態とを組み合わせて、後述する故障点判定処理を行い(s105)、その結果を表示部10に渡して表示する。s104,105が故障点判定部11cの機能である。なお、保護リレー12の動作結果は、一般に無電圧接点13のON/OFF状態変化として接点信号入力部9を介して取り込まれる。
【0036】
さらに必要な場合には、通信ユニット14を用いて、上位装置となる支援システム15などに伝送路16を介して伝送する。これらの機能は、故障点標定装置20として自立盤などの構造にまとめられ、変電所の機器の近傍や電気室に設置される。
【0037】
図3は指標1、2、3の作成方法を示す概念図である。指標1は、時刻tにおける平均化処理された圧力データ(Pt)を基に、サンプリング毎に、設定された時間(Δt)前の圧力(PΔt)との差分量(ΔP=(Pt−PΔt)/Δt)を指標1とする。この指標1を圧力上昇判定設定値(ΔPL)と比較し、設定値超過の状態が所定時間(TL)以上継続した時点で指標1の判定成立とする。
【0038】
指標2は、取り込んだ圧力データ(Pt)の微分量(P't)を作成し、これを用いて現在からΔt時間前の間の積算値と、Δtから2×Δt時間前の積算値との差(AP')を指標2とする。指標2を圧力上昇判定設定値(ΔPL)と比較し、設定値超過の状態が所定時間(T)以上継続した時点で指標2の判定成立とする。なお、圧力データの微分量(P't)は、指標1を作成する時間幅Δtより小さい時間で求める必要があるが、平均化された圧力データを用いるので、Δtの1/10程度でもよい。
【0039】
指標3は、故障に伴う圧力上昇の前後は圧力変動の微分量に大きな変化が現れる。これを検出するため、保護リレーの接点がONされた時点を中心に、その直前の微分量(P'(−))と直後の微分量(P'(+))との比率(ρ=P'(+)/P'(−))を指標3とする。この比率ρが設定値ρLを超えた場合に、故障に伴う圧力変化有りを示す指標3の判定成立とする。なお、設定値ρLは、定性的には故障時の圧力上昇の時定数と環境変動の影響による圧力変動の時定数の比率に係る値であり、GISの設置環境に応じてシミュレーションにより最適値を設定するのがよく、通常はρ=300%(3倍)程度とする。
【0040】
図4は各指標の関係を故障のタイミングとの関係で示すタイミングチャートである。G1は故障電流でありT0点で故障が発生し電流が流れる。保護リレー12がこれを検出してG2のタイミングで遮断器に対し開路指令を出し、G3で遮断器が開路することにより故障電流が遮断される。
【0041】
故障の生じたガス区画では、故障電流のエネルギーによりG4のようにゆっくりとガス圧力(P)が上昇しT1点で飽和する。飽和期間を経てその後冷却によりT2点から圧力が降下するパターンとなる。ガス圧力(P)の微分量(P')は、圧力上昇開始で急激に変化し、圧力上昇速度が一定であればその間一定の値を保ち、圧力上昇が飽和する時点で再び急激に減少するためG5のように変化する。
【0042】
指標1は、G4に示すガス圧力(P)に対する差分変化量であり、差分時間は通常10秒程度を採用するためG6のように変化する。指標2は、G5に示すガス圧力の微分量(P')に対する面積差分量であり、差分時間を指標1と同じ時間にするとG7のように変化する。指標3は、G5の波形で示すP'(-)とP'(+)との比率であり、G8のように変化する。
【0043】
図4の各指標と設定値(G6,G7のΔPLとG8のρL)との関係に示すように、指標1、2は故障発生後数秒経過して判定が成立するが、指標3はそれよりも早く傾向が現れる。したがって、通常指標3は、G5の波形において設定値t0に対し常時2×t0時間前との比率を求めて記憶しておき、指標1,2の判定が確立した時点で記録されているデータの中から、保護リレー動作点以降の指標3の値に対して設定値超過有無を判定する。
【0044】
図5は故障点判定部の判定ロジックを示す構成図である。各圧力センサの指標1から指標3の情報は、故障点判定部11cに渡される。故障点判定部11cは圧力変動判定表n30に示す8個の組み合わせパターン(n31〜n38)を構成し、これを用いて次のように動作する。圧力変動判定表n30で○は判定成立、×は判定不成立を表している。
【0045】
n31〜n34はORゲートn1を介してANDゲートn3、n7に入力される。ANDゲートn3では、保護リレー12の動作信号n10との照合がとられ、成立すれば「当該区画を確定標定」n20の出力となる。ANDゲートn7では、直前のNOTゲートn6により保護リレー動作信号n10の反転信号との照合がとられ、成立すれば「センサ単独動作」n23の出力となる。即ち、保護リレーの動作が無い状態で、指標1〜3の内2個以上判定が成立するようなケースでは、想定以上にセンサの出力が変動していることを示すため、装置故障信号を出すことにより保守担当部署に対し早期の調査・点検を促すものである。
【0046】
また、圧力上昇をより直接的に反映できる順として、指標間の優先度を、指標1>指標2>指標3として扱い、何れか2個の指標が成立した時、故障区画の標定確定となる。ただし、確定標定区画が複数となる場合には、独立した複数の区画で同時に故障が生じる確率はほとんど0のため、候補区画として扱うのがよい。
【0047】
n35〜n37はORゲートn2を介してANDゲートn4に入力される。ANDゲートn4では、保護リレー動作信号n10との照合がとられ、成立すれば「当該区画を候補標定」n21の出力となる。即ち、この条件で標定された区画には、何らかの圧力上昇が認められるが、それを故障によるものに限定できないことを示しており、運転員にそのことを明示するため故障の候補区画であることを示す表示とする。ただし、パターンn35〜n37が1個の区画のみで成立した場合には、標定確定と扱うことも可能である。なお、保護リレーの動作がない状態で何れか1個の指標の判定が成立する場合(n35〜n37)がある。この現象は、微小圧力上昇を検出する装置のため、ある程度は生じる可能性があり、この場合に直ちに故障装置等には分類しない。発生頻度などを記憶しておき、頻度が大きくなった場合に装置故障として警報を出すことで、運転員の負担を軽減できる。
【0048】
n38は、直接ANDゲートn5に入力される。ANDゲートn5では、保護リレー動作信号n10との照合がとられ、成立すれば「保護リレー単独動作」n22の出力となる。即ち、保護リレーで故障の発生を検出したが、圧力センサの判定からはガス圧力の上昇区画を検出できなかったことを示し、本故障点標定装置の誤不動作が生じたことを示す。このようなケースは、故障時の復旧の迅速化を目的に導入する本装置にとって、役に立たないことを示すため、極力起こらないようにすることが必要である。
【0049】
図6は指標2を詳細に示す説明図である。図6(a)は、圧力が上昇中に故障が発生した状態であり、上段に圧力P、中段に圧力の微分P'を示す。上段のΔPt/Δtが指標1であり、最下段のAP'が指標2の波形となる。
【0050】
指標2は、中段に示す圧力の微分P'の波形において定義される。すなわち、Δt前から現時点までの幅とP'と時間軸(横軸)とで囲まれる面積((2)+(3)の面積)から、2×Δt前〜Δt前までの幅とP'と時間軸(横軸)とで囲まれる面積((1)の面積)を差し引いた残りで定義される。ベース圧力の上昇傾きが一定であるから面積(1)=面積(2)となり、指標2は面積(3)に相当する。即ち、指標2の値の大きさが、故障による圧力上昇ピークの有無を代表することになる。
【0051】
指標2の値は故障発生前後で最下段AP'の波形のように変化し、AP'の値が設定値を超過した場合に故障発生有りと判定できる。この場合、判定の設定値は、圧力の微分量の積分であり、積分時間を指標1を作成するときの時間幅Δtと同じにすることで、指標1の判定設定値と同一の値か、積分時の誤差の蓄積を考慮してこれに係数を乗じた形で利用することができる。
【0052】
図6(b)は、圧力が下降中に故障が発生した状態であり、指標2は中段のP'の図示にある面積((2)+(3))−(1)で表される。ここで、ベース圧力の低下傾きが一定であれば、面積(1)=面積((2)+(4))であり、AP'=(3)−(4)となる。この場合、(4)はマイナスの値を持つので、AP'は図6(a)の場合と同様に、圧力の微分P'の波形の持つピーク部の面積を示し、故障による圧力上昇ピークの有無を代表する指標であることが判る。
【0053】
前述の通り、これらの指標は、故障による圧力の変動有無を判定するのに有効な値であるが、装置の適用対象が非接地系統の変電所のように圧力上昇判定の設定値が極めて小さい場合には、誤動作・誤不動作要因になる可能性がある。即ち、指標2ではベース圧力の上昇の傾き、または下降の傾きが一定であることが条件であり、この前提が崩れる場合、たとえば上昇傾向から急に下降傾向に変化する場合やその逆の場合、圧力が振動性である場合などに、判定に影響を及ぼす。設定値が大きければ上昇、下降傾きの多少のバラツキは判定に影響を及ぼさないが、設定値が小さいために影響を受けるものである。
【0054】
具体例として、設定値が非常に低い0.0001MPa(100Pa)となるガス区画におけるフイールドでの圧力測定例を説明する。
【0055】
図7は誤判定をもたらす波形と指標3の関係を示す説明図である。圧力50は、屋外に設置されている運転中のGISで測定された圧力波形であり、図中のB点では、わずかに圧力上昇速度が変化(低下)している。このB点付近で地絡が発生し、検出限界に近い圧力上昇分が重畳すると、圧力51のように上昇する。
【0056】
故障時の圧力51についての指標は、指標1が52、指標2が53のようになる。したがって指標1は故障発生前から設定値0.0001MPaを超過しており、指標2は故障圧力が重畳されても設定値0.0001MPaより小さい。このような条件下では指標1は誤動作側、指標2は誤不動作側に影響を受けており、このままでは標定装置として機能を果たせない。
【0057】
一方、指標3は図7の下図に示すトレンド54となる。故障無しの場合、指標3のトレンドは55となるため、明らかに故障点前後で変化があることを示している。図7の例では指標3に対する設定値を3倍とすれば、判定が成立することになる。なお、B点で故障発生後保護リレーが動作するため、動作接点の取り込みは縦破線56で示すタイミングになる。したがって、指標3は保護リレー動作接点取り込み前後の圧力データを保存しておき、指標1,2の判定タイミングにあわせて判定することができる。このように、指標1、2が有効で無い状態であっても、指標3により有意な圧力の変化分の有無を判定することが可能である。
【0058】
なお、指標3においても、圧力上昇が小さい区画ではその変化幅比率も小さいため、比率に対する設定値に到達しない可能性もある。このため、指標1、指標2、指標3と3種類の指標を組み合わせて圧力変動有無を判定することで、圧力変動をいずれかの指標で検出するのが良い。さらには、指標間の優先度を、指標1>指標2>指標3のように定義して、標定結果の表示に反映することも可能である。
【0059】
以上のように、圧力上昇が非常に小さい区画での故障点標定に当たっては、圧力センサの上昇判定には周囲環境の影響が密に関連するので、断定的に故障点を特定できない。このような前提では、故障点標定装置の標定結果を、確定区画と候補区画に分けて表示することで、装置の機能の有効活用を図ることが有用である。
【0060】
なお、指標3に対して保護リレー動作点前後の圧力P'の比率で定義したが、故障発生から圧力上昇の時定数が大きいケースでは、保護リレー動作点から所定の時間後の遅れを見込んで比率を作成することになるので、設定値tを利用して対応することができる。また、比率の作成も、P'の瞬時値同士の比率ではなく、前後数点のP'値の平均値同士で比較することにより、ノイズの影響を低減できる。
【図面の簡単な説明】
【0061】
【図1】本発明の一実施例による故障点標定装置の構成図。
【図2】本発明の一実施例による故障点標定処理を示すフローチャート。
【図3】指標の作成方法を説明する概念図。
【図4】保護リレー動作と指標の推移を示すタイムチャート。
【図5】一実施例による故障点判定部のロジックを示す構成図。
【図6】圧力波形に対する指標2の関係を示す説明図。
【図7】故障発生前後における圧力波形と指標1、2、3の例を示すタイムチャート。
【図8】対象系統を示す系統図。
【符号の説明】
【0062】
1…接地容器、3…絶縁スペーサ、4…導体、5…ガス圧力センサ、6…配管、7…センサ信号受信部、8…A/D変換部、9…接点信号入力部、10…表示部、11…故障点標定部、12…保護リレー、13…無電圧接点、14…通信ユニット、15…支援システム、16…伝送路、20…故障点標定装置。

【特許請求の範囲】
【請求項1】
ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定装置において、
現時点の圧力と所定時間前の圧力との差分(以下では、指標1と呼ぶ)と、圧力の微分量を用いた積算値の差分(以下では、指標2と呼ぶ)および圧力の微分量の急変率(以下では、指標3と呼ぶ)とを求め、前記指標1、2及び3は予め設定されるそれぞれの設定値を超えたとき判定成立とし、該判定成立または判定不成立のそれぞれの指標1、2及び3を前記保護リレー情報と組み合わせて故障有無の判定を行うことを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項2】
請求項1において、前記指標2は、前記指標1の時間幅と同じ時間幅で差分を求めることを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項3】
請求項1または2において、前記指標3は、保護リレー動作時点の前後の圧力微分値を用いて生成することを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項4】
請求項1〜3のいずれかにおいて、各指標の組み合わせによる故障点標定結果を、故障が確定したことを示す確定区画と故障の可能性を示す候補区画に判別して出力することを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項5】
請求項1〜4のいずれかにおいて、保護リレーの動作無しの場合、前記指標1、2及び3のうち2以上の指標が判定成立した時のみ、センサ単独動作と判定することを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項6】
請求項4において、3個の指標のうち指標1と2または、指標1と3のみによる組み合わせは、故障点標定結果を確定区画と候補区画に判別して出力することを特徴とするガス絶縁開閉装置の故障点標定装置。
【請求項7】
ガス絶縁開閉装置に設けられた圧力センサにより内部のガス圧力を検出し、保護リレー情報と組み合わせて故障部位を標定する故障点標定方法において、
現時点の圧力と所定時間前の圧力との差分である指標1と、圧力の微分量を用いた積算値の差分である指標2と、圧力の微分量の急変率である指標3とを求め、前記指標1、2及び3は予め設定されている設定値を超えたとき判定成立とし、該判定成立または判定不成立のそれぞれの指標1、2及び3を前記保護リレー情報と組み合わせて故障有無の判定を行うことを特徴とするガス絶縁開閉装置の故障点標定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2007−185011(P2007−185011A)
【公開日】平成19年7月19日(2007.7.19)
【国際特許分類】
【出願番号】特願2006−321(P2006−321)
【出願日】平成18年1月5日(2006.1.5)
【出願人】(000005108)株式会社日立製作所 (27,607)
【出願人】(503020574)株式会社日本AEパワーシステムズ (56)
【出願人】(390023928)日立エンジニアリング株式会社 (134)
【Fターム(参考)】