説明

セミレバーランディングギヤのための油圧アクチュエータ

【課題】セミレバーランディングギヤの種々の動作要件を満たしながら、重量及びコストの両面から効率的なセミレバーランディングギヤを提供する。
【解決手段】第1の油圧ピストン206と、第1の油圧ピストンの内部に配置された第2の油圧ピストン202と、第1の油圧ピストン及び第2の油圧ピストン両方の内部に配置された第3の油圧ピストン204とを含むデバイスである。第1の油圧ピストン、第2の油圧ピストン、及び第3の油圧ピストンは、共通の外壁214の内部に収容されている。第1の油圧ピストン、第2の油圧ピストン、及び第3の油圧ピストンには、マニフォールドが接続されている。このマニフォールドは、第1の油圧ピストン、第2の油圧ピストン、及び第3の油圧ピストンに対して、マニフォールド内を移動する流体が第1の油圧ピストン、第2の油圧ピストン、及び第3の油圧ピストンの位置を制御することができるように配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、概してランディングギヤに関し、具体的には、セミレバーランディングギヤと、それに関連するテレスコピック油圧アクチュエータを使用したランディングギヤのボギービームの位置決め方法とに関する。
【背景技術】
【0002】
多くの航空機は、離陸、着陸、及びタキシングを容易に行うためのランディングギヤを含んでいる。一部の航空機のランディングギヤには、ボギービームの遠位端又は下端に旋回可能に取り付けられた緩衝装置が含まれる。ボギービームは二つ以上のアクスルを含み、これらのアクスルにはタイヤが登載される。これに関して、ボギービームは緩衝装置の前方に配置された前方アクスルと、緩衝装置の後方に配置された後方アクスルとを含むことができる。離陸後、前方アクスルと後方アクスルとを伴う従来のランティングギヤを有する航空機は、ランディングギヤのすべてのタイヤが均等な荷重分布を有するように、ボギービームを緩衝装置に取り付けているピンを中心に枢動する。
【0003】
離陸の際に航空機が回転するための最低地上高を増大させるために、セミレバーランディングギヤ機構が開発された。セミレバーランディングギヤは、離陸の際、航空機が地上を離れるときに前方アクスルが後方アクスルより上に位置しているように、緩衝装置及びボギービームの前端を固定配置する。したがって、航空機は、緩衝装置の圧力が十分に増大している場合、緩衝装置にボギービームを旋回可能に接続するピンではなく、後方アクスルを中心に回転する。後方アクスルを中心に回転することにより、ランディングギヤの高さは効果的に増大し、離陸の際に航空機が回転するための最低地上高が増大する。その結果、航空機の離陸滑走路長(TOFL)が短縮されうるか、エンジンにより使用される推力が低減しうるか、又は同じ離陸滑走路長での航空機の積載重量が増大しうる。
【0004】
離陸の際に後方アクスルを中心として航空機を回転させるために、セミレバーランディングギヤは、前方アクスルに登載されたタイヤが滑走路表面より高く位置する間に後方アクスルに登載されたタイヤが航空機を支持するように、ボギービームを「つま先を上げた」姿勢にロックする。離陸後、ランディングギヤは、通常、脚室などに収容される。従来の脚室内に適合させるために、一般的には、ランディングギヤをロック解除し、ランディングギヤを脚室内に後退させる前に、ボギービームを「収容」姿勢に再度位置決めする。その後、着陸時には、ランディングギヤを下げ、前方アクスルが後方アクスルより高くなるようにボギービームを再度位置決めする。接地時には、前方アクスル及び後方アクスル両方の車輪を含むすべての車輪が航空機の重量を均等に支持する。一般的には、セミレバーギヤシステムのロック及びロック解除と、それによる緩衝装置に対するボギービームの再位置決めには、パイロットによる入力や操縦系統は必要ない。
【0005】
セミレバーランディングギヤの一種は、離陸の間にボギービームをロックするための機械的リンク機構を利用するが、緩衝装置を客室内に後退させるために再位置決めするには、シュリンクリンクと呼ばれる別の機械的リンク機構を使用する。シュリンクリンクを使用することは、それにより得られるセミレバーランディングギヤの複雑性、費用、及び重量を増大させるので不利である。また、機械的リンク機構は、着陸時の制動、又は地上におけるボギービームの縦揺れの制動を、所望どおりに行えない場合がある。
【0006】
別の種類のセミレバーランディングギヤは、離陸のためにボギービームを所望の方向にロックするための緩み止め油圧式支柱を含んでいる。このような緩み止め油圧式支柱は、基本的には緩み止めアクチュエータであるが、任意の数の追加チャンバと、一の内部フローティングピストンを有している。例えば、特許文献1を参照されたい。緩み止め油圧式支柱を有するセミレバーランディングギヤは、一部の航空機に適しているが、航空機によっては、そのランディングギヤが、緩衝装置とボギービームとの間に油圧式支柱を効率的に位置させるために十分な隙間又は余地を有さない場合がある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】米国特許第6345564号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
したがって、従来の緩み止め油圧式支柱構造を位置させるために十分な空間を有さないランディングギヤに使用できる改良型セミレバーランディングギヤの油圧アクチュエータを提供することが望まれている。特に、セミレバーランディングギヤの種々の動作要件を満たしながら、重量及びコストの両面から、効率的で、且つ過度に複雑でないセミレバーランディングギヤを提供することが望ましい。
【課題を解決するための手段】
【0009】
有利な実施形態により、案内管と、案内管内部に配置されるフローティングピストンとが提供される。フローティングピストンは案内管内において、ランディングギヤを引き込むための機械的装置との対比において、フローティングピストンに接続されたランディングギヤが素早く収容位置へと後退するように、構成される。
【0010】
有利な実施形態により、第1の油圧ピストンと、第1の油圧ピストン内部に配置された第2の油圧ピストンと、第1の油圧ピストン及び第2の油圧ピストン両方の内部に配置された第3の油圧ピストンとを含むアクチュエータも提供される。第1、第2、及び第3の油圧ピストンは、共通の外壁の内部に収容される。第1、第2、及び第3の油圧ピストンにはマニフォールドが接続される。このマニフォールドは、第1、第2、及び第3の油圧ピストンに対し、マニフォールド内を移動する流体が第1、第2、及び第3の油圧ピストンの位置を制御できるように配置される。
【0011】
実施形態はまた、胴体と、胴体に接続された翼と、胴体及び翼の少なくとも一方に接続されたランディングギヤアセンブリとを含むビークルを提供する。このビークルは、更に、ランディングギヤアセンブリに接続された油圧アクチュエータを含む。油圧アクチュエータは、第1の油圧ピストンと、第1の油圧ピストン内部に配置された第2の油圧ピストンと、第1の油圧ピストン及び第2の油圧ピストン両方の内部に配置された第3の油圧ピストンとを含む。第1、第2、及び第3の油圧ピストンは共通の外壁の内部に収容される。油圧アクチュエータは、更に、第1、第2、及び第3の油圧ピストンに接続されたマニフォールドを含む。このマニフォールドは、第1、第2、及び第3の油圧ピストンに対し、マニフォールド内を移動する流体が第1、第2、及び第3の油圧ピストンの位置を制御できるように配置される。
【0012】
実施形態により、ビークルを作動させる方法も提供される。ビークルは、胴体と、胴体に接続された翼と、胴体又は翼に接続されたランディングギヤアセンブリとを含む。ランディングギヤアセンブリにはアクチュエータが接続される。このアクチュエータは、第1の油圧ピストンと、第1の油圧ピストン内部に配置された第2の油圧ピストンと、第1の油圧ピストン及び第2の油圧ピストン両方の内部に配置された第3の油圧ピストンとを含む。第1、第2、及び第3の油圧ピストンは共通の外壁の内部に収容される。第1、第2、及び第3の油圧ピストンにはマニフォールドが接続される。このマニフォールドは、第1、第2、及び第3の油圧ピストンに対し、マニフォールド内を移動する流体が第1、第2、及び第3の油圧ピストンの位置を制御できるように配置される。
【0013】
これらの特徴、機能、及び利点は、本発明の種々の実施形態において単独で達成することができるか、又は他の有利な実施形態において組み合わせることができる。これらの実施形態の詳細は、後述の説明及び添付図面に見ることができる。
【図面の簡単な説明】
【0014】
有利な実施形態の新規特長と考えられる特徴は、特許請求の範囲に規定されている。しかしながら、有利な実施形態と、その好ましい使用モード、更なる目的、及び利点とは、添付図面と併せて本発明の有利な実施形態に関する後述の詳細な説明を参照することにより理解されるであろう。
【0015】
【図1】図1は、有利な一実施形態による航空機のブロック図である。
【図2】図2は、有利な一実施形態による油圧アクチュエータを示している。
【図3】図3は、有利な一実施形態による、着陸状態用の静止位置にある(航空機が着陸している)油圧アクチュエータを示している。
【図4】図4は、有利な一実施形態による、駐機位置にある油圧アクチュエータを示している。
【図5】図5は、有利な一実施形態による、収容されるために完全に引き出された位置にある油圧アクチュエータを示している。
【図6】図6は、有利な一実施形態による、静止位置にある(航空機が着陸している)ランディングギヤアセンブリを示している。
【図7】図7は、有利な一実施形態による、収容位置にあるランディングギヤアセンブリを示している。
【図8】図8は、有利な一実施形態による、着陸位置にあるランディングギヤアセンブリを示している。
【図9】図9は、有利な一実施形態による航空機のブロック図である。
【図10】図10は、有利な一実施形態による航空機の油圧アクチュエータの作動方法のフロー図である。
【発明を実施するための形態】
【0016】
本発明について、本発明の好適且つ有利な実施形態を示す添付図面を参照しながら、後述で更に詳細に説明する。しかしながら、本発明は、多数の異なる形態で具現化することができ、これらの有利な実施形態に限定されるものではない。これらの有利な実施形態は、むしろ、本明細書が十分且つ完全なものであり、当業者に対し、本発明の範囲を十分に伝えることができるように提供されている。図中の類似の番号は類似の要素を示している。
【0017】
有利な実施形態は、上記の問題を認識し、柔軟で、耐久性があり、他の支柱と比較して安価で且つ軽量の解決法を提供する。加えて、有利な実施形態は、航空機の着陸及び上昇両方を助けるという意味で航空機の動作に更なる価値を付与する。有利な実施形態は、航空機の仰角を増大させることにより航空機の上昇を助ける。仰角は、航空機が地上から空中へ上昇しようとする角度である。有利な実施形態は、ボギービームの縦揺れを更に減衰させることにより、航空機の着陸を助ける。他の有利な実施形態は、以下の更なる説明から明らかにする。
【0018】
特に、本発明の有利な実施形態は、一般的にはランディングギヤアセンブリに関し、具体的には、セミレバーランディングギヤアセンブリと、それに関連する、テレスコピックアクチュエータを使用したランディングギヤアセンブリのボギービームの位置決め方法に関する。しかしながら、有利な実施形態は、他のビークルにも適用可能であり、更にはビークル以外の用途にも使用可能である。したがって、有利な実施形態は、ランディングギヤ及びランディングギヤアセンブリにおける使用に限定されない。
【実施例1】
【0019】
図1は、有利な一実施形態が実施される航空機のブロック図である。図1は、有利な実施形態を組み込んだ航空機を説明するために使用されているが、航空機100は、油圧式支柱又は油圧ピストンを使用できる他のいずれのビークルでもよい。
【0020】
航空機100は胴体102を含み、胴体には翼104が接続されている。非限定的で有利な一実施形態では、航空機100はエンジン106を含む。別の有利な実施形態では、ランディングギヤアセンブリ108は、翼104又は胴体に接続されるか、或いはエンジン106、又はそれらの組み合わせに接続されうる。航空機100は、他に多数のコンポーネントを含んでいる。有利な一実施形態では、ランディングギヤアセンブリ108は、アクチュエータ110及びその他のランディングギヤアセンブリコンポーネント112を含んでいる。
【0021】
アクチュエータ110は、共通の外壁114を共有して入れ子構造を形成する一連の油圧ピストンを含んでいる。したがって、例えば、アクチュエータ110は、第1の油圧ピストン116、第2の油圧ピストン118、及び第3の油圧ピストン120を含んでいる。有利な一実施形態では、三つの油圧ピストンは同心である。有利な一実施形態では、三つの油圧ピストンは伸縮自在に作動させることができ、完全に伸張させたとき、第2の油圧ピストン118は第3の油圧ピストンの頂部を超えて延び、且つ第2の油圧ピストン118は第1の油圧ピストン116の頂部を超えて延びる。アクチュエータ110は、マニフォールド122も含む。マニフォールド122は、共通の外壁114内部に収容されるが、第1、第2、及び第3の油圧ピストンに何らかの方法で接続される。いずれにせよ、マニフォールド122は、第1、第2、及び第3の油圧ピストン(116、118、及び120)に対して、マニフォールド122内を移動する流体が第1、第2、及び第3の油圧ピストン(116、118、及び120)の位置を制御できるように配置される。このような流体の流れの実施例を、図2〜5を参照して詳細に説明する。
【0022】
他の構成も可能である。他の有利な実施形態では、油圧ピストンの一又は複数を、電気機械ピストンのような他の何らかの種類のピストンで置き換えることができる。
【0023】
有利な一実施形態では、第1、第2、及び第3の油圧ピストンのうち少なくとも二つが、共通の流体源を共有している。他の有利な実施形態では、三つすべての油圧ピストンが流体源を共有している。有利な一実施形態では、油圧ピストンの数はこれより多くても少なくてもよい。つまり、例えば、四つ以上の入れ子式油圧ピストンを設けてもよく、別の有利な実施形態では、入れ子式油圧ピストンを二つだけ設けてもよい。
【0024】
有利な一実施形態では、異なる油圧ピストンは異なる作動圧を有することができる。つまり、例えば第3の油圧ピストン120は第1の値を有する一定の圧力を維持することができ、第2の油圧ピストン118は第1の値と異なっても同じでもよい第2の値を有する一定の戻り圧力を維持することができる。しかしながら、圧力は変化してもよく、例えば、第1の油圧ピストン116は、第1及び第2の値とは異なる第3の値と第4の値との間の可変圧力で作動することができる。作動圧の他の組み合わせも可能である。
【0025】
図1に示される航空機100は、物理的限定又はアーキテクチャ的限定を意味するものではなく、他の有利な実施形態が実施可能である。図示のコンポーネントの追加及び/又は置換として他のコンポーネントを使用することができる。有利な実施形態の一部においては、幾つかのコンポーネントは不要でありうる。また、幾つかの機能的コンポーネントを示すためにブロックが示されている。これらのブロックの一又は複数は、他の有利な実施形態において実施されるとき、異なるブロックに統合及び/又は分割することができる。
【0026】
図2は、有利な実施形態による油圧アクチュエータを示している。図2に示される油圧アクチュエータアセンブリ200は、図1に示されるアクチュエータ110でありうる。同様に、図1と図2の他のコンポーネントは対応している。例えば、第1のピストン206は第1の油圧ピストン116に対応しており、第2のピストン202は第2の油圧ピストン118に対応しており、第3のピストン204は第3の油圧ピストン120に対応しており、共通の外壁214は共通の外壁114に対応している。
【0027】
図2に示される有利な一実施形態において、第1のピストン206、第2のピストン202、及び第3のピストン204は互いに同心である。各油圧ピストンは対応する圧力チャンバを有している。つまり、例えば、第2のピストン202と第3のピストン204がチャンバ208を共有しており、第1のピストン206がチャンバ210を有している。共通の外壁214と第1のピストン206との間の空間がチャンバ212を画定している。これらのチャンバは、同じ圧力又は異なる圧力で、可変圧で、或いは一定圧と可変圧との組み合わせで作動することができ、チャンバのすべてが同じでもよく、或いは異なっていてもよい。
【0028】
非限定的で有利な一実施形態では、油圧アクチュエータアセンブリ200の目的は、図8に示すように、離陸の間に固定長の引張り部材として働くことである。このような構成では、油圧アクチュエータアセンブリ200は油圧支柱と呼ぶことができる。離陸滑走の間にランディングギヤアセンブリに掛かる荷重は、翼が揚力を生成すると減少する。ランディングギヤの緩衝装置604に掛かる荷重が減少することにより、緩衝装置604の下部802が延びて、ボギービーム602が主旋回軸616ではなく上部ラグ旋回軸612を中心として回転することを余儀なくされ、ランティングギヤアセンブリ600にセミレバー機能を付与する。その結果、航空機の最低地上高が増大し、それにより離陸の際の航空機の仰角が増大する。
【0029】
非限定的で有利な一実施形態では、油圧アクチュエータのセミレバー機能を実行するために、チャンバ212は、チャンバ210内の流体圧より大きな有利な圧力まで流体で充填される。この結果を図3及び4に示す。チャンバ212内の流体圧の方が大きくなると、第1のピストン206がシリンダ胴215内部に完全に引き込まれる。図3は、第1のピストン206が完全に引き込まれているが、第2のピストン202と第3のピストン204とが移動可能であることにより、流体がチャンバ210と208とを行き来できる地上での構成を示している。このように流体がチャンバ210と208とを行き来することにより減衰が起こり、これは図6〜8の主旋回軸616を中心としたボギービームの縦揺れに抵抗する有利な機能である。
【0030】
離陸滑走の間にランディングギヤアセンブリに掛かる荷重は、翼が揚力を生成するにつれて減少する。ランディングギヤの緩衝装置に掛かる荷重が減少すると、緩衝装置604の下部802が延びる。緩衝装置802が伸張すると、油圧アクチュエータアセンブリ200が図4に示される位置まで伸びる。この位置において、第2のピストン202は、第1のピストン206の端部に設けられた停止部に当たるまで引き出されている。この位置において、油圧アクチュエータとランディングギヤアセンブリとのセミレバー機能性が達成される。
【0031】
図3を図2の上記説明と関連させて参照すると、この有利な実施形態では、油圧アクチュエータアセンブリ200は、航空機及びランディングギヤアセンブリに荷重が印加されることにより、位置300から位置400まで受動的に遷移する。このような遷移は、パイロット、乗員、又はその他いずれかの機械的、電気的デバイスからの、このような望ましい機能性を達成するためのいなかる入力も必要としない。このような受動的作動により、機械的及び油圧的複雑性が低減し、信頼性が高まる。
【0032】
油圧アクチュエータアセンブリ200はその他の機能を有してもよい。例えば、油圧アクチュエータアセンブリ200は、変動長を有する異なる位置、例えば収容又は着陸位置といった位置に、図6〜8のボギービームを位置決めすることを補助することができる。典型的な大型航空機の構成では、脚室に格納するために前方アクスルが後方アクスルより低い姿勢に図7のボギービーム602を位置決めすることが有利である。この場合、油圧アクチュエータアセンブリ200は、図5に示される位置500まで延ばすことができる。この位置は、チャンバ212内の流体圧を減少させて、チャンバ208内の圧力により油圧アクチュエータアセンブリ200を延ばすことにより達成される。このようにして、マニフォールド内の通路を通ってチャンバ212内の流体はチャンバから出ることができる。場合によっては、位置500を取るというコマンドをランディングギヤの引き込みコマンドと統合することにより、パイロットがランディングギヤアセンブリの引き込みを命令するときに油圧アクチュエータに位置500を自動的に命令することが有利である。
【0033】
油圧アクチュエータアセンブリ200は、着陸の際の接地の間に伸張することにより、エアグラウンド検知が容易になるように、ボギービームのピッチを変更することができる。油圧アクチュエータアセンブリ200は、着陸の際に減衰を行うことにより、航空機の他の部分の荷重を制限することができる。油圧アクチュエータアセンブリ200は、図6に更に示されるように、ボギービームの縦揺れの減衰を行うことができる。
【0034】
図2に示すように、非限定的で有利な一実施形態において、第2のピストン202は、チャンバ208内の流体をしかるべく加圧することにより、1平方インチ当たり約2000ポンド(psi)などの一定圧で作動することができる(圧力はそれよりも大きくても小さくてもよい)。このような一定圧は、ボギービームを収容位置に位置させるために十分な力を供給しながら、地上にいる間にタイヤに望ましくない荷重を付加しうる過度な力を生成しないように選択することができる。
【0035】
有利な一実施形態では、第3のピストン204は、チャンバ208内の圧力がチャンバ210より大きいことにより、一定の下向きの力を維持する。この力は、伸長力を減少させ、システム圧を受ける領域を減少させる。
【0036】
有利な一実施形態では、第1のピストン206は、チャンバ212内の流体圧を変化させることにより、可変圧力で作動することができる。チャンバ212内の圧力は、油圧アクチュエータアセンブリ200の作動モードに応じて変化させることができる。例えば、着陸に約500psiという比較的低圧をチャンバ212内で使用することにより、エアグラウンド検知のためにボギービームを動かすことができるが、航空機及び設計の検討事項に応じて、この目的のためにこれよりも高い圧力又は低い圧力を使用することができる。一方、チャンバ212は、油圧アクチュエータアセンブリ200をロックするために、約3000〜約5000psi、又はこれよりも高い圧力で作動することができる。この場合、油圧アクチュエータアセンブリ200は、支柱が上昇時に回転する間に、引張り部材として働くことができる。その後、チャンバ212内においてシステムリターンの圧力が低下すると、支柱は、入れ子式の油圧ピストン206、204、及び202を伸縮自在に延ばすとともに、支柱自体は収容位置を取る。
【0037】
有利な一実施形態では、第2のピストン202は主要ピストンと呼ばれ、第1のピストン206はテレスコピックピストンと呼ばれ、第3のピストン204はフローティングピストンと呼ばれる。有利な一実施形態では、フローティングピストン204と案内管238とがチャンバ239を画定し、このチャンバ239は、油圧アクチュエータアセンブリ200を再度位置決めするために使用される油圧流を大きく減少させうるチャンバ208と共通である。この結果、システム供給250を使用してチャンバ210を充填しなければならない場合より、システム供給250からチャンバ208への流れが大きく減少するため、油圧アクチュエータアセンブリ200を延ばして脚室に格納するためにかかる時間が有利に短縮される。
【0038】
ここで、油圧アクチュエータアセンブリ200に関する圧力範囲を考える。図示の有利な実施形態では、圧力範囲は、作動するシステムの場合約500psi〜5000psiに亘るが、他の範囲も適切である場合があり、且つ0psi〜約10,000psi以上で変動しうる。このような圧力は凡その値であり、特定の動作又は実装態様に応じて変化しうる。シールは図示されていないが、油圧アクチュエータアセンブリ200に示される各溝内で従来のシールを使用できる。
【0039】
有利な一実施形態では、多モードレジューサ216が、図示のように単一のバルブを使用して三つの出口圧力を供給する。これらの圧力は、点線で示す検知ライン218に示されるように、0psi、500psi、及び5000psiとすることができる。単一のバルブは、標準の圧力レジューサに加えて、図示のようにソレノイドバルブ入力220とソレノイドバルブ入力222とをそれぞれの端部に使用することにより、三つの出口圧力を供給することができる。ソレノイドバルブ入力220及びソレノイドバルブ入力222は、バルブを駆動して完全にオンにするか、又は完全にオフにするように作動させることができる。ソレノイドバルブ入力220がオンのとき、圧力は約0psiである。ソレノイドバルブ入力222がオンのとき、圧力は約5000psiである。ソレノイドバルブ入力220及びソレノイドバルブ入力222の両方がオフの時、多モードレジューサ216は、通常のレジューサとしてこの実施例の場合約500psiを出力することができる。約500psiは、ボギービームを着陸姿勢に保持するために十分低いが、それでも接地に当たってボギービームを動かすことができ、航空機が最初のボギービーム動作を使用して着陸スポイラーを起動させることができる。
【0040】
多モードリリーフバルブ224は、共通のリリーフバルブをソレノイドバルブの入力に適合させたものであり、このソレノイドバルブ入力は、多モードレジューサ216において使用されるものと同じバルブ入力である。したがって、例えば、ソレノイドバルブの入力226、収容位置で使用するためにリリーフバルブを開くことができ、ソレノイドバルブ入力228は、リリーフバルブをその高圧設定に置くために使用することができる。ソレノイドバルブ入力228は、バネの予圧を増大させることにより、クラッキング圧力を約1000psiから約5500psiに増大させることができる。多モードリリーフバルブ224のための使用は、接地時の減衰を行うことにより、胴体及びその他の機体部品に掛かる荷重を減少させることであり、これにより重量が低減される。接地の間に、第1のピストン206及び第2のピストン202は急速に引き出されうる。チャンバ212のロッド端部から多モードリリーフバルブ224を通って流体が流出することができ、この量は適切な減衰率を提供するような大きさにすることができる。
【0041】
圧力センサ240は、油圧アクチュエータアセンブリ200がロックされていることを確認するために使用することができる。圧力センサによって圧力が最大システム圧に近いことが感知された場合、油圧アクチュエータアセンブリ200はロックアップの間に最大引張り荷重に反応することができる。シールが破損している場合に最大圧力には達することがないため、油圧アクチュエータアセンブリ200の完全性を試験する有利な方法が提供されていることに注意されたい。
【0042】
チェックバルブ230は、流体を油圧アクチュエータアセンブリ200に捕捉することにより、油圧アクチュエータアセンブリ200を、完全に引き出された位置である収容位置に保持することができるチェックバルブとすることができる。有利な一実施形態では、ギヤが引き込まれた後でランディングギヤシステムから油圧を取り除くことができ、チェックバルブ230はまた、ランディングギヤシステムが脚室に折り込まれる間にボギービームを所定の位置に保持する。
【0043】
レジューサ232によって、チャンバ208にかかる圧力が低下されうる。このような圧力の低下は、航空機が地上にいる間に前輪に荷重が掛かりすぎないように、但しギヤアップが選択されたときに支柱を収容位置に動かすための動力となるのに十分な圧力となるように選択することができる。他の可能な有利な実施形態は、レジューサ232にソレノイド入力を供給することにより、航空機が地上にいる間はレジューサ232を停止させることである。この有利な実施形態では、タイヤには均等な荷重が掛かる。
【0044】
チェックバルブ234は、油圧系統が失われた後に別の手段によりランディングギヤアセンブリが伸張される場合のような、別法による伸張を行う場合に使用することができる。このような使用により、油圧アクチュエータアセンブリ200は完全に伸長された状態となり、航空機は前方のタイヤを下ろした状態で着陸することができる。このような着陸手順は油圧アクチュエータアセンブリ200の急速な圧縮を引き起こしうる。第2のピストン202が最初に動き、これによりチャンバ210から流体が強制的に排出されてレジューサ232に向って戻る。このような場合、チャンバ208内の流体もシステムリターン242へ流れる。有利な一実施形態では、サージを抑制するためにアキュムレータ248を設けることができる。
【0045】
いずれにせよ、リリーフバルブ236により、チャンバ208内の流体は第1のピストン206のロッド端部(これがチャンバ212である)の方へ流れることができ、第1のピストンを強制的に押下げる。このような動作により第1のピストン206が移動を開始し、その後第2のピストン202が第1のピストン206に到達し、衝撃荷重を低減する。チャンバ210からの流体流が戻り管路の容量を超えた場合、この流れはチェックバルブ234を通ってロッド端部の空洞へと流れることができ、第1のピストン206の動きを更に助ける。第2のピストン202が第1のピストン206に到達すると、第2のピストン202は停止部244に接触する。
【0046】
有利な一実施形態では、第3のピストン204は第2のピストン202内部に収容されており、この場合、案内管238は油圧アクチュエータアセンブリ200の上端から伸びることができる。この場合、第3のピストン204は、第3のピストン204が過剰に伸張しようとした場合に案内管から出ることを防ぐ停止部246を有することができる。
【0047】
このように、図2は、図6〜8の油圧式支柱606の有利な一実施形態を更に詳細に示している。油圧アクチュエータアセンブリ200は、シリンダ胴215と、シリンダ胴215の開口端にスライドして入る第1のピストン206と、第1のピストン206の開口端にスライドして入る第2のピストン202とを含んでいる。第2のピストン202は、上端に少なくとも一つのラグ又はその他の接続部材を含むことにより、図6〜8に示されるように、ランディングギヤアセンブリの上部に取り付け可能である。シリンダ胴215は、下端に少なくとも一つのラグ又はその他の接続部材を含むことにより、図6〜8に示されるように、上部ラグ旋回軸612でボギービーム602に取り付けることができる。シリンダ胴215は、シリンダ胴215に固定される案内管238も収容する。フローティングピストンである第3のピストン204は、第2のピストン202及び案内管238の内部に収容される。シリンダ胴215の上端は、第1のピストン206の外表面と係合してこの外表面をシールする。第1のピストン206の下端は、シリンダ胴215の内表面と係合してこの内表面をシールする。
【0048】
シリンダ胴215は、チャンバ212及び210に加圧流体を供給するために、図2に示されるような流体通路を含んでいる。このような通路とチャンバは、共通の外壁内部に収容されるマニフォールドを構成し、このマニフォールドは、第1、第2、及び第3の油圧ピストンに対して、マニフォールド内を移動する流体が第1、第2、及び第3の油圧ピストンを制御できるように配置される。図2に示される油圧マニフォールドの特徴は、第1のピストン206を望ましい態様でシリンダ胴215に出入りさせることができるように、チャンバ212及び210内部の圧力を変更することができる。マニフォールドが他の形態をとってもよいことに注意されたい。例えば、マニフォールドは、第1、第2、及び第3の油圧ピストンに他の何らかの方法で接続された、それぞれ異なってもよい一連のチャンバ(図示より数が多くても少なくてもよい)とすることができる。いずれにせよ、マニフォールドは、第1、第2、及び第3の油圧ピストンに対して、マニフォールド内を移動する流体が第1、第2、及び第3の油圧ピストンの位置を制御することができるように配置される。
【0049】
第1のピストン206の上端の内表面は、第2のピストン202の外表面と係合してこの外表面をシールする。第2のピストン202の内表面は、第3のピストン204の上部外表面と係合してこの外表面をシールする。案内管238の上端の内表面は、第3のピストン204の外表面と係合してこの外表面をシールする。シリンダ胴215は、チャンバ208及び210と、212とに加圧流体を供給するための、図2に示されるような流体通路を含んでいる。図2に示される油圧アクチュエータアセンブリ200の特徴は、第2のピストンが第1のピストン206から望ましい態様で押し出され、第2のピストン202及び第3のピストン204両方が一緒に引き出されるように、チャンバ208、210及び212内部の圧力を変更することができる。
【0050】
上記に示したように、油圧アクチュエータアセンブリ200に示される入れ子式ピストンは、種々の機能を達成するために様々な構成を有することができる。更に、やはり種々の機能を達成するために、油圧アクチュエータアセンブリ200の種々の流体チャンバ内に作動油を流す方法を変更することができるように、様々なバルブ、レジューサ、及びその他の油圧コンポーネントを構成することができる。したがって、有利な実施形態は、図2に関連して説明した特定の構成によって限定されない。
【0051】
図3〜5は、有利な一実施形態による使用中の油圧アクチュエータを示している。図3〜5に示される有利な実施形態は、図2に示される油圧アクチュエータアセンブリ200に対応している。したがって、図2の参照番号と同じ図3〜5の参照番号は、同じコンポーネントに対応しており、同様の構造及び機能を有している。図2を参照して記載したすべてのコンポーネントが必ずしも図3〜5に示されているわけではないが、そのようなコンポーネントのすべては幾つかの有利な実施形態において存在しうる。
【0052】
図3〜5に示される有利な実施形態は、使用中の油圧アクチュエータアセンブリ200を示している。図3では、油圧アクチュエータアセンブリ200は、航空機が地上にあるときの使用位置300にある。図4では、油圧アクチュエータアセンブリ200は位置400にある。図5では、油圧アクチュエータアセンブリ200は位置500にある。
【0053】
位置300に示される有利な実施形態では、チャンバ208は約2000psiの圧力を有しているが、この値はそれよりも高くても低くてもよい。チャンバ210は戻り圧力下にあり、この圧力は一定圧でありうる。チャンバ212は約500psiの圧力を有している。このような構成では、第3のピストン204と第1のピストン206とはチャンバ208及び212内の圧力によって下方に保持されている。第2のピストン202は、ボギービームの移動につれて自由に移動する。
【0054】
油圧アクチュエータアセンブリ200のこのような位置は、航空機が地上にいるときに有利である。この位置は、油圧アクチュエータアセンブリ200が油圧アクチュエータに過剰な荷重を掛けることなく正常なボギービームの縦揺れ運動を可能にするので有利といえる。更に、油圧アクチュエータは、ロックアップ位置に衝撃を与えることを回避することにより前方のタイヤにかかる荷重が過剰にならないように配置することができる。加えて、油圧アクチュエータは、後方ランディングギヤアクスル上の一又は複数のタイヤに気圧低下があったような予測できない状態に際して、油圧アクチュエータの過荷重を防ぐのに十分に短くすることができる。
【0055】
位置400に示される有利な実施形態では、チャンバ208及びチャンバ210内の圧力は維持されるが、チャンバ212内の圧力を上昇させて、第1のピストン206を完全に圧縮された位置に保持することができる。位置400は離陸の際に有利である。位置400が離陸の際に有利であるのは、油圧アクチュエータアセンブリ200が固定長を有することにより、ランディングギヤの緩衝装置が下がるとボギービームの前部が持ち上がり、後部タイヤを強制的に下ろすという効果を有しているためである。これにより、ランディングギヤアセンブリの有効長さが回転時に長くなり、航空機が大きな仰角へと回転することが可能となる。
【0056】
着陸時には、位置400により、油圧アクチュエータアセンブリ200に初期引張り荷重が掛かる。このように、位置400は最初の接地の間に減衰器として働きうる。
【0057】
位置500では、チャンバ212内の圧力が取り除かれることにより、チャンバ208内の圧力により第2のピストン202が最大限に引き出される。第2のピストン202が延びると、第3のピストン204が最大伸張位置まで引き出される。その結果、油圧アクチュエータアセンブリ200は、三つの油圧ピストンの各々が望遠鏡式に最大限まで伸張した位置に達し、第2のピストン202の頂部が第3のピストン204の頂部を越える。位置500は、脚室内部に適合するようにボギービームを所望の姿勢に方向付けるため、有利である。供給圧力は存在せず、油圧アクチュエータアセンブリの構成にどのような問題又は変化があっても、大きな引き込み力が生じることはない。
【0058】
図6〜8は、複数の有利な実施形態において三つの異なる位置にあるランディングギヤアセンブリを示している。図6は地上位置にあるランディングギヤアセンブリ600を示しており、図7は収容位置にあるランディングギヤアセンブリ600を示しており、図8は着陸位置にあるランディングギヤアセンブリ600を示している。図6〜8の同じ参照番号は、類似のコンポーネントに対応しており、同様の構造及び機能を有している。非限定的で有利な一実施形態では、図6〜8を通して同じコンポーネントは同一であり、同じ機能を有している。図6〜8に示される有利な実施形態は、非限定的な実施例であって、図2〜5に示される油圧アクチュエータアセンブリ200の一の可能な使用例を示している。油圧式支柱606と協働するランディングギヤアセンブリ600に可能な動作は、図2〜5を参照して記載されている。
【0059】
図7には、有利な一実施形態による、収容位置にあるランディングギヤアセンブリが示されている。ランディングギヤアセンブリ600は油圧式支柱606を含んでいる。油圧式支柱606は、図2〜5に示される油圧式アクチュエータアセンブリ200と同じか、又は類似である。図7に示される有利な実施形態は、非限定的な実施例であって、図2〜5に示される油圧アクチュエータアセンブリ200の一の可能な使用例を示している。油圧式支柱606と協働するランディングギヤアセンブリ600に可能な動作は、図2〜5を参照して記載されている。
【0060】
図6は、地上における油圧式支柱606の構成を示しており、これは図3に示される位置300に対応している。ランディングギヤアセンブリ600は、他の特徴も示しており、それらの一部は図2〜5を参照して記載されている。これらの特徴には、緩衝装置604の下部に取り付けられたボギービーム602が含まれる。ラグ608は、緩衝装置604のシリンダ部分に取り付けられている。複数の車輪610がボギービーム602に取り付けられている。複数の車輪610は、前輪610Bと後輪610Aとを含む。油圧式支柱606は、緩衝装置604上部に位置するラグ608に旋回可能に取り付けられている。緩衝装置604は、主旋回軸616によりボギービーム602に取り付けられている。使用時には、ラグ608と下方のラグ旋回軸612とにより、油圧式支柱606は、緩衝装置604及びボギービーム602に対して二つの異なる方向へ移動することが可能である。使用時、主旋回軸616により、ボギービーム602の両端は、緩衝装置604に対して上方及び下方へ旋回することができる。
【0061】
図7には、油圧式支柱606が、ラグ608を介して緩衝装置604の上部に旋回可能に取り付けられた第2のピストン700(図2の第2ピストン202に対応)を有していることも示されている。油圧式支柱606のシリンダ胴607(図2のシリンダ胴215に対応)は、下方のラグ旋回軸612でボギービームに旋回可能に取り付けられている。他の有利な実施形態では、油圧式支柱606は、第2ピストン(700/202)が上方のラグ旋回軸612でボギービーム602に取り付けられるように再度方向付けられてもよく、シリンダ胴(215/607)は緩衝装置604のシリンダ部分に取り付けられてもよい。
【0062】
図7に示されるように、油圧式支柱606は、第2ピストン(700/202)及び望遠鏡式第1ピストン(702/206)が引き出されるように作動される。一実施形態では、両ピストンは完全に引き出される。このような向きでは、ボギービーム602の一端が、主旋回軸616を中心として、強制的に下方に向けられている。この方向及び動作は、図2〜5を参照して更に説明される。
【0063】
上昇後、油圧式支柱606は、図7に示すような、前方アクスルが後方アクスルより低くなるような角度にランディングギヤアセンブリ600を位置付ける。有利な一実施形態ではこの角度は十二度であり、この値は一未満〜八十度以上の間で変更可能である。油圧式支柱606は、図2のチャンバ208を充填するために必要な小さな流量を用いて、図8に示される着陸位置に速やかに再位置決め可能である。
【0064】
その後、油圧式支柱606は油圧制御により動力を絶つことができる。脚室内にある間、油圧式支柱606は、供給圧力無しで、最大に引き出された位置を維持することができる。チャンバ210内の戻り圧力はこの機能に援用されうる。この位置にある間、どのような故障があっても大きな引き込み力が生じることはない。
【0065】
図8は、ラグ608を介して緩衝装置604の上部に旋回可能に取り付けられた第2のピストン700(図2の第2ピストン202に対応)を有する油圧式支柱606を示している。油圧アクチュエータ606のシリンダ胴607(図2のシリンダ胴215に対応)は、ボギービームに取り付けられた下方のラグ旋回軸612に旋回可能に取り付けられている。他の有利な実施形態では、油圧式支柱606は、第2ピストン(700/202)が下方のラグ旋回軸612を介してボギービーム602に取り付けられるように、且つシリンダ胴(215/607)が緩衝装置604のシリンダ部分にラグ608の位置で取り付けられるように、再度方向付けることができる。
【0066】
図8に示すように、油圧式支柱606は、第2ピストン(700/202)が引き出されるように引っぱられている。この方向では、ボギービーム602の一端が、主旋回軸を中心として、図7とは反対方向で強制的に下方に向けられている。有利な一実施形態ではこの角度は23度であるが、この値はビークルの要件に合わせて変更可能である。この方向及び動作は、図2〜5を参照して更に説明される。
【0067】
着陸前、油圧式支柱606は、第1ピストン206を引き込むことにより前方アクスルを後方アクスルより高く位置付けて、ランディングギヤアセンブリを位置500(図5)から位置400(図4)へと位置付ける。この位置では、ボギービーム602が傾いて着陸位置をとる。この位置において、油圧式支柱606は、図2のチャンバ212内の圧力による所定の大きさの力で保持される。
【0068】
着陸の間、後方タイヤがまず地面に接触し、それによりボギービームが主旋回軸616を中心に回転する。この動きにより油圧式支柱606は最初の高引張り荷重を受ける。油圧式支柱606は、初期の小さな抗力により移動しうるので、エアグラウンド検知システムはボギービームの縦揺れの変化を検知することができる。緩衝装置604が圧縮するとき、ボギービームは前方のタイヤが地面に接触するまで主旋回軸616を中心に回転し続ける。前方のタイヤが地面に接触すると、油圧式支柱606は急速に圧縮する。油圧式支柱606は最初の接地の間に減衰器として機能しうる。有利な一実施形態では、油圧式支柱606が最大に引き出された位置にあるとき、着陸位置を変更するために利用可能な油圧が無い場合も、油圧式支柱により航空機は着陸可能である。
【0069】
地上では、油圧式支柱606は、油圧式支柱606に過剰な荷重が掛かることなく、且つ前方のタイヤに超過荷重が掛かることなく、主旋回軸616を中心としたボギービーム602の正常な縦揺れ運動を可能にする。有利な一実施形態では、油圧式支柱606は、ランディングギヤアセンブリ600又は航空機の障害に起因する予期しない状態を防ぐために十分に短くなることができる。
【0070】
図7〜9には、本発明の有利な一実施形態によるセミレバーランディングギヤアセンブリ600が示されている。ランディングギヤアセンブリ600は、航空機の接地動作の間にギヤと地面との間に掛かる過渡荷重を吸収及び減衰するため、並びに地上で静止している航空機を支持するために適した構造の緩衝装置604を含んでいる。この緩衝装置604は、通常、上部800と、上部に望遠鏡式に受容されて、ランディングギヤアセンブリに対して緩衝装置の軸方向に掛かる荷重の量に応じて緩衝装置604の長さを変更できる下部802とを含んでいる。最初に接地する際には、図8に示されるように、ランディングギヤアセンブリ600に掛かる荷重の量は比較的小さいので、緩衝装置604の長さはほぼ最大である。
【0071】
ランディングギヤアセンブリ600は、更に、主旋回軸616を介して緩衝装置604の下部802に旋回可能に取り付けられた少なくとも一つのボギービーム602によって形成される台車輪804を含んでいる。ボギービーム602によって複数の車輪610が旋回可能に支持されており、これらの車輪には、ボギービーム602のそれぞれ前端と後端とに支持される、少なくとも一つの前輪と少なくとも一つの後輪とが含まれる。一般に、最大規模の航空機では、主要なランディングギヤアセンブリの台車輪は、複数の車輪610を含んでおり、これらには、ボギービーム602の前端に位置するアクスル上の一対の前輪と、ボギービーム602の後端に位置するアクスル上の一対の後輪とが含まれる。幾つかの有利な実施形態は、前方アクスルと後方アクスルとの間の一又は複数の更なるアクスル上に複数の車輪を含みうる。しかしながら、本明細書に記載される有利な実施形態は、緩衝装置がボギービームに取り付けられている主旋回軸から前方又は後方に縦方向にずれた位置において、ボギービームによって支持されている少なくとも一つの車輪を有するあらゆる台車輪構造に適用可能である。
【0072】
ランディングギヤアセンブリ600は油圧式支柱606も含み、この支柱は図2の油圧アクチュエータアセンブリ200とすることができる。油圧式支柱606の上端は、緩衝装置604のラグ608に旋回可能に接続されており、油圧式支柱606の下端は、主旋回軸616の前方において、ボギービーム602の下方のラグ旋回軸612に旋回可能に接続されている。油圧式支柱606は、緩衝装置604に対してボビービーム602を旋回可能にする可変長デバイスである。加えて、油圧式支柱606は、上述に詳しく記載したように適切に制御されたときには、ボギービーム602が、主旋回軸616ではなく下方のラグ旋回軸612を中心に回転することを余儀なくされることにより、ランディングギヤアセンブリ600にセミレバー機能を付与するように、固定長にロックアップすることができる。
【0073】
図9は、有利な一実施形態による航空機のブロック図である。図9に示される航空機900は、例えば、図1に示される航空機100である。図9に関連して記載される種々のコンポーネントは、図2〜8にも見ることができる。これについて更に後述する。
【0074】
航空機900はランディングギヤ902を含んでおり、このランディングギヤは、複数のタイヤ905が配置される複数のアクスル904を含むことができる。他の実施形態のランディングギヤ902は、一又は複数のタイヤを含む一又は複数のアクスルを有することができる。幾つかの実施形態では、ランディングギヤ902は、図1のランディングギヤアセンブリ108、又は図6〜8のランディングギヤアセンブリ600とすることができる。複数のアクスル904は、例えば、図6〜8のボギービーム602の一部である。複数のタイヤ905は、例えば、図6〜8の複数の車輪610である。
【0075】
ランディングギヤ902は、マニフォールド906も含むことができる。マニフォールド906内部にはアクチュエータ910が配置される。アクチュエータ910は、マニフォールド906内部において、アクチュエータ910に接続されたランディングギヤ902を素早く引き込むことができるように構成される。「素早く」という表現は、機械的デバイス、又はその他のデバイスが、同じ又は類似のランディングギヤ902を引き込むことができる速さに対して定義されている。有利な一実施形態では、航空機900の接地の際にアクチュエータ910に印加される圧力がエアグラウンド検知を可能にするように構成されるとき、ランディングギヤ902がアクチュエータ910によって着陸位置に制止されるように、流体908の圧力を変化させてアクチュエータ910に印加することができる。
【0076】
例えば、流体908は、マニフォールド906に対して配置されたマニフォールドを通って流れる流体とすることができる。特定の実施例では、流体908は、図2〜5のチャンバ208、210、及び212のようなチャンバ内部を流れる流体908とすることができる。アクチュエータ910は、入れ子式のピストン構造の追加ピストンといった他の形態を採ることもできる。
【0077】
一実施形態では、マニフォールド906は多モードレジューサバルブ912を含むことができる。多モードレジューサバルブ912は、例えば、図2の多モードレジューサ216である。多モードレジューサバルブ912は、流体に対する種々の圧力設定が可能なように構成することができる。
【0078】
一実施形態では、マニフォールド906は多モードリリーフバルブ914を含むことができる。多モードリリーフバルブ914は、例えば、図2の多モードリリーフバルブ224である。多モードリリーフバルブ914は、流体908がマニフォールド906を出ることができるように構成される。別の実施形態では、多モードリリーフバルブ914は、航空機900が地上にいる間に流体908の圧力を低下させることにより、複数のアクスル904間に荷重を均衡させることができる。
【0079】
一実施形態では、航空機900の接地の間の圧力スパイクを吸収するように、マニフォールド906に対してアキュムレータ916が配置される。アキュムレータ916は、例えば、図2のアキュムレータ248である。
【0080】
一実施形態では、圧力センサ918が、マニフォールド906及びアクチュエータ910の少なくとも一方に接続される。圧力センサ918は、ランディングギヤ902の健全性をモニタリングすることができる。圧力センサ918は、例えば、図2の圧力センサ240である。
【0081】
図9の航空機900の説明は、物理的限定又はアーキテクチャ的限定を意味するものではなく、種々の有利な実施形態が実施可能である。図示されているものに加えて及び/又は替えて、他のコンポーネントが使用可能である。一部の有利な実施形態では幾つかのコンポーネントは不要でありうる。また、これらのブロックは、幾つかの機能的コンポーネントを説明するために提示されている。これらのブロックの一又は複数は、他の有利な実施形態において実施される際には異なるブロックに統合及び/又は分割することができる。
【0082】
図10は、有利な一実施形態による、航空機の油圧アクチュエータの動作方法のフロー図である。図10に示されるプロセスは、図2〜5に示されるような油圧ピストンアセンブリ200を用いて実施することができるか、或いは図6〜8に示されるような油圧式支柱606を用いて実施することができる。
【0083】
プロセス1000は、ビークルを動作させること(工程1002)によって開始される。このビークルは、胴体と、胴体に接続された翼と、胴体及び翼の一方に接続されたランディングギヤアセンブリと、ランディングギヤアセンブリに接続されたアクチュエータであって、第1の油圧ピストン、第1の油圧ピストンの内部に配置された第2の油圧ピストン、及び第1の油圧ピストンと第2の油圧ピストンの両方の内部に配置された第3の油圧ピストンを含み、これら第1、第2、及び第3の油圧ピストンが共通の外壁の内部に収容されているアクチュエータと、共通の外壁の内部に収容されたマニフォールドであって、第1、第2、及び第3の油圧ピストンに対して、マニフォールド内を移動する流体によって第1、第2、第3の油圧ピストンの位置が制御できるように配置されているマニフォールドとを備えている。有利な一実施形態では、本方法は、上昇の間に第2の油圧ピストンを受動的に引っ張ること(工程1004)を含む。有利な一実施形態では、本方法は、更に、ランディングギヤアセンブリを収容する際に、第1、第2、及び第3の油圧ピストンを引き出すこと(工程1006)を含む。
【0084】
有利な一実施形態では、本方法は、更に、着陸用の位置決めをする間に、第1の油圧ピストンを引き込むことにより、ランディングギヤアセンブリに接続されたボギービームの前方アクスルが、ボギービームの後方アクスルより上方に位置決めするように、ボギービームを配置すること(工程1008)を含む。有利な一実施形態では、本方法は、更に、第1、第2、及び第3のピストンを圧縮することにより超過荷重状態に対応すること(工程1010)を含む。有利な一実施形態では、本方法は、更に、アクチュエータが減衰器として働くように、第2の油圧ピストンに対して流体を強制的に移動させること(工程1012)を含む。このプロセスはその後終了する。
【0085】
このように、有利な実施形態によりアクチュエータが提供される。このアクチュエータは、第1の油圧ピストンと、第1の油圧ピストン内部に配置された第2の油圧ピストンと、第1の油圧ピストン及び第2の油圧ピストン両方の内部に配置された第3の油圧ピストンとを含んでいる。第1、第2、及び第3の油圧ピストンは、共通の外壁の内部に収容される。
【0086】
有利な実施形態により、柔軟で、耐久性があり、軽量で、他のアクチュエータより安価な、入れ子にされたピストンが提供される。加えて、有利な実施形態は、航空機の着陸及び上昇を助けるという点で航空機の操作に更なる価値を付加している。有利な実施形態は、最初の離陸回転時にランディングギヤアセンブリの高さを増大させて仰角を増大させることにより航空機が上昇することを助ける。他の有利な実施形態は、以下の追加的説明から明らかとなる。
【0087】
図示された種々の有利な実施形態のフロー図及びブロック図は、種々の有利な実施形態における装置及び方法の幾つかの可能な実装態様のアーキテクチャ、機能性、及び動作を説明している。これに関して、フロー図又はブロック図の各ブロックは、一の動作又はステップの、一のモジュール、セグメント、機能、及び/又は一部分を表わしている。有利な実施形態は、フロー図又はブロック図の一又は複数の動作を実行するために製造又は構成することができる。
【0088】
幾つかの他の実装態様では、ブロックに記された一又は複数の機能は、図に示された
順序以外の順序で発生させてもよい。例えば、場合によっては、連続して示される二つのブロックがほぼ同時に実行されてもよく、或いはこれらのブロックは、関与する機能性によっては逆の順序で実行されてもよいときがある。また、フロー図又はブロック図に示されたブロックに、他のブロックが追加されてもよい。
【0089】
本明細書で使用される場合、アイテムを列挙して使用される「〜のうちの少なくとも一つ」という表現は、列挙されたアイテムの一又は複数の異なる組み合わせを使用することができ、且つ列挙されたアイテムのいずれかが一つだけあればよいということを意味する。例えば、「アイテムA、アイテムB、及びアイテムCのうちの少なくとも一つ」は、例えば、アイテムA、又はアイテムAとアイテムBを含むがこれに限定されない。この例は、アイテムAと、アイテムBと、アイテムC、或いはアイテムBとアイテムCも含みうる。他の例では、「〜のうちの少なくとも一つ」は、例えば、二つのアイテムAと一つのアイテムBと十のアイテムCとすることも、四つのアイテムBと七つのアイテムCとすることも、他の適切な組み合わせとすることもできる。
【0090】
種々の有利な実施形態の説明は、例示及び説明を目的として提示されているのであって、完全な説明であること、或いは開示された形態に有利な実施形態を限定することを意図していない。当業者には、多数の修正例及び変形例が明らかであろう。更に、種々の有利な実施形態は、他の有利な実施形態とは異なる利点を提供しうる。選択された一又は複数の有利な実施形態は、有利な実施形態の原理、実用的な用途を最もよく説明するため、及び他の当業者が、考慮される特定の使用に適した様々な修正例とともに種々の有利な実施形態の開示内容を理解できるように、選ばれ、記載されている。
【符号の説明】
【0091】
100、900 航空機
102 胴体
104 翼
106 エンジン
108、600 ランディングギヤアセンブリ
110、910 アクチュエータ
112 その他のランディングギヤアセンブリコンポーネント
114、214 共通の外壁
116 第1の油圧ピストン
118 第2の油圧ピストン
120 第3の油圧ピストン
122、906 マニフォールド
200 油圧アクチュエータアセンブリ
202、700 第2のピストン
204 第3のピストン
206、702 第1のピストン
208、210、212、239 チャンバ
215、607 シリンダ胴
216 多モードレジューサ(ソレノイドバルブ)
218 検知ライン
220、222、226、228 ソレノイドバルブ入力
224、914 多モードリリーフバルブ(ソレノイドバルブ)
230、234 チェックバルブ
232 レジューサ
236 リリーフバルブ
238 案内管
240、918 圧力センサ
242 システムリターン
244、246 停止部
248、916 アキュムレータ
250 システム供給
300、400、500 油圧アクチュエータアセンブリの位置
602 ボギービーム
604 緩衝装置
606 油圧式支柱
608 ラグ
610 車輪
612 ラグ旋回軸
616 主旋回軸
800 緩衝装置の上部
802 緩衝装置の下部
804 台車輪
902 ランディングギヤ
904 複数のアクスル
905 複数のタイヤ
908 流体
912 多モードレジューサバルブ

【特許請求の範囲】
【請求項1】
第1の油圧ピストン(116)と、
第1の油圧ピストン(116)の内部に配置された第2の油圧ピストン(118)と、
第1の油圧ピストン(116)及び第2の油圧ピストン(118)両方の内部に配置された第3の油圧ピストン(120)であって、第1、及び第2の油圧ピストンと共に共通の外壁(114)の内部に収容されている第3の油圧ピストン(120)と、
第1、第2、及び第3の油圧ピストンに接続されたマニフォールド(122)であって、マニフォールド(122)を通って移動する流体が第1、第2、及び第3の油圧ピストンの位置を制御できるように、第1、第2、及び第3の油圧ピストンに対して配置されているマニフォールド(122)と
を備えたデバイス。
【請求項2】
共通の外壁(114)が、デバイスのチャンバ内部の流体容積を分離するように構成された案内管(238)を含んでいる、請求項1に記載のデバイス。
【請求項3】
第3の油圧ピストン(120)がフローティングピストンから構成されている、請求項1又は2に記載のデバイス。
【請求項4】
共通の外壁(114)が、デバイスのチャンバ内部の流体容積を分離するように構成された案内管(238)を含んでおり、且つ、ランディングギヤアセンブリ(600)を変位させて脚室に引き込むための、フローティングピストン及び案内管(238)を含まない機械的デバイスと比較して、フローティングピストンに接続されたランディングギヤアセンブリ(600)が素早く伸張できるように、案内管(238)内部においてフローティングピストンが構成されている、請求項1ないし3のいずれか一項に記載のデバイス。
【請求項5】
ランディングギヤアセンブリ(600)に接続された航空機
を更に備えた請求項1ないし4のいずれか一項に記載のデバイス。
【請求項6】
マニフォールド(122)に接続された多モードリリーフバルブ(914)であって、航空機が地上にある間に、第1の油圧ピストン(116)、第2の油圧ピストン(118)、及び第3の油圧ピストン(120)のうちの一又は複数の内部の流体圧を低下させるように構成されている多モードリリーフバルブ(914)
を更に備えた請求項1ないし5のいずれか一項に記載のデバイス。
【請求項7】
航空機が接地する際の圧力スパイクを吸収するように、マニフォールド(122)に対して配置されたアキュムレータ(248)
を更に備えた請求項1ないし6のいずれか一項に記載のデバイス。
【請求項8】
マニフォールド(122)に接続されてデバイスの健全性をモニタリングする圧力センサ(918)
を更に備えた請求項1ないし7のいずれか一項に記載のデバイス。
【請求項9】
第1の油圧ピストン(116)、及び第2の油圧ピストン(118)が、完全に引き出された位置において、第2の油圧ピストン(118)が第1の油圧ピストン(116)の頂部を越えて延び、第1の油圧ピストン(116)がアクチュエータの共通の外壁(114)を越えて延びるように伸縮自在に作動するように構成されている、請求項1ないし8のいずれか一項に記載のデバイス。
【請求項10】
案内管(238)と協働する第3の油圧ピストン(120)が、第2のピストンと共通のより小さなチャンバを形成している、請求項1ないし9のいずれか一項に記載のデバイス。
【請求項11】
第3の油圧ピストン(120)が第1の油圧ピストン(116)及び第2の油圧ピストン(118)と無関係に移動する、請求項1ないし10のいずれか一項に記載のデバイス。
【請求項12】
第1の油圧ピストン(116)を、第1の油圧ピストン(116)のいずれかの端部に印加される様々な流体圧の力によって、共通の外壁(114)内部で引き出す又は引き込むことができる、請求項1ないし11のいずれか一項に記載のデバイス。
【請求項13】
流体圧が可変であることにより航空機の接地の際のエアグラウンド検知を行うことができる、請求項1ないし12のいずれか一項に記載のデバイス。
【請求項14】
更に、第2の油圧ピストン(118)内の流体がコマンドにより第1の油圧ピストン(116)に向かって移動することができるように、且つ第1の油圧ピストン(116)内の流体がコマンドにより第2の油圧ピストン(118)に向かって移動することができるように構成されている請求項1ないし13のいずれか一項に記載のデバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−111479(P2012−111479A)
【公開日】平成24年6月14日(2012.6.14)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−242030(P2011−242030)
【出願日】平成23年11月4日(2011.11.4)
【出願人】(500520743)ザ・ボーイング・カンパニー (773)
【氏名又は名称原語表記】The Boeing Company
【Fターム(参考)】