説明

シンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置

本発明は、シンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置に関する。周波数拡散に使用される2(Nは、実数)個の全体拡散符号または直交符号を、2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成するステップと、前記生成されたサブグループのうちユーザによって選択されるP+L(P、Lは、実数)個のサブグループを採択するステップと、前記採択されたP個の各サブグループにM個のデータビットを入力して、前記各サブグループで2個の拡散符号のうち一つの拡散符号が選択されることにより、全体P個の拡散符号を獲得するステップと、前記採択されたP個のサブグループに入力されるP*M個のデータビットを使ってシンボルエラー訂正のためのL*M個のパリティビットをに入力して、前記L個のサブグループで2個の拡散符号のうち一つの拡散符号が選択されるようにするステップと、前記P+L個のサブグループから獲得されたP+L個の拡散符号で多数値を選択して、前記多数値からなる伝送データを発生するステップと、を含んで構成され、これにより、全体システムのプロセス利得改善、伝送データ率増加、及びさらに安定したデジタル通信を低電力で具現することができるという効果を有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置に関し、特に、人体周辺の雑音電力が他の帯域に比べて集中されているDCから5MHzまでの周波数帯域を避け、人体が導波管の役割をして伝送される信号の強さが、人体外部に放射される信号の強さより大きい周波数帯域までの制限された周波数帯域を使って伝送データ率を増加させると共に、シンボルエラー訂正を適用して、さらに安定したデジタル通信が低電力で行われるようにするためのシンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置に関する。
【背景技術】
【0002】
人体通信とは、伝導性を有する人体を通信チャンネルとして利用し、人体と連結されている機器間で信号を伝達する技術であり、個人携帯情報端末機(PDA、personal digital assistant)、携帯型パーソナルコンピューター(portable personal computer)、デジタルカメラ(digital camera)、MP3プレーヤー(MP3 player)、携帯電話などの様々な携帯機器間の通信及びプリンター、TV、出入システムなど固定された機器との通信が、ユーザの簡単な接触だけでネットワークが構成される技術である。
【0003】
現在、人体通信方法としては、制限された通過帯域(passband)を使用する技術と、固有のユーザIDを用いたスクランブリング、チャンネルコーディング、インターリービング、スプレッディングなどを利用する方法が提案されている。
【0004】
しかし、このような人体通信方法は、制限された周波数帯域を使用するために多くの通信システムで使用する中心周波数(fc)を有する通過帯域を使用し、これによるデジタル−アナログ変換器、アナログ−デジタル変換器、中心周波数変換器などのアナログ送受信機を要するので、低電力化の側面から短所を有する。
【0005】
また、現在の人体通信方法は、プロセス利得のための時間軸/周波数軸拡散方法を提案して、制限された周波数帯域のために伝送データ率の増加や、さらに安定したデータの送受信に有効ではないという問題点を有する。
【0006】
一方、データを送受信する場合、データの伝送成功率を確認するためのエラー検出を行い、エラー検出及び訂正のためにパリティビット(Parity bit)を利用する。
【0007】
現在のデジタル通信では、送受信データのエラー訂正のための様々な線形ブロック符号が研究されている。
【0008】
一般的に、ハミングコード(Hamming Code)を含む線形ブロックコードは、kビットの情報ビットにn−kビットのパリティビットが追加されて、全体nビットのコードワードを構成する。線形ブロックコードの符号化は、kxn次元の生成マトリックス計算によって簡単に具現され、線形ブロックコードの復合化は、(n−k)xn次元のパリティチェックマトリックスと受信信号とを使って1x(n−k)次元のシンドロームを計算し、このシンドロームからエラーパターンを生成した後、該当エラーパターンと受信信号とをXORして受信信号に含まれているエラーを訂正する。
【0009】
線形ブロックコードの一例として、パリティビット数を4とする場合、(15,11)ハミングコードが可能であり、これは、11ビットの情報ビットに 4ビットのパリティビットが付加されて全体15ビットが伝送され、1ビットのエラー訂正が可能である。また、短縮ビットを3とする場合、(12,8)短縮ハミングコードが可能であり、これは、8ビットの情報ビットに4ビットのパリティビットが付加されて全体12ビットが伝送され、1ビットのエラー訂正が可能であることが分かる。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】韓国公開特許2001-0102879号
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明はデジタル通信、特に人体通信において、シンボルエラー訂正が適用されて、さらに安定した人体通信が低電力で具現されるようにするためのシンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置を具現するためのものである。
【課題を解決するための手段】
【0012】
上記した課題を解決するための手段として、本発明の一側面によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法は、周波数拡散に使用される2(Nは、実数)個の全体拡散符号または直交符号を、2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成するステップと、上記生成されたサブグループのうちユーザから選択されるP+L(P、Lは、実数)個のサブグループを採択するステップと、上記採択されたP個の各サブグループにM個のデータビットを入力して、上記各サブグループで2個の拡散符号のうち一つの拡散符号が選択されるようにすることにより、全体P個の拡散符号を獲得するステップと、上記採択されたP個のサブグループに入力されるP*M個のデータビットを使ってシンボルエラー訂正のためのL*M個のパリティビットを生成するステップと、上記L*M個のパリティビットを上記L個のサブグループに入力して、上記L個のサブグループで2個の拡散符号のうち一つの拡散符号が選択されるようにするステップと、上記P+L個のサブグループから獲得されたP+L個の拡散符号で多数値を選択して、上記多数値からなる伝送データを発生するステップと、を含む。
【0013】
好ましくは、上記シンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法は、上端部から提供される直列データをP*Mビットの並列データに変換するステップをさらに含み、上記採択されたP個の各サブグループに上記M個の並列データビットを入力することを特徴とする。
【0014】
好ましくは、上記シンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法は、上端部から提供される直列データをP*M+1ビットの並列データに変換するステップと、上記P+L個のサブグループから獲得されたP+L個の拡散符号で選択される多数値と、上記P*M+1ビットの1ビットとをXORして伝送データを発生するステップと、をさらに含むことを特徴とする。
【0015】
上記P+L個のサブグループから獲得されたP+L個の拡散符号で多数値を選択するステップは、上記獲得された各拡散符号を2個ずつ組み合わせてANDし、上記ANDされた値をORし、上記P+L個の拡散符号を合算した結果から最上位ビットのみを選択することを特徴とする。
【0016】
上記した課題を解決するための手段として、本発明の他の側面によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調方法は、周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成するステップと、送信機から変調されたデータが伝送される場合、上記伝送データからフレーム同期とタイミング同期とを獲得するステップと、上記多数のサブグループのうち上記伝送データの変調時に使われたと判断されるP+L個のサブグループを選択し、上記選択されたサブグループ別拡散符号を上記獲得されたフレーム同期とタイミング同期とに合わせるステップと、上記P+L個のサブグループ別拡散符号と上記伝送データとの相関値を計算して、上記伝送データの変調時に選択されたと判断される一つの拡散符号を上記P+L個の各サブグループ別に検出するステップと、上記P+L個の各サブグループから上記検出される拡散符号のMビットインデックス値が発生するようにし、上記発生による(P+L)*Mのインデックス値からパリティチェックマトリックスを使用したL*M個のシンドロームを生成するステップと、上記L*M個のシンドロームからM*P個のエラーパターンを生成し、上記生成されたエラーパターンと上記P個のサブグループから発生するM*Pのインデックス値とをXORしてシンボルエラーを訂正するステップと、上記シンボルエラーが訂正された並列データの上記M*Pインデックス値を直列データに変換するステップと、を含むことを特徴とする。
【0017】
好ましくは、上記シンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調方法は、上記P個のサブグループ別に発生する上記インデックス値の相関値によって互いに異なる1ビットのデータを獲得するステップと、上記獲得された1ビットのデータと、上記シンボルエラーが訂正されたM*Pの並列データとを合わせた並列データを直列データに変換するステップと、をさらに含むことを特徴とする。
【0018】
上記した課題を解決するための手段として、本発明のさらに他の側面によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調装置は、周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けた多数のサブグループのうち一つのサブグループを含み、M個のデータビットが入力される場合、該当サブグループの拡散符号(2)のうち一つの拡散符号を選択して出力する多数のサブ周波数選択的拡散器と、上端部から提供される直列データをP*Mビットの並列データに変換し、上記多数のサブ周波数選択的拡散器のうち、ユーザによって選択されるP個のサブ周波数選択的拡散器のそれぞれにM個のデータビットを出力する直列−並列変換部と、上記直列−並列変換部から上記P個のサブ周波数選択的拡散器に出力されるP*M個のデータビットを獲得し、上記獲得されたP*M個のデータビットからシンボルエラー訂正のためのL*M個のパリティビットを生成して、L個の上記サブ周波数選択的拡散器に出力するパリティビット生成部と、上記P+L個のサブ周波数選択的拡散器から出力されるP+L個の拡散符号で多数値を選択して、上記多数値からなる伝送データを発生する多数値選択部と、を含む。
【0019】
上記直列−並列変換部は、上記上端部から提供される直列データをP*M+1ビットの並列データに変換し、ユーザによって選択される上記P個のサブ周波数選択的拡散器のそれぞれにM個のデータビットを出力し、上記1ビットは上記P*Mビットと別途に出力することを特徴とする。
【0020】
好ましくは、上記シンボルエラー訂正が可能な周波数選択的基底帯域を使用した周波数変復調装置は、上記多数値選択部から選択される多数値と、上記直列−並列データ部から上記別途に出力される1ビットとをXORするXOR論理回路をさらに含み、上記伝送データ率を増加させることを特徴とする。
【0021】
上記多数値選択部は、上記選択されたP+L個の拡散符号を2個ずつ組み合わせてANDし、上記ANDされた値をORし、上記P+L個の拡散符号を合算した結果から最上位ビットのみを選択することを特徴とする。
【0022】
上記した課題を解決するための手段として、本発明のさらに他の側面によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調装置は、周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成し、送信機から変調されたデータが伝送される場合、上記伝送データからフレーム同期とタイミング同期とを獲得した後、上記多数のサブグループのうち上記伝送データの変調時に使われたと判断されるP+L個のサブグループを選択し、上記P+L個のサブグループ別拡散符号を上記獲得されたフレーム同期とタイミング同期とに一致させて出力する直交符号生成器と、上記送信機から変調された伝送データが受信される場合、2個の拡散符号が上記直交符号生成器から提供され、上記提供された拡散符号と上記伝送データとの相関値を計算し、上記伝送データの上記変調時に選択されたと判断される一つの拡散符号を検出して、上記検出された拡散符号のMビットインデックス値を出力する多数のサブ周波数選択的逆拡散器と、上記直交符号生成器から上記P+L個のサブグループ別拡散符号がそれぞれ提供されたP+L個の上記サブ周波数選択的逆拡散器から(P+L)*Mのインデックス値の入力を受け、上記入力されたインデックス値からパリティチェックマトリックスを使用したL*M個のシンドロームを生成するシンドローム生成部と、上記L*M個のシンドロームからM*P個のエラーパターンを生成するエラーパターン生成部と、上記P個のサブ周波数選択的逆拡散器から出力されるM*Pのインデックス値と上記エラーパターン生成部から生成されたM*P個のエラーパターンとをXORして、上記M*Pのインデックス値のシンボルエラーを訂正するエラービット訂正部と、並列データである上記シンボルエラーが訂正されたM*Pインデックス値を直列データに変換する並列−直列変換部と、を含む。
【0023】
好ましくは、上記シンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調装置は、上記P+L個のサブ周波数選択的逆拡散器から上記出力されるインデックス値の相関値の提供を受け、上記提供された相関値によって互いに異なる1ビットのデータを出力する相関値判別部をさらに含むことを特徴とする。
【0024】
上記並列−直列変換部は、上記エラービット訂正部から出力される上記P*Mのインデックス値と共に、上記相関値判別部から出力される1ビットのデータが入力される場合、上記P*Mのインデックス値と上記1ビットのデータとを合わせた並列データを直列データに変換することを特徴とする。
【発明の効果】
【0025】
上記のような本発明によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置は、デジタル通信において、直列−並列変換、周波数選択的基底帯域伝送及び制限された数の拡散符号を使って全体システムのプロセス利得を改善すると共に、伝送データ率を増加させることができるという効果を有する。
【0026】
また、本発明によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及びその装置は、周波数選択的基底帯域伝送方式を利用してアナログ送受信機の構成を最小化し、直並列変換によるシンボル構成時に伝送されるビットの一部に代わって、シンボルエラー訂正のためのパリティビットを追加することにより、さらに安定したデジタル通信を低電力で具現することができるという効果を有する。
【図面の簡単な説明】
【0027】
【図1】本発明の好ましい一実施例による人体通信用周波数選択的基底帯域と、周波数別人体内伝達信号電力と、人体周辺の雑音電力との関係を示した図面である。
【図2】本発明の好ましい一実施例による64ビットウォルシュ符号のサブグループを示した図面である。
【図3】本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的変調装置を示した図面である。
【図4】本発明の好ましい他の実施例によるシンボルエラー訂正が可能な周波数選択的変調装置を示した構成図である。
【図5】本発明の好ましい一実施例によるサブ周波数選択的拡散器を示した構成図である。
【図6】本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的復調装置を示した構成図である。
【図7】本発明の好ましい他の実施例によるシンボルエラー訂正が可能な周波数選択的復調装置を示した構成図である。
【図8】本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する人体通信システムを示した構成図である。
【発明を実施するための形態】
【0028】
以下に添付した図面を参照して、本発明が属する技術分野において通常の知識を持った者が本発明を容易に実施することができる好ましい実施例を詳しく説明する。但し、本発明の好ましい実施例に対する動作原理を詳しく説明するに当たって、関連の公知機能または構成に対する具体的な説明が本発明の旨を不明確にする虞があると判断される場合は、その詳細な説明を省略する。
【0029】
また、図面全体にかけて、類似した機能及び作用をする部分に対しては同一の図面符号を与える。
【0030】
本発明のデジタル通信システム、特に、人体通信システムで適用可能なものとして、以下では便宜上、人体通信システムを対象として説明する。
【0031】
図1は、本発明の好ましい一実施例による人体通信用周波数選択的基底帯域と、周波数別人体内伝達信号電力と、人体周辺の雑音電力との関係を示した図面である。
【0032】
このような図1は、多様な測定場所で人体に誘起される干渉信号を測定した結果を示したものである。
【0033】
図1に示すように、本発明の一実施例による人体通信においては、雑音電力が最大の区間であるDC〜5MHz区間と、人体外の放射信号電力が人体内伝達信号電力より大きくなる40MHz以上の区間を除いた5MHz〜40MHzまでの周波数区間内で周波数選択的基底帯域(Frequency Selective Baseband)を使用する。
【0034】
ここで、周波数選択的基底帯域とは、データのプロセス利得のために使用される全ての拡散符号のうち、ユーザ所望の周波数帯域で最も優れた周波数特性を有する拡散符号のみを使用することにより、アナログ送受信部が簡単になる基底帯域伝送を行うと共に、所望の周波数帯域とプロセス利得とを同時に獲得することができる伝送方式技術である。
【0035】
そこで、図1では、その一例として、周波数選択方式が拡散符号として64個のウォルシュ符号(Walsh Code)を使用するようにする。64個のウォルシュ符号は、0〜32MHzまでの周波数帯域を64個に分割して、順次に最も優れた周波数が均等に分布されている特性を有する。この時、64個のウォルシュ符号を4個のサブグループに分け、最大の雑音電力の周波数帯域、即ち、DC〜5MHz周波数帯域を使用する第一のサブグループを除いて、残りの3個の周波数帯域を使用するサブグループを選択することによって、所望の周波数帯域を使用する周波数選択的基底帯域伝送を行うことができる。
【0036】
図2は、本発明の好ましい一実施例による64ビットウォルシュ符号のサブグループを示した図面である。
【0037】
図2に示すように、本発明の好ましい一実施例による拡散符号は64個のウォルシュ符号を使用し、これを4個のサブグループに分けてそれぞれのグループが16個のウォルシュ符号を有するようにすることができる。ここで、サブグループ0はW〜W15、サブグループ1はW16〜W31、サブグループ2はW32〜W47、サブグループ3はW48〜W63の16個ウォルシュ符号をそれぞれ含む。
【0038】
一方、W〜W63までの64個のウォルシュ符号は、使用周波数帯域を正確に64個に分割し、各ウォルシュ符号の最も優れた周波数(fd)が分割された周波数に順次にマッピングされるようにするという特徴を有する。
【0039】
その一例として、全体ウォルシュ符号の拡散周波数帯域を32MHzと仮定した場合、一つのウォルシュ符号の最も優れた周波数(fd)の間隔は、32MHz/64で0.5MHzを有する。よって、Wのfdは1MHz、W48のfdは24.5MHz、W63のfdは32MHzを有する。
【0040】
そして、図1による本発明の実施例では、サブグループ0を除いたサブグループ1(W16〜W31)、サブグループ2(W32〜W47)、及びサブグループ 3(W48〜W63)を選択することにより、全体32MHzの帯域中で8.5MHz〜32MHzに最も優れた周波数(fd)を有するウォルシュ符号を使用する。
【0041】
次いで、このようなウォルシュ符号を使用し、シンボルエラー訂正が可能な周波数選択的基底帯域を使用する変復調方法及び装置について詳しく説明する。
【0042】
以下、周波数選択的基底帯域を使用する変復調方法及び装置は、本発明の好ましい一実施例によって拡散符号として64個のウォルシュ符号を、周波数帯域としては図1の人体通信周波数帯域を使用し、図2に示した4個のサブグループの中でサブグループ0(W〜W15)を除いたサブグループ1(W16〜W31)、サブグループ2(W32〜W47)、及びサブグループ3(W48〜W63)を選択して、全体64個のウォルシュ符号のうち48個のウォルシュ符号を選択的に使用するようにする。
【0043】
また、以下の周波数選択的基底帯域を使用する変復調方法及び装置は、シンボルエラー訂正のための線形ブロックコードとして、(12,8)短縮ハミングコードを一実施例に使用するようにする。
【0044】
図3は、本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的変調装置を示した図面である。
【0045】
図3に示すように、シンボルエラー訂正が可能な周波数選択的変調装置100は、直列−並列変換部(Serial−Parallel Converter:以下、「S2P」という)110、多数のサブ周波数選択的拡散器121〜123、パリティビット生成部130、及び多数値選択部140を含んで構成されることができる。
【0046】
周波数選択的変調装置100においてS2P110は、入力される直列データを8ビットの並列データに変換し、変換された並列データが4ビットずつ第1サブ周波数選択的拡散器121と、第2サブ周波数選択的拡散器122との入力で出力されるようにする機能を行う。また、S2P110は、上記変換された8ビットの並列データb7〜b0がパリティビット生成部130の入力で出力されるようにする。
【0047】
その一例として、S2P110は、伝送するデータのビット列を8Mbpsの伝送速度で入力される場合、これをb7〜b0の8ビット並列データに変換し、変換された並列データが1Mbpsの速度で出力されるようにすることができる。
【0048】
周波数選択的変調装置100において、パリティビット生成部130は、入力される8ビットの並列データからエラー検出及び訂正に使用される4ビットのパリティビットp3〜p0を生成する機能を行う。
【0049】
一方、周波数選択的変調装置100は、雑音電力が強い周波数区間のウォルシュ符号W0〜W15を使用しない。
【0050】
そこで、第1サブ周波数選択的拡散器121は、上記S2P110の出力の中でb7〜b4の4ビットの入力を受けて、W16〜W31までのウォルシュ符号のいずれか一つを選択し、64Mcps速度のDOを出力する。そして、第2サブ周波数選択的拡散器122は、S2P110の出力の中でb3〜b0の4ビットの入力を受けて、W32〜W47までのウォルシュ符号のいずれか一つを選択し、64Mcps速度のDOを出力し、第3サブ周波数選択的拡散器123は、パリティビット生成部130からp3〜p0の4ビットの入力を受けて、W48〜W63までのウォルシュ符号のいずれか一つを選択し、64Mcps速度のDOを出力する。
【0051】
多数値選択部140は、上記各サブ周波数選択的拡散器121〜123から出力されるDO、DO及びDOの3ビットを、それぞれA、B及びCi(carry in)で入力を受けて、下記の数式1によるCo(Carry out)を該当周波数選択的変調装置100の最終出力として算出する機能を行う。
【0052】
[数1]
Co=(A and B)or(B and Ci)or(Ci and A)
【0053】
上記の数式1において、「or」はORゲートを、「and」はAND ゲートを表す。
【0054】
よって、シンボルエラー訂正が可能な周波数選択的変調装置100は、上記のような構成及び構成動作によって直列−並列変換、周波数選択的基底帯域伝送方式、及び制限された数の拡散符号を使用して増加した伝送データ率を発生させると共に、周波数選択的多重伝送のための一部拡散符号グループにシンボルエラー訂正のためのパリティビットを追加して伝送することにより、受信機でこれを利用してシンボル内のエラーを訂正するようにすることができる。
【0055】
一方、シンボルエラー訂正が可能な周波数選択的変調装置100は、伝送データ率をさらに高めるために、上記S2P110が1ビット追加された9ビットで構成し、上記多数値選択部140から出力される値と上記追加された1ビットとをXORした値を、該当周波数選択的変調装置100の最終出力値として発生させることができる。
【0056】
図4は、本発明の好ましい他の実施例によるシンボルエラー訂正が可能な周波数選択的変調装置100を示した構成図である。
【0057】
図4に示すように、本発明の好ましい他の実施例による周波数選択的変調装置100は、S2P110、多数のサブ周波数選択的拡散器121〜123、パリティビット生成部130、多数値選択部140、及びXOR論理回路150を含んで構成されてもよい。
【0058】
このような周波数選択的変調装置100は、S2P110が9Mbpsの伝送速度の直列データのビット列の入力を受けて、これを1Mbpsの伝送速度を含むb8〜b0の9ビット並列データに変換して出力させる。
【0059】
また、周波数選択的変調装置100は、図3のように雑音電力が強い周波数区間のウォルシュ符号を含むサブグループ0を使用せず、第1、2サブ周波数選択的拡散器121、122が上記S2P110の出力の中で、それぞれb7〜b4とb3〜b0の入力を受けるようにする。そして、周波数選択的変調装置は、パリティビット生成部130がS2P110の出力の中でb8〜b0の入力を受けて、これからエラー検出及び訂正に使用される4ビットのパリティビットp3〜p0を生成して第3サブ周波数選択的拡散器123に出力させる。
【0060】
そこで、第1〜3サブ周波数選択的拡散器121〜123のそれぞれは、サブグループ1、2及び3に含まれたウォルシュ符号のいずれか一つを選択して、それぞれ64McpsのDO、DO及びDOを出力する。
【0061】
周波数選択的変調装置100は、上記DO、DO及びDOが多数値選択部140の入力値であるA、B、Ciで入力されるようにし、上記数式1による出力値Coが多数値選択部140を介して算出され、XOR論理回路150に入力されるようにする。
【0062】
そこで、XOR論理回路150は、多数値選択部140の出力値CoにS2P110の出力b8をXORし、該当XORされた値を周波数選択的変調装置100の最終出力値として発生させる。
【0063】
次いで、周波数選択的変調装置100に構成されるサブ周波数選択的拡散器について簡単に説明する。
【0064】
図5は、本発明の好ましい一実施例によるサブ周波数選択的拡散器を示した構成図である。
【0065】
図5を参照すると、サブ周波数選択的拡散器120は、64MHzクロックで駆動される6ビットカウンタ1200を含み、2ビットの周波数選択制御ビットfs1、fs0、下位4ビットのデータ入力ビットb、b、b、b、グレー(Gray)インデックスのための5個のXOR論理回路1201〜1205、6個のAND論理回路1206〜1211、及び上記AND論理回路出力をXORするためのXOR論理回路1213を含んで構成されてもよい。
【0066】
ここで、2ビットの周波数選択制御ビットfs1、fs0は、サブグループ別に互いに異なるようにセッティングされるが、第1サブ周波数選択的拡散器121(W16〜W31)では、fs1とfs0がそれぞれ「0」と「1」とにセッティングされ、第2サブ周波数選択的拡散器122(W32〜W47)では「1」と「0」に、第3サブ周波数選択的拡散器123(W48〜W63)では「1」と「1」とにそれぞれセッティングされる。
【0067】
また、6個のAND論理回路1206〜1211は、6ビットカウンタ1200の出力であるC〜C、周波数選択制御ビットの最上位ビットfs1の出力ビット、及び5個のXOR論理回路1201〜1205の出力ビットをそれぞれ入力し、これをANDした値を出力する。
【0068】
サブ周波数選択的拡散器120は、このような構成から、最終的に下記の数式2による出力値DOnを生成して出力する。
【0069】
[数2]
DOn=(fs1 and C)xor[(fs1 xor fs0) and C]xor[(fs0 xor b)and C]xor [(b xor b)and C]xor[(b xor b) and C]xor[(b xor b)and C
【0070】
図6は、本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的復調装置200を示した構成図である。
【0071】
図6を参照すると、シンボルエラー訂正が可能な周波数選択的復調装置200は、直交符号生成部210、3つのサブ周波数選択的逆拡散器221〜223、シンドローム生成部240、エラーパターン生成部250、エラービット訂正部260、及び並列−直列変換部(Parallel−Serial Converter:以下、「P2S」という)270を含んで構成されてもよい。
【0072】
一方、図6において、周波数選択的復調装置200への受信信号は、図示していない前端の受信信号同期部によってフレーム同期とタイミング同期とが獲得された受信信号であると仮定する。
【0073】
そこで、直交符号生成部210は、上記獲得されたフレーム同期とタイミング同期とに合わせた48個のウォルシュ符号を生成して、各サブ周波数選択的逆拡散器221〜223に出力する機能を行う。特に、直交符号生成部210は、サブグループ1のウォルシュ符号W16〜W31を第1サブ周波数選択的逆拡散器221に、サブグループ2のウォルシュ符号W32〜W47を第2サブ周波数選択的逆拡散器222に、サブグループ3のウォルシュ符号W48〜W63を第3サブ周波数選択的逆拡散器223に出力することができる。
【0074】
各サブ周波数選択的逆拡散器221〜223は、同期が一致した64Mcpsの伝送速度の受信信号の入力を受け、直交符号生成部210から提供されるウォルシュ符号と受信信号との相関値を求める。そして、各サブ周波数選択的逆拡散器221〜223は、上記相関値を利用して変調時に使われたウォルシュ符号を検出し、検出されたウォルシュ符号の4ビットインデックス値を1Mbpsで出力する。
【0075】
各サブ周波数選択的逆拡散器221〜223別に詳しくみると、先ず、第1サブ周波数選択的逆拡散器221は、直交符号生成部210から提供される 16個のウォルシュ符号W16〜W31と受信信号との相関値を求め、該当相関値を利用して変調時に使われたウォルシュ符号(W16〜W31のいずれか一つ)を検出した後、検出されたウォルシュ符号の4ビット並列インデックス値b〜bを1Mbpsで出力する。
【0076】
第2サブ周波数選択的逆拡散器222は、16個のウォルシュ符号W32〜W47と受信信号との相関値を求め、この値を利用して変調時も使われたウォルシュ符号W32〜W47のいずれか一つ)を検出した後、該当ウォルシュ符号の4ビット並列インデックス値b3〜b0を出力し、第3サブ周波数選択的逆拡散器223は、16個のウォルシュ符号W48〜W63と受信信号との相関値を求め、この値を利用して変調時に使われたウォルシュ符号(W48〜W63のいずれか一つ)を検出した後、該当ウォルシュ符号の4ビット並列インデックス値p3〜p0を出力する。
【0077】
シンドローム生成部240は、上記それぞれのサブ周波数選択的逆拡散器221〜223から出力されるインデックス値、即ち、d〜dとp3〜p0との12ビットを利用してパリティチェックマトリックスを使用したシンドローム4ビットs3〜s0を生成する機能を行う。
【0078】
エラーパターン生成部250は、シンドローム生成部240から生成されたシンドローム4ビットを利用してエラーパターン8ビットe7〜e0を生成する機能を行う。ここで、エラーパターン8ビットは、現在シンボルに含まれているエラービットに「1」と表示されるための値である。
【0079】
エラービット訂正部260は、第1、2サブ周波数選択的逆拡散器221、222から出力される8ビットd7〜d0と、エラーパターン生成部250から出力されるエラーパターン8ビットe7〜e0とをXORし、周波数選択的変調装置100から伝送されたデータシンボルに含まれたエラーを訂正する機能を行う。そこで、エラービット訂正部260は、シンボルエラーが訂正された8ビットのu7〜u0を出力する。
【0080】
P2S270は、エラービット訂正部260から8ビットのu7〜u0の入力を受けて、これを8Mbpsの伝送速度を有する1ビットの周波数選択的復調装置200の出力に変換する機能を行う。
【0081】
一方、周波数選択的復調装置200は、伝送データ率をより高めるための上記図4の周波数選択的変調装置100に対応して復調機能を行うことができる。
【0082】
図7は、本発明の好ましい他の実施例によるシンボルエラー訂正が可能な周波数選択的復調装置200を示した構成図である。
【0083】
図7を参照すると、本発明の好ましい他の実施例によるシンボルエラー訂正が可能な周波数選択的復調装置200は、直交符号生成部210、3つのサブ周波数選択的逆拡散器221〜223、相関値判別部230、シンドローム生成部240、エラーパターン生成部250、エラービット訂正部260、及びP2S270を含んで構成されてもよい。
【0084】
また、図7の周波数選択的復調装置200の受信信号は、図6のように、図示していない前端の受信信号同期部によってフレーム同期とタイミング同期とが獲得された受信信号であると仮定する。
【0085】
そこで、直交符号生成部210は、上記獲得されたフレーム同期及びタイミング同期に合わせた48個のウォルシュ符号を生成して、第1〜3サブ周波数選択的逆拡散器221〜223にサブグループ1(W16〜W31)、サブグループ2(W32〜W47)、及びサブグループ3(W48〜W63)のウォルシュ符号を出力する。
【0086】
各サブ周波数選択的逆拡散器221〜223は、同期が一致した64Mcps伝送速度の受信信号の入力を受けて、直交符号生成部210から提供されるウォルシュ符号と受信信号との相関値を求める。そして、各サブ周波数選択的逆拡散器221〜223は、上記相関値を利用して変調時に使われたウォルシュ符号を検出し、検出されたウォルシュ符号の4ビットインデックス値を1Mbpsで出力する。
【0087】
即ち、第1〜3サブ周波数選択的逆拡散器221〜223は、それぞれサブグループ1、サブグループ2、及びサブグループ3と受信信号との相関値を求め、該当相関値を利用して変調時に使われたウォルシュ符号を検出した後、検出されたウォルシュ符号の4ビット並列インデックス値であるb7〜b4、b3〜b0、及びp3〜p0それぞれを1Mbpsで出力する。
【0088】
なお、各サブ周波数選択的逆拡散器221〜223は、最終選択して出力するインデックス値の相関値を相関値判別部230に提供する機能を行う。
【0089】
そこで、相関値判別部230は、各サブ周波数選択的逆拡散器221〜223から提供される相関値によって、1Mbpsのu8をP2S270に出力する。
【0090】
その一例として、伝送チャンネルで雑音によるエラーがないと仮定して、送信機、即ち、本発明の好ましい他の実施例による周波数選択的変調装置100でu8が「0」である場合、各サブ周波数選択的逆拡散器221〜223で最終選択されたインデックス値の相関値は、全て16であり、残りのインデックス値の相関値は、32であってもよい。また、送信機でu8が「1」である場合、各サブ周波数選択的逆拡散器221〜223で最終選択されたインデックス値の相関値は、全て48であり、残りのインデックス値の相関値は、32であってもよい。
【0091】
よって、相関値判別部230は、各サブ周波数選択的逆拡散器221〜223から16の相関値が提供されると、「0」のu8をP2S270に出力し、48の相関値が提供されると、「1」のu8をP2S270に出力する。
【0092】
シンドローム生成部240は、上記それぞれのサブ周波数選択的逆拡散器221〜223から出力されるインデックス値、即ち、d7〜d0とp3〜p0の12ビットを利用してパリティチェックマトリックスを使用したシンドローム4ビットs3〜s0を生成し、エラーパターン生成部250は、シンドローム生成部240から生成されたシンドローム4ビットを利用してエラーパターン 8ビットe7〜e0を生成する機能を行う。ここで、エラーパターン8ビットは、現在シンボルに含まれているエラービットに「1」と表示されるための値である。
【0093】
エラービット訂正部260は、第1、2サブ周波数選択的逆拡散器221、222から出力される8ビットd7〜d0と、エラーパターン生成部250から出力されるエラーパターン8ビットe7〜e0とをXORし、周波数選択的変調装置100から伝送されたデータシンボルに含まれたエラーを訂正する機能を行う。そこで、エラービット訂正部260は、シンボルエラーが訂正された8ビットのu7〜u0を出力する。
【0094】
P2S270は、エラービット訂正部260から8ビットのu7〜u0と、相関値判別部230から1ビットのu8との入力を受けて、これを9Mbpsの伝送速度を有する1ビットの周波数選択的復調装置200の出力に変換する機能を行う。
【0095】
次いで、このように周波数選択的基底帯域を使用するシンボルエラー訂正が可能な周波数選択的変復調装置を、デジタル通信システムである人体通信システムに適用して詳しく説明する。
【0096】
図8は、本発明の好ましい一実施例によるシンボルエラー訂正が可能な周波数選択的基底帯域を使用する人体通信システムを示した構成図である。
【0097】
図8を参照すると、人体通信システムは、MAC処理部10、物理階層モデム部20、アナログ処理部30、信号電極40、及び接地電極50を含んで構成されてもよい。
【0098】
人体通信システムにおいて、人体通信MAC処理部10は、MAC送信処理器11とMAC受信処理器12とで構成され、上位階層から受けた伝送する「データ」と「データ情報」(伝送速度、変調方式、ユーザID、データの長さ等)を物理階層モデム内の送信部に伝達し、物理階層モデム部20から受信される「データ」と「データ情報」とを上位階層に伝達する役割を行う。
【0099】
物理階層モデム部20は、送信部と受信部22とで構成され、送信部は、大きくプリアンブル/ヘッダー送信処理部2110、2111、2112、2113、データ送信処理部2114、2115、100、多重化器2216で構成される。
【0100】
ここで、プリアンブル/ヘッダー送信処理部2110、2111、2112、2113は、フレーム同期用プリアンブルとヘッダー情報とを拡散させる機能を行うものであって、プリアンブル生成器2110、ヘッダー生成器2111、HCS生成器2112、及び拡散器(Spreader)2113を含み、データ送信処理部2114、2115、100は、人体通信を介して伝送するデータを、ユーザ所望の周波数帯域で最上の周波数特性を有する拡散符号、即ち、周波数選択的拡散符号で拡散させる機能を行うものであり、データ生成器2114、スクランブラ(Scrambler)2115、及びシンボルエラー訂正が可能な周波数選択的変調器100を含んでなる。
【0101】
特に、データ送信処理部2114、2115、100において、シンボルエラー訂正が可能な周波数選択的変調器100は、データ生成器2114、及びスクランブラ2115を介してデータスクランブルされた8Mbpsまたは9Mbpsの直列データに対して、その実施例によって前述した、図3または図4の構成及び構成動作で直列−並列変換、周波数選択的基底帯域伝送方式、及び制限された数の拡散符号を利用した伝送データに変調する機能を行う。ここで、シンボルエラー訂正が可能な周波数選択的変調器100は、一部拡散符号グループに、エラー検出及び訂正に使用される4ビットのパリティビットを追加させる上記伝送データの変調を行うことができる。
【0102】
多重化器2216は、プリアンブル/ヘッダー送信処理部2110、2111、2112、2113で拡散されたプリアンブル及びヘッダーと、データ送信処理部2114、2115、100で周波数選択的に変調されたデータとを多重化してデジタル信号として伝送する機能を行う。
【0103】
そこで、送信部の多重化器2216から伝送されるデジタル信号は、周波数選択的変調器100によって基底帯域伝送が可能となり、別途のアナログ送信処理のための構成がなくても、送信/受信スイッチ31と信号電極40とを介して人体内に伝送される。接地電極50は、基準線電位を提供する。
【0104】
次に、アナログ処理部30は、送信部のデジタル信号を人体内に伝送する送信/受信スイッチ31及び信号電極40と、上記デジタル信号を人体から受信して物理階層モデム部の受信部22に提供する接地電極50、送信/受信スイッチ31、雑音除去フィルター32、増幅器33、及びクロック復元/データ再整列部(CDR:Clock Recovery & Data Retiming Part)34を含んで構成される。
【0105】
このような構成で、アナログ処理部30は、信号電極40を介して入力された受信信号に対して、送信/受信スイッチ31及び雑音除去フィルター32を介して人体内の伝送から付加された雑音を除去し、増幅器33によって所望の信号の大きさに増幅した後、クロック復元/データ再整列部34によって受信機クロックとのタイミング同期及び周波数オフセットが補償されるようにする。
【0106】
ここで、タイミング同期及び周波数オフセットが補償された受信信号は、物理階層モデム部20の受信部22に出力される。
【0107】
物理階層モデム部20の受信部22は、大きく逆多重化器2210、ヘッダー受信処理部2211、2212、2213、データ受信処理部200、2213、2215を含んでなる。そして、受信部22は、フレーム同期部2216と共通制御信号生成部2217とを含み、受信信号のフレーム同期を獲得し、物理階層伝送部と受信部22とに必要な共通制御信号を生成する機能を行う。
【0108】
物理階層モデム部20において、逆多重化器2210は、人体チャンネルを介して伝達されたデジタル信号をプリアンブル、ヘッダー、データに分離する機能を行い、ヘッダー受信処理部2211、2212、2213は、分離されたヘッダーを逆拡散させて元のデータ情報を復旧する機能を行うものであって、逆拡散器2211、HCS検査器2212、及びヘッダー処理器2213を含んでなる。
【0109】
また、データ受信処理部200、2213、2215は、分離されたデータをユーザ所望の周波数帯域で最上の周波数特性を有する拡散符号で逆拡散させる機能を行うものであって、シンボルエラー訂正が可能な周波数選択的復調器200、デスクランブラ2214、及びデータ処理器2215を含んでなる。
【0110】
特に、データ受信処理部200、2213、2215において、シンボルエラー訂正が可能な周波数選択的復調器200は、逆多重化器2210を介してデータが入力される場合、その実施例によって、前述した図6または7の構成及び構成動作で、周波数選択的基底帯域を利用した相関値と送信時に使われた拡散符号とを獲得し、最終的に選択されるインデックス値を利用して入力データシンボルに含まれたエラーを訂正した後、該当エラー訂正されたデータを8Mbpsまたは9Mbpsの直列データに復調する機能を行う。
【0111】
つまり、上記説明のように、本発明の一実施例による人体通信システムは、周波数選択的変調器及び復調器を構成し、データの直列−並列変換、周波数選択的基底帯域及び制限された数の拡散符号を有効に結合して、全体システムのプロセス利得を改善し、伝送データ率を増加させることができると共に、送信機において、一部拡散符号グループにシンボルエラー訂正のためのパリティビットを追加して、受信機においてこれを使ってシンボル内のエラーを訂正することにより、劣れた人体通信チャンネル環境下でも、さらに安定した通信を行うことができる。
【0112】
以上で説明した本発明は、前述した実施例及び添付した図面によって限定されるものではなく、本発明の技術的思想を外れない範囲内において様々な置換、変形及び変更が可能であるということは、本発明が属する技術分野で通常の知識を持った当業者にとって自明である。
【0113】
特に、本発明は周波数選択のために一実施例で拡散符号を使用する場合を示しているが、他の実施例で直交符号を使用する場合も同様に適用することができる。

【特許請求の範囲】
【請求項1】
周波数拡散に使用される2(Nは、実数)個の全体拡散符号または直交符号を、2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成するステップと、
前記生成されたサブグループのうちユーザから選択されるP+L(P、Lは、実数)個のサブグループを採択するステップと、
前記採択されたP個の各サブグループにM個のデータビットを入力して、前記各サブグループで2個の拡散符号のうち一つの拡散符号が選択されることにより、全体P個の拡散符号を獲得するステップと、
前記採択されたP個のサブグループに入力されるP*M個のデータビットを使ってシンボルエラー訂正のためのL*M個のパリティビットを生成するステップと、
前記L*M個のパリティビットを前記L個のサブグループに入力して、前記L個のサブグループで2個の拡散符号のうち一つの拡散符号が選択されるようにするステップと、
前記P+L個のサブグループから獲得されたP+L個の拡散符号で多数値を選択して、前記多数値からなる伝送データを発生するステップと、を含むシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法。
【請求項2】
上端部から提供される直列データをP*Mビットの並列データに変換するステップをさらに含み、前記採択されたP個の各サブグループに前記M個の並列データビットを入力することを特徴とする請求項1に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法。
【請求項3】
上端部から提供される直列データをP*M+1ビットの並列データに変換するステップと、
前記P+L個のサブグループから獲得されたP+L個の拡散符号で選択される多数値と、前記P*M+1ビットの1ビットとをXORして伝送データを発生するステップと、をさらに含むことを特徴とする請求項1に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法。
【請求項4】
前記P+L個のサブグループから獲得されたP+L個の拡散符号で多数値を選択するステップは、
前記獲得された各拡散符号を2個ずつ組み合わせてANDし、前記ANDされた値をORし、前記P+L個の拡散符号を合算した結果から最上位ビットのみを選択することを特徴とする請求項1に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調方法。
【請求項5】
周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成するステップと、
送信機から変調されたデータが伝送される場合、前記伝送データからフレーム同期とタイミング同期とを獲得するステップと、
前記多数のサブグループのうち前記伝送データの変調時に使われたと判断されるP+L個のサブグループを選択し、前記選択されたサブグループ別拡散符号を前記獲得されたフレーム同期とタイミング同期とに合わせるステップと、
前記P+L個のサブグループ別拡散符号と前記伝送データとの相関値を計算して、前記伝送データの変調時に選択されたと判断される一つの拡散符号を前記 P+L個の各サブグループ別に検出するステップと、
前記P+L個の各サブグループから前記検出される拡散符号のMビットインデックス値が発生するようにし、前記発生による(P+L)*Mのインデックス値からパリティチェックマトリックスを使用したL*M個のシンドロームを生成するステップと、
前記L*M個のシンドロームからM*P個のエラーパターンを生成し、前記生成されたエラーパターンと前記P個のサブグループから発生するM*Pのインデックス値とをXORしてシンボルエラーを訂正するステップと、
前記シンボルエラーが訂正された並列データの前記M*Pインデックス値を直列データに変換するステップと、を含むシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調方法。
【請求項6】
前記P個のサブグループ別に発生する前記インデックス値の相関値によって互いに異なる1ビットのデータを獲得するステップと、
前記獲得された1ビットのデータと、前記シンボルエラーが訂正されたM*Pの並列データとを合わせた並列データを直列データに変換するステップと、をさらに含むことを特徴とする請求項5に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調方法。
【請求項7】
周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けた多数のサブグループのうち一つのサブグループを含み、M個のデータビットが入力される場合、該当サブグループの拡散符号(2)のうち一つの拡散符号を選択して出力する多数のサブ周波数選択的拡散器と、
上端部から提供される直列データをP*Mビットの並列データに変換し、前記多数のサブ周波数選択的拡散器のうち、ユーザによって選択されるP個のサブ周波数選択的拡散器のそれぞれにM個のデータビットを出力する直列−並列変換部と、
前記直列−並列変換部から前記P個のサブ周波数選択的拡散器に出力されるP*M個のデータビットを獲得し、前記獲得されたP*M個のデータビットからシンボルエラー訂正のためのL*M個のパリティビットを生成して、L個の前記サブ周波数選択的拡散器に出力するパリティビット生成部と、
前記P+L個のサブ周波数選択的拡散器から出力されるP+L個の拡散符号で多数値を選択して、前記多数値からなる伝送データを発生する多数値選択部と、を含むシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調装置。
【請求項8】
前記直列−並列変換部は、
前記上端部から提供される直列データをP*M+1ビットの並列データに変換し、ユーザによって選択される前記P個のサブ周波数選択的拡散器のそれぞれにM個のデータビットを出力し、前記1ビットは前記P*Mビットと別途に出力することを特徴とする請求項7に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調装置。
【請求項9】
前記多数値選択部から選択される多数値と、前記直列−並列データ部から前記別途に出力される1ビットとをXORするXOR論理回路をさらに含み、前記伝送データ率を増加させることを特徴とする請求項8に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調装置。
【請求項10】
前記多数値選択部は、
前記選択されたP+L個の拡散符号を2個ずつ組み合わせてANDし、前記ANDされた値をORし、前記P+L個の拡散符号を合算した結果から最上位ビットのみを選択することを特徴とする請求項7に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数変調装置。
【請求項11】
周波数拡散に使用される2(Nは、実数)個の全体拡散符号を2(M<N、Mは実数)個の数字単位で分けて多数のサブグループを生成し、送信機から変調されたデータが伝送される場合、前記伝送データからフレーム同期とタイミング同期とを獲得した後、前記多数のサブグループのうち前記伝送データの変調時に使われたと判断されるP+L個のサブグループを選択し、前記P+L個のサブグループ別拡散符号を前記獲得されたフレーム同期とタイミング同期とに一致させて出力する直交符号生成器と、
前記送信機から変調された伝送データが受信される場合、2個の拡散符号が前記直交符号生成器から提供され、前記提供された拡散符号と前記伝送データとの相関値を計算し、前記伝送データの前記変調時に選択されたと判断される一つの拡散符号を検出して、前記検出された拡散符号のMビットインデックス値を出力する多数のサブ周波数選択的逆拡散器と、
前記直交符号生成器から前記P+L個のサブグループ別拡散符号がそれぞれ提供されたP+L個の前記サブ周波数選択的逆拡散器から(P+L)*Mのインデックス値の入力を受け、前記入力されたインデックス値からパリティチェックマトリックスを使用したL*M個のシンドロームを生成するシンドローム生成部と、
前記L*M個のシンドロームからM*P個のエラーパターンを生成するエラーパターン生成部と、
前記P個のサブ周波数選択的逆拡散器から出力されるM*Pのインデックス値と前記エラーパターン生成部から生成されたM*P個のエラーパターンとをXORして、前記M*Pのインデックス値のシンボルエラーを訂正するエラービット訂正部と、
並列データである前記シンボルエラーが訂正されたM*Pインデックス値を直列データに変換する並列−直列変換部と、を含むシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調装置。
【請求項12】
前記P+L個のサブ周波数選択的逆拡散器から前記出力されるインデックス値の相関値の提供を受け、前記提供された相関値によって互いに異なる1ビットのデータを出力する相関値判別部をさらに含むことを特徴とする請求項11に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調装置。
【請求項13】
前記並列−直列変換部は、
前記エラービット訂正部から出力される前記P*Mのインデックス値と共に、前記相関値判別部から出力される1ビットのデータが入力される場合、前記P*Mのインデックス値と前記1ビットのデータとを合わせた並列データを直列データに変換することを特徴とする請求項12に記載のシンボルエラー訂正が可能な周波数選択的基底帯域を使用する周波数復調装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公表番号】特表2010−538518(P2010−538518A)
【公表日】平成22年12月9日(2010.12.9)
【国際特許分類】
【出願番号】特願2010−522784(P2010−522784)
【出願日】平成20年4月28日(2008.4.28)
【国際出願番号】PCT/KR2008/002398
【国際公開番号】WO2009/028782
【国際公開日】平成21年3月5日(2009.3.5)
【出願人】(596180076)韓國電子通信研究院 (733)
【氏名又は名称原語表記】Electronics and Telecommunications Research Institute
【住所又は居所原語表記】161 Kajong−dong, Yusong−gu, Taejon korea
【Fターム(参考)】