説明

ジアセトキシアリル化合物の異性化方法

【課題】ジアセトキシアリル化合物の異性化をより少ない触媒使用量で実施することを可能とする工業的に有利なジアセトキシアリル化合物の異性化方法を提供する。
【解決手段】3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する前に、3,4−ジアセトキシアリル化合物含有液を予め固体塩基と接触させる。該固体塩基としては、陰イオン交換樹脂が好ましい。異性化はホスファイトを配位子として有する液相均一系パラジウム触媒を用いて行なう。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ジアセトキシアリル化合物の異性化方法に関し、より詳細には、3,4−ジアセトキシアリル化合物を1,4−ジアセトキシアリル化合物に異性化する方法に関する。
【背景技術】
【0002】
ジアセトキシアリル化合物は特徴有る骨格を有することから様々な物質への変換が化合物であるだけでなく、加水分解によりジオール類製造が可能な重要中間体である。そのため、各種ジアセトキシアリル化合物の製造プロセスの開発が行われてきた。例えば特開平8−3110号公報、特開平11−71327号公報に示すように、パラジウム固体触媒によるブタジエンのジアセトキシ化反応や、イソプレンのジアセトキシ化反応によるジアセトキシアリル化合物の製造法が開発されている。また特開平11−71326号公報では、ロジウム固体触媒を用いたブタジエンのジアセトキシ化反応によるジアセトキシアリル化合物の製造法が報告されている。特に1,4−ジアセトキシ−2−ブテンは水素化、加水分解を経て、様々なポリマーやテトラヒドロフランなどの原料として重要な1,4−ブタンジオールへと変換できる有用な物質である。これらジアセトキシアリル化合物を製造するための共役ジエン類のジアセトキシ化反応は、固体触媒の存在下、収率良く進行することが多いが、アセトキシ基が付与する位置を完全に制御できないのが現状であり、特に1,4−ブタンジオールの原料となる1,4−ジアセトキシ−2−ブテン製造反応では、1,4−ブタンジオールへと変換できない3,4−ジアセトキシ−2−ブテンが副生してしまう。そのため1,4−ブタンジオール製造プロセスにおいて、原料であるブタジエンのコストを押し上げていた。この副生する3,4−ジアセトキシ−2−ブテンを異性化して1,4−ジアセトキシ−2−ブテンなど1,4−ジアセトキシアリル化合物を生成することができれば、より効率の高い1,4−ブタンジオールの製造方法を確立することができる。そのため、既にこのような方法が開発されてきた。例えば特開2002−105025号公報ではホスファイト配位子を有するパラジウム錯体触媒を用いて、3,4−ジアセトキシ−2−ブテンから1,4−ジアセトキシ−2−ブテンへの異性化反応に成功している。また特開2004−115506号公報では、パラジウム錯体触媒とホスファイト配位子に加えて、更にホスホニウム化合物を添加することで、より活性の高い異性化触媒が報告されている。しかしながら、これらジアセトキシアリル化合物の異性化方法では触媒の劣化が著しく、多量の触媒を用いる必要があった。
【特許文献1】特開平8−3110号公報
【特許文献2】特開平11−71327号公報
【特許文献3】特開2002−105025号公報
【特許文献4】特開2004−115506号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
本発明の課題は、ジアセトキシアリル化合物の異性化をより少ない触媒使用量で実施することを可能とする工業的に有利なジアセトキシアリル化合物の異性化方法を提供することである。
【課題を解決するための手段】
【0004】
本発明者らは上記の課題を解決すべく鋭意検討を行った結果、共役ジエン類のジアセトキシ化反応では、酸素雰囲気下、または空気雰囲気下、高圧条件で反応を行うため、反応液中にジアセトキシアリル化合物以外にも様々な微量副生物が生成し、それらの中には異性化触媒の劣化を著しく促進する成分が含まれていることを見出し、更にそれら触媒劣化を著しく促進する成分が固体塩基により除去可能であることを見出し、本発明を完成させるに至った。即ち、本発明の要旨は下記(1)〜(7)に存する。
【0005】
(1) 3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する方法において、触媒による異性化の前に3,4−ジアセトキシアリル化合物含有液を固体塩基と接触させる異性化方法。
(2) 3,4−ジアセトキシアリル化合物含有液が、共役ジエン類のジアセトキシ化反応により製造されたものであることを特徴とする上記(1)に記載の方法。
(3) 固体塩基が陰イオン交換樹脂であることを特徴とする上記(1)又は(2)に記載の方法。
(4) 触媒が液相均一系パラジウム触媒であり、ホスファイトを配位子として有する触媒であることを特徴とする上記(1)〜(3)のいずれかに記載の方法。
(5) ブタジエンのジアセトキシ化反応により得られた1,4−ジアセトキシ−2−ブテン及び3,4−ジアセトキシ−1−ブテンを含む液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を固体塩基と接触させた後、ホスファイトを配位子として有する液相均一系パラジウム触媒により3,4−ジアセトキシ−1−ブテンを1,4−ジアセトキシ−2−ブテンに異性化する方法。
(6) パラジウム固体触媒を用いたブタジエンのジアセトキシ化反応により製造した1,4−ジアセトキシ−2−ブテン及び3,4−ジアセトキシ−1−ブテンを含む液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を、固体塩基と接触させた後、酢酸溶媒中で2座ホスファイト配位子を有する液相均一系パラジウム触媒により3,4−ジアセトキシ−1−ブテンを1,4−ジアセトキシ−2−ブテンに異性化し、得られた1,4−ジアセトキシ−2−ブテン含有液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から未反応の3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を1,4−ジアセトキシ−2−ブテンに異性化する工程にリサイクルする1,4−ジアセトキシ−2−ブテンの製造方法。
【0006】
(7) 上記(1)〜(6)で得られた1,4−ジアセトキシ−2−ブテン含有液を用い、1,4−ジアセトキシ−2−ブテンを水素化し、更に加水分解して1,4−ブタンジオールを製造する方法。
本発明は回分、半回分、連続方式のいずれの形式にも使用することができる。以下、その詳細について説明する。
【発明の効果】
【0007】
本発明により、ジアセトキシアリル化合物の異性化をより少ない触媒使用量で実施することを可能とする工業的に有利なジアセトキシアリル化合物の異性化方法を提供することができる。
【発明を実施するための最良の形態】
【0008】
本発明の「3,4−ジアセトキシアリル化合物を1,4−ジアセトキシアリル化合物に異性化する方法」は、3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する方法において、触媒による異性化の前に3,4−ジアセトキシアリル化合物含有液を固体塩基と接触させることを特徴とする。
「3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する方法」とは、例えば「3,4−ジアセトキシアリル化合物を触媒と接触させて1,4−ジアセトキシアリル化合物に異性化して、1,4−ジアセトキシアリル化合物を得る方法」や、「3,4−ジアセトキシアリル化合物と1,4−ジアセトキシアリル化合物の混合物を触媒と接触させて混合物中の3,4−ジアセトキシアリル化合物を1,4−ジアセトキシアリル化合物に異性化し、1,4−ジアセトキシアリル化合物純度を上げる方法」が挙げられる。
【0009】
本発明における3,4−ジアセトキシアリル化合物(「3,4−ジアセトキシアリル化合物と1,4−ジアセトキシアリル化合物の混合物」を含む)は、触媒の存在下、共役ジエン類のジアセトキシ化反応などにより製造可能である。
ジアセトキシアリル化合物を製造する共役ジエン類のジアセトキシ化反応は様々な方法で実施できる。最も一般的には、パラジウム系触媒の存在下、ブタジエン、酢酸及び酸素を反応させてジアセトキシアリル化合物である1,4−ジアセトキシ−2−ブテン及び3,4−ジアセトキシ−1−ブテンを得ることができる。またそれらジアセトキシアリル化合物の加水分解物である1−ヒドロキシ−4−アセトキシ−2−ブテン、3−ヒドロキシ−4−アセトキシ−1−ブテン、4−ヒドロキシ−3−アセトキシ−1−ブテンなども併せて生成する。本発明で使用可能な共役ジエン類として例えば、ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−シクロヘキサジエン、1,3−シクロペンタジエン、1,3−シクロヘプタジエン、1,3−シクロオクタジエン、1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエンなどが挙げられ、好ましくはブタジエン、イソプレン、1,3−シクロヘキサジエン、1,3−ジクロペンタジエンであり、特に好ましくはブタジエン、イソプレンである。ブタジエン、イソプレンのような置換基の少ない共役ジエン類が、最も高い反応活性を示すことが好ましい理由である。共役ジエン類のジアセトキシ化反応に用いる触媒としては、共役ジエン類をジアセトキシアリル化合物に変換する能力を有する触媒であれば何でも使用できるが、好ましくは第8〜10族遷移金属を含有する固体触媒であり、特に好ましくはパラジウム固体触媒である。パラジウム固体触媒は、パラジウム金属またはその塩からなり、助触媒としてビスマス、セレン、アンチモン、テルル、銅などの金属またはその塩の使用が好ましく、特に好ましくはテルルである。パラジウムとテルルの組み合わせが好ましい理由は、触媒活性の高さ、及びジアセトキシアリル化合物選択率の高さである。そのため、パラジウム及びテルルを活性成分として担持する固体触媒であることが好ましい。該パラジウム固体触媒は、シリカ、アルミナ、チタニア、ジルコニア、活性炭、グラファイトなどの担体に担持させて使用することが好ましく、特に好ましくは強度的に優れているためにシリカである。担体の物性として多孔質が好ましく、特にその平均細孔直径が1nm〜100nmである多孔質が好ましい。担体付触媒の場合、パラジウム金属は通常0.1〜20重量%、他の助触媒金属は0.01〜30重量%の範囲で選定される。この値が小さすぎると、触媒活性の低下によるコスト競争力が低下し、またこの値が大きすぎると、触媒コストの甚大化による競争力が低下してしまう。
【0010】
上記のジアセトキシ化反応は空気、または酸素富加された空気、窒素など不活性ガスで希釈された空気または酸素、あるいは酸素雰囲気下で行なうことが好ましく、酸素濃度は1vol%〜100vol%の範囲で差し支えなく、より好ましくは2vol%〜50vol%であり、特に好ましくは3vol%〜40vol%である。酸素濃度が低すぎると反応速度が低下し、長大な反応器が必要となり、また酸素濃度が高すぎると、爆発、火災などプロセスの危険性が増大する。本反応は気相、液相のいずれでも行なうことができる。反応温度は0℃〜300℃の範囲であり、好ましくは10℃〜250℃、より好ましくは30℃〜200℃の範囲である。反応温度が低すぎると反応速度が低下し、長大な反応器が必要となり、また反応温度が高すぎると、爆発、火災などプロセスの危険性が増大する。反応圧力は大気圧〜50MPaの範囲が好ましく、より好ましくは大気圧〜30MPa、特に好ましくは1MPa〜20MPaである。ジアセトキシ化反応を液相にて行なう場合には、反応に使用する溶媒は反応原料を溶解するものであれば特に制限は無いが、水、または酢酸等のカルボン酸、あるいはブタジエンなど反応原料となる共役ジエン類そのもの、あるいはジアセトキシアリル化合物など生成物そのものが好ましい。またヘキサン、ヘプタン、オクタンなどの炭化水素類、テトラヒドロフラン、ジエチルエーテル、トリグライムなどのエーテル類、酢酸エチル、酪酸ブチルなどのエステル類、アセトン、メチルイソブチルケトンなどのケトン類、1,4−ブタンジオールなどのアルコール類なども使用可能である。原料となる共役ジエン類と触媒との重量比は100000000〜1の範囲が好ましく、より好ましくは50000000〜10の範囲であり、特に好ましくは20000000〜100である。重量比が多すぎると反応速度は不充分となり、長大な反応器が必要となりプロセス競争力を失い、またこの重量比が小さい過ぎると触媒コストが増大し、プロセス競争力を失う。
【0011】
本発明における「3,4−ジアセトキシアリル化合物含有液」とは、上記触媒による共役ジエン類のジアセトキシ化反応後液そのもの、あるいは酢酸、水などのジアセトキシアリル化合物よりも軽沸点の副生物を一部あるいは全量を蒸留などにより除去したもの、あるいは3,4−ジアセトキシアリル化合物よりも高沸点の副生物を一部あるいは全量を蒸留などにより除去したもの、更には軽沸点の副生物及び高沸点副生物の双方を一部あるいは全量を除去したもの等が含まれる。通常、「3,4−ジアセトキシアリル化合物含有液」が上記触媒による共役ジエン類のジアセトキシ化反応由来の液である場合は、対応する1,4−ジアセトキシアリル化合物を含有している。また3,4−ジアセトキシアリル化合物含有液は、3,4−ジアセトキシアリル化合物の加水分解物である3,4−ヒドロキシアセトキシアリル化合物、及び/又は3,4−ジヒドロキシアリル化合物を含有する液でも差し支えなく、更に1,4−ジアセトキシアリル化合物の加水分解物である1,4−ヒドロキシアセトキシアリル化合物、及び/又は1,4−ジヒドロキシアリル化合物を含んでいても差し支えない。
【0012】
本発明で使用する「3,4−ジアセトキシアリル化合物含有液」は通常、3,4−ジアセトキシアリル化合物、及び1,4−ジアセトキシアリル化合物、及びそれらよりも軽沸点の成分、高沸点の成分を含有する液を蒸留塔に導入し、塔底より高沸点の成分を含む1,4−ジアセトキシアリル化合物含有液を抜き出し、塔上部より3,4−ジアセトキシアリル化合物含有液を留出させて得ることができる。この際、3,4−ジアセトキシアリル化合物含有液は塔頂から軽沸点成分とともに抜き出すことも可能であり、また3,4−ジアセトキシアリル化合物含有液を側流から抜き出して、塔頂から軽沸点成分を留出させても差し支えない。ここで得られた液を固体塩基に接触させることができる。ここで使用する蒸留塔の蒸留時の圧力は任意に設定することができるが、塔底温度を低くするために、塔頂圧力を1〜760mmHgとすることが好ましい。より好ましくは塔頂圧力が5〜200mmHgであり、特に好ましくは10〜100mmHgの範囲である。この塔頂圧力が低すぎると、圧力を保つために多大なコストが必要となり、また高すぎると蒸留塔塔底の温度が高くなり、蒸気コストの増大となってしまう。塔頂温度は通常0℃〜200℃以下であり、好ましくは20℃〜160℃、より好ましくは40℃〜140℃である。塔頂温度が低すぎると冷却器など特殊な装置が必要となりコスト悪化となる。また温度が高すぎると、塔底温度もより高い温度となるために、蒸気コストの増大となってしまう。還流比は1〜100で差し支えなく、好ましくは1〜10である。還流比が小さすぎると、分離能の悪化を引き起こし、還流比が高すぎると、必要な熱量が増大し、コスト悪化原因となる。塔頂の留出量は、蒸留塔へ導入した3,4−ジアセトキシアリル化合物、及び1,4−ジアセトキシアリル化合物、及びそれらよりも軽沸点の成分、高沸点の成分を含有する液のうち、3,4−ジアセトキシアリル化合物と軽沸点の成分の合計量を留出させることが望ましい。また側流から3,4−ジアセトキシアリル化合物含有液を留出させ、塔頂から軽沸点の成分を留出させる場合には、それぞれ側流から導入液中の3,4−ジアセトキシアリル化合物含有量、塔頂から軽沸点の成分の含有量を留出させることが好ましい。蒸留塔物質収支は、蒸留塔塔底から1,4−ジアセトキシアリル化合物含有液を抜き出し、塔頂から軽沸点成分を含む3,4−ジアセトキシアリル化合物を留出させる場合で、単位時間あたりの導入流量重要を100とした場合、単位時間あたりの塔頂留出流量が1〜50、好ましくは5〜30である。その際の塔底からの単位時間あたりの1,4−ジアセトキシアリル化合物含有液の抜き出し量は50〜99が好ましく、より好ましくは70〜95である。また蒸留塔塔底から1,4−ジアセトキシアリル化合物含有液を抜き出し、塔頂から軽沸点成分を留出させ、側流から3,4−ジアセトキシアリル化合物含有液を留出させる場合においては、単位時間あたりの導入流量重要を100とした場合、単位時間あたりの塔頂留出流量が0.1〜30であり、好ましくは1〜20である。また側流からの3,4−ジアセトキシアリル化合物含有液の留出量は0.9〜50が好ましく、より好ましくは2〜30である。また塔底からの1,4−ジアセトキシアリル化合物含有液の単位時間あたりの抜き出し量は20〜99が好ましく、より好ましくは50〜97である。本発明では3,4−ジアセトキシアリル化合物含有液を固体塩基と接触させることを特徴とするが、蒸留分離以前に接触させても、塔頂から留出させた該液を接触させても、側流から留出させた該液を接触させても差し支えない。好ましくは接触させる液量が減少するために、固体塩基容量がより少なく効果を発揮するために、塔頂から留出させた該液、または側流から留出させた該液を接触させることが好ましい。
蒸留塔としては充填塔、棚段塔のいずれもが使用できるが、多段蒸留が好ましい。3,4−ジアセトキシアリル化合物含有液と1,4−ジアセトキシアリル化合物含有液を分離するには、蒸留塔理論段を3段以上、特に10段〜50段とするのが好ましい。50段を越える蒸留塔は、蒸留塔建設の経済性、運転難易度、及び安全管理のためには好ましくない。また段数が小さすぎると分離が困難となる。
【0013】
3,4−ジアセトキシアリル化合物とは、具体的には3,4−ジアセトキシ−1−ブテン、3,4−ジアセトキシ−2−メチル−1−ブテン、3,4−ジアセトキシ−3−メチル−1−ブテン、3,4−ジアセトキシ−2,3−ジメチル−1−ブテン、3,4−ジアセトキシ−1−シクロヘキセン、3,4−ジアセトキシ−1−シクロペンテン、3,4−ジアセトキシ−1−シクロヘプテン、3,4−ジアセトキシ−1−シクロオクテンが好ましく、より好ましくは3,4−ジアセトキシ−1−ブテン、3,4−ジアセトキシ−2−メチル−1−ブテン、3,4−ジアセトキシ−3−メチル−1−ブテン、3,4−ジアセトキシ−1−シクロヘキセン、3,4−ジアセトキシ−1−シクロペンテンであり、特に好ましくは1,4−ブタンジオールの中間体である1,4−ジアセトキシ−2−ブテンへと転換できる3,4−ジアセトキシ−1−ブテンである。またこれら3,4−ジアセトキシアリル化合物の加水分解物である3−ヒドロキシ−4−アセトキシ−1−ブテン、4−ヒドロキシ−3−アセトキシ−1−ブテンなどの異性化反応においても、本発明は適用可能である。
【0014】
また本発明で3,4−ジアセトキシアリル化合物の異性化により得られる1,4−ジアセトキシアリル化合物は、異性化前の3,4−ジアセトキシアリル化合物に対応する異性化体であり、具体的には、1,4−ジアセトキシ−2−ブテン、1,4−ジアセトキシ−2−メチル−2−ブテン、1,4−ジアセトキシ−2、3−ジメチル−2−ブテン、1,4−ジアセトキシ−2−シクロヘキセン、1,4−ジアセトキシ−2−シクロペンテン、1,4−ジアセトキシ−2−シクロヘプテン、1,4−ジアセトキシ−2−シクロオクテンが好ましく、1,4−ジアセトキシ−1−ブテン、1,4−ジアセトキシ−2−メチル−1−ブテン、1,4−ジアセトキシ−3−メチル−1−ブテン、1,4−ジアセトキシ−1−シクロヘキセン、1,4−ジアセトキシ−1−シクロペンテンであり、特に好ましくは1,4−ブタンジオールの中間体である1,4−ジアセトキシ−1−ブテンである。また、3,4−ジアセトキシアリル化合物の加水分解物である3−ヒドロキシ−4−アセトキシ−1−ブテン、4−ヒドロキシ−3−アセトキシ−1−ブテンなどの異性化反応では、その1−ヒドロキシ−4−アセトキシ−2−ブテンを得ることができる。
【0015】
本発明では3,4−ジアセトキシアリル化合物の異性化反応を行うが、該反応においては種々の溶媒を使用することが可能である。溶媒とは具体的には蟻酸、酢酸、プロピオン酸、酪酸などのカルボン酸類、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールなどのアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、トリグライムジメチルエーテルなどのエーテル類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの炭化水素類など特に限定されること無く一般的な有機溶媒が使用可能であり、好ましくは蟻酸、酢酸、プロピオン酸、酪酸などのカルボン酸類であり、特に好ましくはアセトキシ基の異性化速度を向上する酢酸である。溶媒の添加量はジアセトキシアリル化合物に対して重量比で0.1wt%〜10000wt%が好ましく、より好ましくは10wt%〜1000wt%であり、特に好ましくは50wt%〜300wt%である。溶媒の添加量が少なすぎると触媒劣化の速度が向上してしまい、多すぎると反応器容量が大きくなりすぎ、非効率なプロセスとなってしまう。
【0016】
本発明で3,4−ジアセトキシアリル化合物の異性化に使用される触媒は3,4−ジアセトキシアリル化合物を1,4−ジアセトキシアリル化合物に異性化する能力を有していれば特に限定されるものではないが、均一系錯体触媒であり、好ましくは第8〜10遷移金属の均一系錯体触媒であり、特に好ましくはアセトキシ異性化速度に特に高い活性を示すパラジウム錯体触媒である。該錯体触媒は種々の遷移金属から調製することが可能であるが、具体的には酢酸塩、アセチルアセトネート化合物、塩化物、臭化物、ヨウ素化物、硫酸塩、硝酸塩、有機塩、無機塩、オレフィン配位化合物、アミン配位化合物、一酸化炭素配位化合物、ホスフィン配位化合物、ホスファイト配位化合物などが挙げられる。好ましくはパラジウム金属、酢酸パラジウム、塩化パラジウム、ジクロロシクロオクタジエンパラジウム、テトラキス(トリフェニルホスフィン)パラジウム、ビス(ジベンジリデンアセトン)パラジウム、トリフルオロ酢酸パラジウム、パラジウムアセチルアセトネート、酢酸ニッケル、ジシクロオクタジエンニッケル、酢酸プラチナ、ジシクロオクタジエンプラチナなどであり、特に好ましくは安価なパラジウム源である酢酸パラジウム、塩化パラジウム、トリフルオロ酢酸パラジウムである。本発明に於いては上述した金属化合物の形態には特に限定されず、活性な錯体触媒が単量体、2量体、及び/または多量体であっても差し支えない。
【0017】
また該錯体触媒はリン配位子を有するが、ホスフィン類、ホスファイト類、ホスホナイト類、ホスフィナイト類、ホスフォラアミダイト類など特に限定されず種々のリン配位子を使用することが可能である。これらは単座であっても、多座であっても良い。リン配位子として好ましくはホスファイト類であり、特に2座のホスファイト類が好ましい。具体的には式(I)、(II)、(III)、(IV)、(V)及び(VI)で示される化合物の中の少なくとも一種である。
【0018】
【化1】

【0019】
式(I)〜(VI)において、R10〜R21は、それぞれ独立してアルキル基、アルコキシ基、シクロアルキル基、アリーロキシ基、アルキルアリーロキシ基、アミノ基、又はアリール基を表し、更に置換基を有していても良い。R10〜R21としてアルキル基を用いる場合、又はアルキル骨格を有する置換基(アルキルアリーロキシ基中のアルキル基等)を用いる場合には、その炭素数は通常1〜20であり、好ましくは1〜14である。その具体例としては、例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基等である。また、アルキル基又はアルキル骨格部分は更に置換基を有していてもよく、置換基としては、炭素数1〜10のアルコキシ基、炭素数6〜10のアリール基、アミノ基、シアノ基、炭素数2〜10のエステル基、ヒドロキシ基、及びハロゲン原子が挙げられる。
【0020】
またR10〜R21としてアリール基を用いる場合又はアリール骨格を有する置換基を用いる場合には、その炭素数は通常6〜20であり、好ましくは6〜14である。アリール基又はアリール骨格部分は更に置換基を有していても良く、置換基として、水素原子、炭素数1〜20のアルキル基、炭素数1〜10のアルコキシ基、炭素数3〜20のシクロアルキル基、炭素数6〜20のアリール基、炭素数6〜20のアリーロキシ基、炭素数6〜20のアルキルアリール基、炭素数6〜20のアルキルアリーロキシ基、炭素数6〜20のアリールアルキル基、炭素数6〜20のアリールアルコキシ基、シアノ基、エステル基、ヒドロキシ基およびハロゲン原子が挙げられる。R10〜R21がアリール基である場合の具体例としてフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2,3−ジメチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,6−ジメチルフェニル基、2−エチルフェニル基、2−イソプロピルフェニル基、2−t−ブチルフェニル基、2,4−ジ−t−ブチルフェニル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2,3−ジクロロフェニル基、2,4−ジクロロフェニル基、2,5−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、4−トリフルオロメチルフェニル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、3,5−ジメトキシフェニル基、4−シアノフェニル基、4−ニトロフェニル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基、及び下記の(C−1)〜(C−8)が挙げられる。
【0021】
【化2】

【0022】
〜Z及びA〜Aはそれぞれ独立して置換基を有していても良い炭素数1〜20のアルキレン基、置換基を有していても良い炭素数6〜30のアリーレン基、又はAr−(Q)n−Arなる真中に二価の連結基を有していても良いジアリーレン基(但しAr及びArはそれぞれ独立して、置換基を有していても良い炭素数6〜18のアリーレン基を表す)を表す。Tは炭素原子、アルカンテトライル基、ベンゼンテトライル基、又はT−(Q)n−Tで表される置換基を有していても良い四価の基であり、T及びTはそれぞれ独立してそれぞれ独立して、炭素数1〜10のアルカントリイル基、及び炭素数6〜15のベンゼントリイル基から選ばれる置換基を有していても良い三価の基を表す。Q及びQはそれぞれ独立して、−CR2223−、−O−、−S−、−CO−を表し、nは0又は1であり、R22及びR23は、それぞれ独立して水素原子、炭素数1〜10のアルキル基、又は炭素数6〜20のアリール基であり、置換基を有していても良い。
【0023】
またZ〜Z又はA〜Aがアルキレン基の場合、具体例として例えばテトラメチルエチレン基、ジメチルプロピレン基等が挙げられ、Z〜Zが置換基を有しても良いアルキレン基の場合には、置換基として炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、アミノ基、シアノ基、アミド基、トルフルオロメチル基等が挙げられる。またZ〜Z及びA〜Aが置換基を有していても良いアリーレン基の場合には、その具体例として、例えばフェニレン基やナフチレン基等が挙げられ、置換基として炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、アミノ基、シアノ基、アミド基、トルフルオロメチル基等が挙げられる。
【0024】
更に、Z〜Z又はA〜AがAr−(Q)n−Arなる真中に二価の連結基を有していても良いジアリーレン基の場合、Ar及びArはそれぞれ独立して、置換基を有していても良い炭素数6〜18のアリーレン基であり、その炭素数は6〜24、更には6〜16が好ましい。好ましい置換基の具体例として、炭素数1〜10のアルキル基、炭素数1〜10のアルコキシ基、炭素数6〜20のアリール基、アミノ基、シアノ基、アミド基、トルフルオロメチル基等が挙げられる。
【0025】
またZ〜Z又はA〜Aの具体例として、−(CH−、−(CH−、−(CH−、−(CH−、−(CH−、−CH(CH)−CH(CH)−、−CH(CH)CHCH(CH)−、−C(CH−C(CH−、−C(CH−CH−C(CH−、及び下記の(A−1)〜(A−48)が挙げられる。
【0026】
【化3】

【0027】
【化4】

【0028】
【化5】

【0029】
【化6】

【0030】
異性化触媒の配位子を表す式(I)〜(VI)の化合物の好ましい具体例として、下記の単座配位子(P1)〜(P20)及び多座配位子(L1)〜(L40)を例示することができる。
【0031】
【化7】

【0032】
【化8】

【0033】
【化9】

【0034】
【化10】

【0035】
【化11】

【0036】
【化12】

【0037】
【化13】

【0038】
【化14】

【0039】
【化15】

【0040】
【化16】

【0041】
【化17】

【0042】
【化18】

【0043】
本発明でジアセトキシアリル化合物の異性化に使用される均一系錯体触媒の添加量は金属量で3,4−ジアセトキシアリル化合物含有液に対して0.001wtppm〜1000wtppmが好ましく、より好ましくは0.01wtppm〜100wtppmであり、特に好ましくは0.1wtppm〜10wtppmである。触媒の添加量が少なすぎると反応速度が低下してしまい長大な反応器が必要となり、多すぎるとパラジウム、配位子コストが増大してしまう。
【0044】
また配位子の添加量は配位子中のリン原子のモル比が錯体触媒中の遷移金属に対して0.1〜1000が好ましく、より好ましくは1〜100であり、特に好ましくは1〜10である。配位子の添加量が少なすぎると触媒劣化が進行し反応が完結する前に停止してしまい、多すぎると触媒コストが高すぎてプロセスの競争力が低下してしまう。
該異性化反応を行う際の反応温度は40℃〜200℃が好ましく、より好ましくは80℃〜180℃であり、特に好ましくは100℃〜160℃である。反応温度が低すぎると反応速度が低下し長大な反応器が必要となり、高すぎると触媒劣化が進行してしまう。
また配位子以外にも助触媒として別のリン化合物またはアミン化合物を添加することで触媒の安定性、または反応の速度が向上する。更にリン化合物、及びアミン化合物の両方を添加しても差し支えない。ここで使用するリン化合物はリン原子に3つの置換基が結合したものであれば特に限定されるものではないが、例えば、トリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(4−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、トリ(4−メトキシフェニル)ホスフィンなどのトリアリールホスフィン類、ジフェニルメチルホスフィン、ジフェニルエチルホスフィン、ジフェニルプロピルホスフィンなどのジアリールアルキルホスフィン類、ジメチルフェニルホスフィン、ジエチルフェニルホスフィンなどのジアルキルアリールホスフィン類、トリオクチルホスフィン、トリブチルホスフィンなどのトリアルキルホスフィン類が好ましく、更に好ましくはトリフェニルホスフィン、トリ(2−メチルフェニル)ホスフィン、トリ(4−メチルフェニル)ホスフィン、トリ(2−メトキシフェニル)ホスフィン、トリ(4−メトキシフェニル)ホスフィンなどのトリアリールホスフィン類であり、特に好ましくはトリフェニルホスフィンである。
【0045】
またアミン化合物は1級、2級、3級のアミン、環状、鎖状アミンのいずれを用いても差し支えないが、異性化反応を行なう際にアセトキシアリル化合物が副生物を生成し難い3級のアミンが好ましい。具体的にはトリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリデカニルアミン、トリフェニルアミン、ジフェニルメチルアミン、ジフェニルエチルアミン、ジフェニルブチルアミン、ジメチルフェニルアミン、ジエチルフェニルアミン、ジブチルフェニルアミン、トリシクロペンチルアミン、トリシクロヘキシルアミン、トリシクロヘプチルアミン、ピリジン、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]−7−ウンデカン、1,5−ジアザビシクロ[4.3.0]−5−ノネン、2,5−ジアザビシクロ[2.2.1]ヘプタンなどが好ましく、更に好ましくはトリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジメチルフェニルアミン、トリシクロヘキシルアミン、ピリジン、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]−7−ウンデカン、1,5−ジアザビシクロ[4.3.0]−5−ノネンであり、特に好ましくはトリオクチルアミン、ピリジン、1,8−ジアザビシクロ[5.4.0]−7−ウンデカン、1,4−ジアザビシクロ[2.2.2]オクタンである。これら配位子以外の助触媒である別のリン化合物、アミン化合物の添加量はリン化合物中のリン原子のモル比、またはアミン化合物中のアミン原子のモル比が、錯体触媒中の遷移金属量に対してモル比で1〜10000が好ましく、より好ましくは10〜2000であり、特に好ましくは50〜500である。アミン化合物の添加量が少なすぎると反応速度が低下し、多すぎるとアミンコストが増大してしまう。これらの範囲で、添加するリン化合物、アミン化合物のいずれかを単一で用いても、あるいはリン化合物、アミン化合物を混合して用いても差し支えない。
【0046】
本発明においては、3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する前に、前述した3,4−ジアセトキシアリル化合物含有液を固体塩基に接触(例えば固体塩基含有層に3,4−ジアセトキシアリル化合物含有液を流通させることにより接触)させることを必須とする。この固体塩基とは、塩基性を有する固体上の化合物であれば効果を発揮し使用可能であるが、好ましくは陰イオン交換樹脂、アミノ基または置換アミノ基を有するトリアジン環含有化合物、ポリアミド、無機塩基より選ばれた少なくとも1種である。陰イオン交換樹脂は特に限定されるものではなく、市販品を使用することができる。また、構造の種類は特に限定されるものではないが、ゲル型、MR型(macroreticular)型、ポーラス型、ハイポーラス型のいずれも用いることができるが、特に4級アンモニウム塩を官能基に持つスチレン系またはアクリル系の樹脂が好ましい。またアミノ基または置換アミノ基を有するトリアジン環含有化合物としては、好ましくはメラミン樹脂、CTUグアナミン(3,9−ビス[2−(3,5−ジアミノ−2,4−6−トリアザフェニル)エチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)、CMTUグアナミン(3,9−ビス[1−(3,5−ジアミノ−2,4,6−トリアザフェニル)メチル]−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン)などが挙げられる。これらは2種以上を併用しても差し支えない。ポリアミドとしては、例えばナイロン6、ナイロン12、ナイロン4/6、ナイロン6/6、ナイロン6/10、ナイロン6/12などが挙げられる。これらは2種以上を併用しても差し支えない。無機塩基としては、アルカリ又はアルカリ土類金属化合物が挙げられ、具体的にはCaO、MgOなどの金属酸化物、Ca(OH)、Mg(OH)などの金属水酸化物、NaCO、KCO、CaCO、MgCOなどの金属炭酸塩やそれらのホウ酸塩やリン酸塩などの金属無機酸塩などが挙げられ、これらは2種以上を併用しても差し支えない。上記、固体塩基の中でより好ましくはアミノ基または置換アミノ基を有するトリアジン環含有化合物、及び陰イオン交換樹脂である。特に好ましくは陰イオン交換樹脂である。 固体塩基にジアセトキシアリル化合物を接触する際の温度は−20℃〜200℃が好ましく、より好ましくは0℃〜120℃であり、特に好ましくは30℃〜100℃である。温度が低すぎると冷凍器など特殊装置が必要となりプロセス競争力が低下し、高すぎると固体塩基の劣化が進行する。
【0047】
また、接触時間は1分〜200時間が好ましく、より好ましくは10分〜50時間であり、特に好ましくは30分〜20時間である。接触時間が短かすぎると完全に触媒劣化成分の除去が困難であり、長すぎると効率の悪いプロセスとなってしまう。
また固体塩基は3,4−ジアセトキシアリル化合物含有液に対して重量比で0.00000001〜1の範囲で使用することが可能であり、より好ましくは0.0000001〜0.01であり、特に好ましくは0.00001〜0.001である。この重量比で3,4−ジアセトキシアリル化合物含有液と固体塩基とを接触することができる。
【0048】
固体塩基とジアセトキシアリル化合物の接触方法は回分、連続のいずれでも差し支えないが、運転の簡便さから連続流通式が特に好ましい。
異性化後の反応液は溶媒を蒸留などで除去した後、更に3,4−ジアセトキシアリル化合物含有液と1,4−ジアセトキシアリル化合物含有液とに分離する。得られた3,4−ジアセトキシアリル化合物含有液はそのまま、あるいは更に蒸留などで精製した後、異性化反応器へとリサイクル使用することが望ましい。また分離して得られた1,4−ジアセトキシアリル化合物含有液は、そのまま、あるいは更なる蒸留などによる精製を経た後。遷移金属触媒存在下、水素化され置換基を有しても良い1,4−ジアセトキシブタン化合物へと変換される。ここで使用する遷移金属触媒は通常の市販の水素化触媒で差し支えないが、好ましくはパラジウムまたはルテニウムなどの貴金属を含有する触媒、あるいはニッケル触媒である。これら水素化触媒の存在下、40〜180℃の温度範囲で、水素と1,4−ジアセトキシアリル化合物含有液とを接触させ、常圧〜15MPaの圧力範囲条件で実施することができる。反応温度が高すぎると触媒劣化が迅速に進行してしまい、温度が低すぎると反応速度が低下してしまう。圧力が低すぎると反応速度が低下してしまい、圧力が高すぎると高価な反応器が必要となってしまう。
【0049】
上記、水素化反応により得られた1,4−ジアセトキシブタン化合物は、酸触媒あるいは塩基性物質により水存在下で、加水分解され1,4−ブタンジオールなどのジオール類へと変換される。好ましくは固体酸触媒であり、特に陽イオン交換樹脂を触媒として使用するのが、加水分解速度が速く、しかもテトラヒドロフランのような副生物が少ないので好適である。具体的には、スチレンとジビニルベンゼンとの共重合体を母体とするスルホン酸型強酸性陽イオン交換樹脂であり、ゲル型でもポーラス型のいずれでも差し支えない。反応は通常30〜110℃、好ましくは40〜90℃の温度条件にて実施する。温度が低すぎると加水分解速度が低下し、高価で長大な反応器が必要となる。温度が高すぎるとテトラヒドロフランなど副生物が増加して、1,4−ブタンジオールの収率が低下してしまう。水の量は、1,4−ジアセトキシブタン1モルに対し、通常2〜100モル、好ましくは4〜50モルの範囲の量を使用する。水の量が少なすぎると反応速度が低下し高価で長大な反応器が必要となる。また水の量が多すぎると、加水分解後に1,4−ブタンジオールから水を除去する際に多量のエネルギーが必要とされるために、エネルギーコストが増大してしまう。
【実施例】
【0050】
以下、実施例により本発明を更に詳細に説明するが、本発明の要旨を越えない限り以下の実施例に限定されるものではない。なお、以下の実施例において、3,4−ジアセトキシ−2−ブテン、1,4−ジアセトキシ−2−ブテンの分析は内部標準法によるガスクロマトグラフィーにより行った。内部標準としてドデカンを使用した。
参考例1:ブタジエンのアセトキシ化反応工程及び分離工程
Pd−Te触媒1kgの存在下に、ブタジエン0.21kg/hr、酢酸2.94kg/hr、6%酸素/94%窒素混合ガス0.34kg/hrを流通させ、80℃、6MPaの条件でアセトキシ化反応させて、1,4−ジアセトキシ−2−ブテンが80重量%、3,4−ジアセトキシ−2−ブテンが9重量%、3−ヒドロキシ−4−アセトキシ−2−ブテンが2重量%、酢酸4重量%、その他3,4−ジアセトキシ−2−ブテンよりも軽沸分3重量%、3,4−ジアセトキシ−2−ブテンよりも高沸分2重量%を含む混合液を得た。この混合液5.0kgを回分蒸留により3,4−ジアセトキシ−2−ブテン含有液と、1,4−ジアセトキシ−2−ブテン含有液とに分離した。尚、蒸留は30段のオルダーショウ蒸留塔を使用した。また塔頂圧力は20mmHg、還流比は3、塔頂温度は98〜104℃、塔底温度は140〜160℃の温度範囲において500gの留出液が得られた。塔頂から3,4−ジアセトキシ−2−ブテン含有液を留出液として得た。本留出液中の3,4−ジアセトキシ−2−ブテン組成は78重量%であった。また本留出液の1,4−ジアセトキシ−2−ブテン含有量は1重量%以下であった。
【0051】
参考例2:3,4−ジアセトキシ−2−ブテンの固体塩基との接触
窒素ガス雰囲気下、参考例1で合成した3,4−ジアセトキシ−2−ブテン含有液5.0ccに陰イオン交換樹脂(三菱化学社製:ダイヤイオンWA21J)1.0gをガラス製の50ccシュレンク内で添加し、室温で2時間攪拌を行なった。攪拌終了後、シリンジにより3,4−ジアセトキシ−2−ブテン含有液を抜き出し、別のシュレンク内に保存した。本液(3,4−ジアセトキシ−2−ブテン含有液)を原料液として3,4−ジアセトキシ−2−ブテンの異性化反応を以下に実施した。
【0052】
参考例3:触媒調製
窒素ガス雰囲気下、ガラス製シュレンク内で酢酸パラジウム5.1mg、ホスファイト配位子(L25)56mg、トリフェニルホスフィン25mgをトルエン8.8cc中に添加した。この混合液を120℃で5分間加熱し、完全に溶解させた。本液を触媒液として3,4−ジアセトキシ−2−ブテンの異性化反応を以下に実施した。
【0053】
実施例1
窒素雰囲気下、参考例2で調製した原料液1.5ccと酢酸1.5cc、トリフェニルホスフィン1.5mgをシュレンク内で混合し、オイルバスで120℃に昇温した。そこに参考例3で調製した触媒液を24μL添加し、120℃で加熱攪拌を2時間行なった(反応液中のパラジウム濃度1.8wtppm)。反応後の液をガスクロマトグラフィーにより分析した結果、1,4−ジアセトキシ−2−ブテン(シス体、トランス体合計)と3,4−ジアセトキシ−2−ブテンの重量比率は54:47(1,4−体:3,4−体)であった。尚、ドデカンを内部標準として使用した。
【0054】
比較例1
窒素雰囲気、参考例1で得られた3,4−ジアセトキシ−2−ブテン含有液1.5ccを参考例2の操作をすることなく、酢酸1.5cc、トリフェニルホスフィン1.5mgをシュレンク内で混合し、オイルバスで120℃に昇温した。そこに参考例3で調製した触媒液を120μL添加し、120℃で加熱攪拌を2時間行なった(反応液中のパラジウム濃度9.0wtppm)。反応後の液をガスクロマトグラフィーにより分析した結果、1,4−ジアセトキシ−2−ブテン(シス体、トランス体合計)と3,4−ジアセトキシ−2−ブテンの重量比率は6:94(1,4−体:3,4−体)であった。尚、ドデカンを内部標準として使用した。
【0055】
比較例2
「参考例2で調製した原料液」に代えて「参考例1で得られた3,4−ジアセトキシ−2−ブテン含有液(参考例2の操作はしていない)」を使用した以外は実施例1と同様にした。反応後の液をガスクロマトグラフィーにより分析した結果、1,4−ジアセトキシ−2−ブテン(シス体、トランス体合計)と3,4−ジアセトキシ−2−ブテンの重量比率は4:96(1,4−体:3,4−体)であった。尚、ドデカンを内部標準として使用した。

【特許請求の範囲】
【請求項1】
3,4−ジアセトキシアリル化合物を触媒により1,4−ジアセトキシアリル化合物に異性化する方法において、触媒による異性化の前に3,4−ジアセトキシアリル化合物含有液を固体塩基と接触させることを特徴とする異性化方法。
【請求項2】
3,4−ジアセトキシアリル化合物含有液が、共役ジエン類のジアセトキシ化反応により製造されたものであることを特徴とする請求項1に記載の方法。
【請求項3】
固体塩基が陰イオン交換樹脂であることを特徴とする請求項1又は2に記載の方法。
【請求項4】
触媒が液相均一系パラジウム触媒であり、ホスファイトを配位子として有する触媒であることを特徴とする請求項1〜3のいずれかに記載の方法。
【請求項5】
ブタジエンのジアセトキシ化反応により得られた1,4−ジアセトキシ−2−ブテン及び3,4−ジアセトキシ−1−ブテンを含む液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を固体塩基と接触させた後、ホスファイトを配位子として有する液相均一系パラジウム触媒により3,4−ジアセトキシ−1−ブテンを1,4−ジアセトキシ−2−ブテンに異性化する方法。
【請求項6】
パラジウム固体触媒を用いたブタジエンのジアセトキシ化反応により製造した1,4−ジアセトキシ−2−ブテン及び3,4−ジアセトキシ−1−ブテンを含む液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を、固体塩基と接触させた後、酢酸溶媒中で2座ホスファイト配位子を有する液相均一系パラジウム触媒により3,4−ジアセトキシ−1−ブテンを1,4−ジアセトキシ−2−ブテンに異性化し、得られた1,4−ジアセトキシ−2−ブテン含有液を、蒸留により塔底から1,4−ジアセトキシ−2−ブテン含有液を、塔上部から未反応の3,4−ジアセトキシ−1−ブテン含有液を得、3,4−ジアセトキシ−1−ブテン含有液を1,4−ジアセトキシ−2−ブテンに異性化する工程にリサイクルする1,4−ジアセトキシ−2−ブテンの製造方法。
【請求項7】
請求項1〜6で得られた1,4−ジアセトキシ−2−ブテン含有液を用い、1,4−ジアセトキシ−2−ブテンを水素化し、更に加水分解して1,4−ブタンジオールを製造する方法。

【公開番号】特開2006−282564(P2006−282564A)
【公開日】平成18年10月19日(2006.10.19)
【国際特許分類】
【出願番号】特願2005−103836(P2005−103836)
【出願日】平成17年3月31日(2005.3.31)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】