説明

センサ付車輪用軸受装置

【課題】 軸受部での検出荷重がブレーキ動作時のような車両の所定状況に影響を受けるのを補正して、車両の状況がブレーキ中など所定の状況にあっても正確な荷重を検出できるセンサ付車輪用軸受装置を提供する。
【解決手段】 車輪用軸受100に、この軸受に加わる荷重を検出する1つ以上のセンサ20を設け、これらセンサ20の出力信号を処理して信号ベクトルを生成する信号処理手段31と、前記信号ベクトルから車輪に加わる荷重を演算する荷重演算処理手段32を設ける。荷重演算処理手段32は、荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有する。荷重演算処理手段32で判別される車両の所定状況の有無とは、例えばブレーキのON・OFFである。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを備えたセンサ付車輪用軸受装置に関する。
【背景技術】
【0002】
自動車の各車輪にかかる荷重を検出する技術として、車輪用軸受の外輪外径面に歪みゲージを貼り付け、外輪外径面の歪みから荷重を検出するようにしたセンサ付車輪用軸受が提案されている(例えば特許文献1)。また、路面から入力される荷重を検出するセンサ付車輪用軸受において、荷重センサとしてエンコーダを用いた変位検出方式のものを搭載したものが提案されている(特許文献2)。この他に、ブレーキ力の影響を、ブレーキシリンダの圧力を用いて補償するセンサ付車輪用軸受も提案されている(特許文献3)。さらに、ブレーキ力の影響を補償するために、荷重センサとは別に、キャリパに作用する制動力を検知するセンサを設けたセンサ付車輪用軸受も提案されている(特許文献4,5)。ブレーキ力の影響を補償するものではないが、歪み検出用センサとして軸受固定輪に複数のセンサユニットを設け、対向配置されたセンサユニットの出力信号について振幅の差分を求め、その値によって演算を場合分けすることで入力荷重を推定するようにしたセンサ付車輪用軸受も提案されている(特許文献6)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特表2003−530565号公報
【特許文献2】特開2007−212389号公報
【特許文献3】特開2006−308465号公報
【特許文献4】特開2008−268201号公報
【特許文献5】特開2002−98138号公報
【特許文献6】特開2010−242902公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献4の段落〔0013〕〜〔0014〕などに示されているように、軸受にセンサを設けて路面からの入力荷重(路面反力)を検出する構成では、機械的なブレーキ操作時にブレーキロータを通じてブレーキ力が入力荷重に重畳するため、ブレーキ中の路面反力だけを検出することができない。
【0005】
この課題を解決する対策として、特許文献3〜5では、ブレーキ力を検出するセンサを別途設置することが提案されているが、この場合には、センサ個数の増加によるシステム構成の複雑化、配線増加、コスト増加、重量増加などの新たな問題が発生してしまう。
【0006】
また、特許文献3で提案されているように、ブレーキ油圧を検出してブレーキ力を推定することも可能であるが、この方法では油圧とブレーキ力の対応が一定ではないので、軸受で検出した荷重からこれに含まれるブレーキ力を正確に分離するのが難しく、荷重検出精度を向上させるには課題がある。
【0007】
この発明の目的は、軸受部での検出荷重がブレーキ動作時のような車両の所定状況に影響を受けるのを補正して、車両の状況がブレーキ中など所定の状況にあっても正確な荷重を検出できるセンサ付車輪用軸受装置を提供することである。
【課題を解決するための手段】
【0008】
この発明のセンサ付車輪用軸受装置は、複列の転走面が内周に形成された外方部材、前記転走面と対向する転走面が外周に形成された内方部材、および両部材の対向する転走面間に介在した複列の転動体を有し、車体に対して車輪を回転自在に支持する車輪用軸受と、軸受に加わる荷重を検出する1つ以上のセンサと、前記各センサの出力信号を処理して信号ベクトルを生成する信号処理手段と、前記信号ベクトルから前記車輪に加わる荷重を演算する荷重演算処理手段とを備え、前記荷重演算処理手段は、前記荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有するものである。前記荷重演算処理手段で判別される車両の所定状況の有無とは、例えばブレーキのON・OFFである。
【0009】
この構成によると、車輪に加わる荷重を演算する荷重演算処理手段が、荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有するものとしている。そのため、軸受部での検出荷重がブレーキ動作時のような車両の所定状況に影響を受けるのを補正して、車両の状況がブレーキ中など所定の状況にあっても正確な荷重を検出できる。
【0010】
この発明において、前記荷重演算処理手段で判別されるブレーキON・OFFの情報は荷重演算処理手段の外部から入力されるものとしても良い。すなわち、車両からの情報、例えば車両の統括制御を行うECU(電気制御ユニット)からの情報として荷重演算処理手段に入力されるようにしても良い。
【0011】
この発明において、前記荷重演算処理手段は、ブレーキON・OFFに対応した2種類の演算処理結果の両方を出力するものとしても良い。出力された2種類の演算処理結果のうちいずれを採用するかは、車両側のECUなどで判断すれば良い。
【0012】
この発明において、前記荷重演算処理手段は、少なくとも前後方向に作用する荷重Fx を演算するものとしても良い。この場合に、前記荷重演算処理手段は、その演算処理結果である前後方向に作用する荷重Fx を用いてブレーキのON・OFFを判別するものとしても良い。例えば、ブレーキのOFF状態での前後方向の荷重Fx の演算結果に対して、適切な閾値を設定して判断する構成とすれば良い。
この構成の場合、ブレーキON・OFFの情報を荷重演算処理手段の外部から入力する必要がない。
【0013】
この発明において、前記荷重演算処理手段によって演算される車輪の荷重が駆動輪に加わる荷重であって、荷重演算処理手段がブレーキONと判別したとき、車両が印加している駆動力の情報が車両側から荷重演算処理手段に与えられ、その情報に基づいて荷重演算処理手段が演算処理結果を補正するものとしても良い。
駆動輪に適用する場合には、ブレーキ動作中に駆動軸から駆動トルクが入力されると、その大きさに比例した誤差が発生するため、車両が印加している駆動力の情報として、車両側の駆動トルクの情報を用いて補正するのが望ましい。
【0014】
また、この発明において、前記荷重演算処理手段によって演算される車輪の荷重が駆動輪に加わる荷重であって、ブレーキON時に、車両が印加している駆動力の情報に基づいて荷重演算処理手段の演算処理結果を車両側のECUで補正するものとし、その補正に必要な計算パラメータを荷重演算処理手段から読み出してECUに与えるものとしても良い。
【0015】
この発明において、車輪用軸受に加わる荷重を検出する前記センサを3つ以上設け、前記荷重演算処理手段は、前記3つ以上のセンサの出力信号から、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、および軸方向荷重Fy を演算するものとしても良い。
【0016】
この発明において、前記荷重演算処理手段の演算処理では、ブレーキONに対応する荷重演算係数行列とブレーキOFFに対応する荷重演算係数行列とが用いられ、ブレーキONに対応する荷重演算係数行列は、ブレーキOFFに対応する荷重演算係数行列を所定の変換式で変換して算出するものとしても良い。
ブレーキONの状態では、軸受で検出した荷重値(ブレーキOFFの状態の計算方法で算出したもの)にはブレーキキャリパの搭載位置などの条件に依存した干渉成分が重畳しているが、この影響をあらかじめ盛り込んで準備した荷重推定用の係数(荷重演算係数)を用いる。上記ブレーキによる干渉成分の大きさは、キャリパの搭載位置から機械的に推定し、ブレーキOFFの状態で求めた荷重演算係数を変換して算出する。この変換操作にはキャリパ位置の推定誤差が含まれるので、実験データと比較して調整し、荷重演算係数の精度を向上させるのが望ましい。
【0017】
この発明において、車輪用軸受に加わる荷重を検出する前記センサは、前記外方部材と内方部材の間の相対変位を検出するものであっても良い。
【0018】
この発明において、車輪用軸受に加わる荷重を検出する前記センサは、前記外方部材および内方部材のうちの固定側部材の歪みを検出するものであっても良い。
【0019】
この発明において、前記信号処理手段は、前記センサの出力信号から平均値および振幅値を算出し、これらの値から信号ベクトルを生成するものとしても良い。
【0020】
この発明において、前記センサは、前記外方部材および内方部材のうちの固定側部材の外径面に設けたセンサユニットであり、このセンサユニットは、前記固定側部材の外径面に接触して固定される歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する1つ以上の歪検出素子とを有するものとしても良い。
【0021】
この発明において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配しても良い。
このように4つのセンサユニットを配置することで、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、軸方向荷重Fy を推定することができる。
【0022】
前記センサユニットは、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有する歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つ以上の歪検出素子を有するものとしても良い。
【0023】
このセンサユニットにおいて、前記歪検出素子を、前記歪み発生部材の隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間にそれぞれ設け、隣り合う前記接触固定部の間隔、もしくは隣り合う前記歪検出素子の間隔を、転動体の配列ピッチの{n+1/2(n:整数)}倍に設定しても良い。
この構成の場合、2つの歪検出素子の信号は略180度の位相差を有することになり、それら信号の和である平均値は転動体通過による変動成分をキャンセルした値となる。また、前記2つの歪検出素子の信号の差分である振幅値は温度の影響やナックル・フランジ面などの滑りの影響をより確実に排除した正確なものとなる。
【0024】
この場合に、前記信号処理手段が、前記センサユニットにおける隣り合う歪検出素子の出力信号の和を平均値として用いて信号ベクトルを生成するものとしても良い。
【0025】
この発明のセンサ付車輪用軸受装置において、前記センサ、前記信号処理手段、および前記荷重演算処理手段を、前記車輪用軸受に搭載しても良い。
前記信号処理手段および前記荷重演算処理手段は、車輪用軸受から離れて、この車輪用軸受を設置する車両に、荷重演算処理ユニット等として、あるいはメインのECUの一部として設けても良いが、車輪用軸受に搭載することで、ECUが一般的な構成のもので済む。車輪用軸受に搭載する場合も、信号処理手段および前記荷重演算処理手段を荷重演算処理ユニットとして一体化したものとすれば、車輪用軸受への搭載作業が容易となり、またコンパクトに設置できる。
【発明の効果】
【0026】
この発明のセンサ付車輪用軸受装置は、複列の転走面が内周に形成された外方部材、前記転走面と対向する転走面が外周に形成された内方部材、および両部材の対向する転走面間に介在した複列の転動体を有し、車体に対して車輪を回転自在に支持する車輪用軸受と、軸受に加わる荷重を検出する1つ以上のセンサと、前記各センサの出力信号を処理して信号ベクトルを生成する信号処理手段と、前記信号ベクトルから前記車輪に加わる荷重を演算する荷重演算処理手段とを備え、前記荷重演算処理手段は、前記荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有するものとしたため、軸受部での検出荷重がブレーキ動作時のような車両の所定状況に影響を受けるのを補正して、車両の状況がブレーキ中など所定の状況にあっても正確な荷重を検出できる。
【図面の簡単な説明】
【0027】
【図1】この発明の一実施形態にかかるセンサ付車輪用軸受装置の軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。
【図2】同軸受の外方部材をアウトボード側から見た正面図である。
【図3】同センサ付車輪用軸受装置におけるセンサユニットの拡大平面図である。
【図4】図3におけるIV−IV矢視断面図である。
【図5】センサユニットの他の設置例を示す断面図である。
【図6】センサユニットの出力信号に対する転動体位置の影響の説明図である。
【図7】検出荷重へのブレーキ力の影響の説明図である。
【図8】荷重演算処理ユニットの他の構成例を示すブロック図である。
【図9】荷重演算処理ユニットのさらに他の構成例を示すブロック図である。
【図10】荷重演算処理ユニットのさらに他の構成例を示すブロック図である。
【図11】荷重演算処理ユニットのさらに他の構成例を示すブロック図である。
【図12】(A)は外方部材外径面上面部でのセンサ出力信号振幅と軸方向荷重との関係を示すグラク、(B)は同外径面下面部でのセンサ出力信号振幅と軸方向荷重との関係を示すグラフである。
【発明を実施するための形態】
【0028】
この発明の実施形態を図1ないし図12と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受100に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
【0029】
このセンサ付車輪用軸受装置における車輪用軸受100は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受100は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
【0030】
外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックル16に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のねじ孔14が設けられ、インボード側よりナックル16のボルト挿通孔17に挿通したナックルボルト(図示せず)を前記ねじ孔14に螺合することにより、車体取付用フランジ1aがナックル16に取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト(図示せず)の圧入孔15が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
【0031】
図2は、この車輪用軸受100の外方部材1をアウトボード側から見た正面図を示す。なお、図1は、図2におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、図2のように、各ねじ孔14が設けられた円周方向部分が他の部分よりも外径側へ突出した突片1aaとされている。
【0032】
固定側部材である外方部材1の外径面には、荷重検出用センサである4つのセンサユニット20が設けられている。ここでは、これらのセンサユニット20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。
【0033】
各センサユニット20の歪検出素子22は、図1の荷重演算処理ユニット30に接続される。荷重演算処理ユニット30は、前記各センサユニット20の出力信号を処理して信号ベクトルを生成する信号処理手段31と、前記信号ベクトルから車輪に加わる荷重を演算する荷重演算処理手段32とでなる。信号処理手段31および荷重演算処理手段32は、必ずしも荷重演算処理ユニット30として一体化しなくても良く、互いに分離して設けて良い。また、これら信号処理手段31や荷重演算処理手段32や、荷重演算処理ユニット30は、車輪用軸受100に搭載しても良く、また車輪用軸受100とは離れて車両に、メインのECUの近傍等に位置して、あるいはECUの統括制御部の下位制御部等として設置しても良い。
【0034】
荷重演算処理手段32は、荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有する。ここでは、荷重演算処理手段32は、荷重の演算結果に影響する車両の所定状況の有無として、ブレーキのON・OFFを判定して、ブレーキON・OFFに対応した2種類の演算処理を行う。図1の例では、ブレーキON・OFFの情報は、外部である車両からの情報として、例えばECU(電気制御ユニット)やブレーキからの直接の情報として、荷重演算処理手段32に入力される。なお、荷重演算処理手段32がECUの一部として設けられる場合は、上記のECUからの情報は、ECUにおける荷重演算処理手段32に対する上位の制御を行う部分から荷重演算処理手段32に入力されることになる。
【0035】
特許文献4などにも示されているように、機械的なブレーキを備えた車輪において、軸受にセンサを設けて路面からの入力荷重(路面反力)を検出する場合、ブレーキ操作時にブレーキロータを通じたブレーキ力が入力荷重に重畳する状態となるため、ブレーキONの状態では路面反力だけを検出することができない。少なくとも、検出する荷重成分が、前後方向に作用する荷重成分Fx や垂直方向に作用する荷重成分Fz に関しては、ブレーキ力の影響が発生してしまう。
【0036】
この原理を、図7を参照して以下に説明する。ブレーキディスク等のブレーキロータにおける、ブレーキパッドの位置を進行方向から角度θ上方、半径RB の位置とし、ブレーキロータにブレーキ力FB が作用している状態とする。また、車輪半径をRW とし、駆動力からは入力トルクTdrive が作用している状態とする。このとき、路面から受けている路面反力の荷重成分をFx ,Fz とすると、軸受の検出する荷重Fxb,Fzbは次式(1−1),(1−2)のように表現される。
Fxb=Fx −FB ・sin θ ……(1−1)
Fzb=Fz +FB ・cos θ ……(1−2)
ただし、
Fx ,Fz :路面反力(路面からタイヤに作用する荷重)
Fxb,Fzb:軸受作用力(軸受回転輪に作用する荷重でブレーキの干渉分を含む)
ここで、駆動軸から入力される駆動トルクをTdrive 、ブレーキ動作によるブレーキトルクをFB ・RB とすると、車輪に作用するトルク関係式は次式(2)のように表現される。
Fx ・Rw =Tdrive −FB ・RB ……(2)
この関係式から、ブレーキ力FB は、次式(3)のように表現される。
FB =(Tdrive −Fx ・Rw )/RB ……(3)
【0037】
すなわち、軸受にセンサを設けて路面からの入力荷重(路面反力)を検出する場合、式(1−1),(1−2)のように、ブレーキ力FB に比例する荷重成分が、求めたい路面荷重に加算されて検出されることになる。したがって、路面に作用する荷重成分Fx ,Fz を正しく求めるには、ブレーキ力を求めて補正する必要があり、前述した特許文献に示されるような構成が提案されている。
【0038】
しかし、ブレーキ力を検出するセンサを別に設ける場合、配線や処理回路が増加するだけでなく、検出部位を設けるための構造を追加するための重量増加など、足回り部品にとって好ましくない状態となる。
以下に説明するこの発明の各実施形態では、できる限り簡単な構成でブレーキの影響を最小限にして、ブレーキ動作中であっても路面荷重を正確に検出することが可能になる。
【0039】
この実施形態では、車輪に各方向の荷重を検出するセンサとして、図2〜図6に示した前記センサユニット20が用いられる。各センサユニット20は、後に詳述するように、3つの接触固定部21a(図5)で外方部材1に固定された歪み発生部材21(図5)と、この歪み発生部材2に取付けられたこの歪み発生部材2の歪みを検出する2つの歪検出素子22(22A,22B)とでなる。図1の信号処理手段31は、これら2つの歪検出素子22の信号の加算値、振幅値等を用いて、入力荷重の推定演算処理を行う。
【0040】
荷重検出用のセンサは、上記図2〜図6の形態のものに限定されるものではなく、例えば、変位センサ(渦電流センサ、磁気センサ、リラクタンスセンサ、など)を、外方部材1および内方部材2のうちの固定側部材に設置し、検出ターゲットを回転輪に配置して外方部材1と内方部材2間の相対変位量を求め、あらかじめ求めておいた荷重と変位との関係から、印加されている荷重を求めるものとしてもよい。また、変位を直接測定するセンサでなくてもよく、特許文献2に提示されているような間接的な変位測定方式であってもよい。すなわち、この実施形態の構成は、軸受の内方部材2と外方部材1間に作用している力を、固定側部材に設けたセンサによって直接的・間接的に検出し、演算によって入力荷重を演算で推定する方式の荷重センサに適用されるものである。
【0041】
なお、X,Y,Z方向の3方向の各荷重Fx 、Fy 、Fz 、あるいはそれぞれの方向のモーメント荷重を算出するためには、少なくとも3つ以上のセンサ情報(センサの出力信号)を用いた演算処理構成が必要となる。すなわち、複数のセンサ信号を必要に応じて加工・信号処理して抽出したセンサ信号ベクトルS(={S0, S1, …, Sn})を生成し、これを用いて荷重推定演算処理を実行して入力荷重F(={Fx, Fy, Fz, …} )を求める荷重演算処理ユニット30を備えた構成となる。
【0042】
このような構成の荷重検出手段においては、線形近似が成立する範囲において、F=M・S+Moの関係式を満たすように、数値解析や実験によって係数MとオフセットMoを決定することにより、荷重推定演算処理が可能になる。
【0043】
ここで、前記のように車輪に設けられたブレーキが動作している場合には、軸受で検出したセンサ信号にはブレーキの影響が重畳し、前述したように、本来検出したい路面荷重とは異なる値が演算結果として出力されてしまうという問題が発生する。そのため、上記のように求めた荷重演算式では、ブレーキが動作している場合には正確な推定荷重を算出できない。
【0044】
そこで、この実施形態では、ブレーキOFF状態で決定した通常の演算処理方法に加えて、ブレーキON状態用の荷重演算処理機能を搭載し、ブレーキの状態によって通常の荷重演算処理方法から切り替える構成を採る。
【0045】
図1の実施形態では、荷重演算処理ユニット30において、ブレーキ状態は、前述のように車両からブレーキON/OFFの信号として荷重演算処理手段32に入力され、それによって荷重演算処理が切り替えられる。すなわち、ブレーキON状態においても、センサ信号に重畳するブレーキの影響分を考慮した演算処理方法が適用されるため、所望の路面荷重値が正確に算出されるようになる。
【0046】
荷重演算処理手段32は、前後方向の荷重Fx 、軸方向の荷重Fy 、および垂直方向の荷重Fz 、あるいはそれぞれの方向のモーメント荷重を演算するが、これらの演算のためには、少なくとも3つ以上のセンサ情報を用いた演算処理が必要になる。すなわち、前記信号処理段31において、入力されるセンサ出力信号を必要に応じて加工・信号処理して抽出したセンサ信号ベクトルS(={S0 ,S1 ,…,Sn })を生成する。これを用いて、荷重演算処理手段32では荷重演算処理を実行して作用荷重F(={Fx ,Fy ,Fz ,…})を求める。ここで言うセンサ信号ベクトルSは、前記した各センサユニット20に対応して信号処理手段31で生成される平均値や振幅値などである。
【0047】
このような演算構成において、荷重演算処理手段32での演算処理を可能にするために、荷重演算処理手段32では演算式としてF=M・S+Mo の関係式が用いられ、線形近似が成立する範囲において、この関係式を満たすように数値解析や実験によって係数MとオフセットMo が決定される。
【0048】
先述したように、車輪に設けられたブレーキが動作している場合には、軸受で検出したセンサ信号にはブレーキの影響が重畳し、本来検出したい路面荷重とは異なる値が荷重演算処理手段32から出力されてしまう。そのため、上記した演算式をそのまま採用すると、ブレーキが動作しているとき正確な推定荷重を算出できない。
【0049】
そこで、この実施形態では、上記荷重演算処理手段32において、ブレーキOFF状態で決定した通常の演算式に加えて、ブレーキON状態用の演算式を用意し、これら2種類の演算式をブレーキON・OFFに応じて切り替え使用する。上記したように、ブレーキ状態の情報は外部である車両側からブレーキON・OFF信号として入力され、それによって演算処理する演算式が切り替えられる。すなわち、ブレーキON状態においても、センサ出力信号に重畳するブレーキの影響分を考慮した演算処理が適用されるため、所望の路面荷重値が正確に算出されるようになる。なお、荷重演算処理手段32において、ブレーキON・OFFの両方の場合について演算処理を同時に行っておき、どちらの演算結果を出力するか、入力されるブレーキ状態信号に応じて選択するようにしても良い。
【0050】
図8は、前記荷重演算処理ユニット30の他の構成例を示す。この構成例では、ブレーキ情報を車両側から入力しない。この場合、荷重演算処理手段32での演算結果である前後方向の荷重Fx を、予め設定しておいたしきい値とコンパレータ33を用いて比較し、その比較結果からブレーキ状態を判別するようにしている。この場合、荷重演算処理手段32では、ブレーキON・OFFの両方の場合についての荷重演算処理を同時に行っておき、得られた前後方向の荷重Fx の値(ブレーキONまたはブレーキOFFのどちらか、あるいは両方の値)を用いてブレーキ状態にあるかどうかを判断し、適切な演算結果を選択して出力すれば良い。なお、両方の値を用いて判断する場合には、両方の値の組合せとなるため、判断の精度が向上するという効果が得られる。このような構成により、車両側からブレーキ情報が提供されない状況においても、ブレーキ状態を判別して正確な荷重推定値を算出することができる。
【0051】
図9は、前記荷重演算処理ユニット30のさらに他の構成例を示す。この構成例では、荷重演算処理手段32において、ブレーキONとブレーキOFFの2種類の荷重演算を行っておき、信号を利用する車両側(例えばECU)で、どちらの演算結果を使用するかを判断するようにしている。
【0052】
ブレーキON状態での演算式は、ブレーキOFFの状態で求めた演算式を基にして用意することができる。その演算式の導出方法を、図7を参照して以下に説明する。
前述の式(3)と式(1−1),(1−2)から、検出したい路面荷重は次のようになる。
Fx =Fxb/(1+α・sin θ)+(Tdrive /RB )・sin θ/(1+α・sin θ ) ……(4−1)
Fz =Fzb+Fxb・α・cos θ/(1+α・sin θ)−(Tdrive /RB )・α・co s θ/(1+α・sin θ) ……(4−2)
ただし、α=Rw /RB :半径比
ここで、Fdrive =Tdrive /RB
A=1/(1+α・sin θ)
B=A・sin θ
C=A・α・cos θ
と置くと、式(4−1),(4−2)は次のようになる。
Fx =A・Fxb+B・Fdrive ……(5−1)
Fz =Fzb+C・Fxb−C・Fdrive ……(5−2)
ブレーキOFFの状態で、センサ信号ベクトルSを入力とし、演算係数行列MとオフセットMo を用いて、軸受荷重Fxb,Fzbが次のように算出できるとする。
Fxb=Mx ・S+Mox ……(6−1)
Fzb=Mz ・S+Moz ……(6−2)
すると、ブレーキONの演算式(5−1),(5−2)は、
Fx =A・Mx ・S+A・Mox+B・Fdrive =Mx ’・S+Mox’+B・Fdrive ……(7−1)
Fz =(Mz +C・Mx )・S+(Moz+C・Mox)−C・Fdrive
=Mz ’・S+Moz’−C・Fdrive ……(7−2)
となる。
【0053】
Fdrive =0と近似できる場合、式(7−1),(7−2)は、
Fx =A・Mx ・S+A・Mox=Mx ’・S+Mox’ ……(8−1)
Fz =(Mz +C・Mx )・S+(Moz+C・Mox)=Mz ’・S+Moz’
……(8−2)
となり、式(6−1),(6−2)の演算係数行列MをM’で置き換えた形で表現される。
ブレーキON状態の演算係数行列M’は、ブレーキOFF状態での演算係数行列Mを用いて下記の変換式で算出できる。
Mx ’=A・Mx ……(9−1)
Mox’=A・Mox ……(9−2)
Mz ’=Mz +C・Mx ……(9−3)
Moz’=Moz+C・Mox ……(9−4)
【0054】
ここでは、ブレーキOFF状態での荷重演算処理が式(6−1),(6−2)で実施できるように、演算係数行列Mが決定されている。すなわち、予め数値解析や測定によってセンサ信号と検出荷重との関係が求められており、少なくとも線形関係の成立する範囲においては、式(6−1),(6−2)を用いて推定荷重を算出できる状態になっている。なお、非線形な特性については、計算領域をいくつかの線形範囲に分割して近似する方法を採用すれば良い。
【0055】
荷重を測定する対象輪が従動輪の場合には、駆動軸が無いため駆動トルクによる駆動力Fdrive は無い(Fdrive =0)。よって、式(9−1)〜(9−4)のように演算係数行列を変換し、それを用いた演算式(8−1),(8−2)によってブレーキ状態の荷重演算処理を実行すれば良い。
【0056】
一方、対象輪が駆動輪の場合には、ブレーキ動作中にも駆動軸からの入力トルクTdrive が存在する場合があり、このときには式(7−1),(7−2)のB・Fdrive および−C・Fdrive の項に相当する誤差が発生してしまう。このような条件は、駆動源から駆動トルクを入力している状態でブレーキを動作させた場合や、強力なエンジンブレーキ、電気自動車などにおける回生ブレーキが動作している場合に相当する。この場合、車両の制御ECU側で、エンジンブレーキトルクや回生トルクの状態からFdrive =Tdrive /RB の値を算出し、この値を用いて荷重センサの出力値を補正すれば良い。図10は、このような場合に対応できる荷重演算処理ユニット30の他の構成例を示す。すなわち、この荷重演算処理ユニット30では、車両側で算出したFdrive の値を荷重演算処理手段32に入力し、補正計算を荷重演算処理手段32で行う構成としている。
【0057】
図11は、荷重演算処理ユニット30のさらに他の構成例を示す。この構成例では、図10の場合に荷重演算処理手段32で行った補正計算を車両の制御ECU34側の荷重値補正手段35で行うようにしている。ここでは、補正計算に必要な上記したB,Cというパラメータを荷重演算処理手段32から取得して、車両の制御ECU34側に記憶しておき、ブレーキON状態の荷重データに対する荷重値補正を荷重値補正手段35で行う。
【0058】
なお、図7を参照して行った計算式におけるパラメータα,θについては、ブレーキキャリパの位置から概略の値を求めることができるが、実際には誤差が生じるため、ブレーキON状態とOFF状態での演算出力を実験によって検証して、誤差が小さくなるように調整するのが望ましい。
【0059】
この発明の各実施形態により得られる効果を整理して次に示す。
・ ブレーキON状態の荷重が正確に検出できるため、検出した荷重を用いてブレーキ制御・車両の姿勢制御が可能となり、より安全性、快適性を向上させることができる。
・ センサを別に設けることなく制動中の荷重状態を検出することができるため、重量・コスト・配線数が増加することなく、限られた足回りのスペースに荷重センシング機能を搭載できる。
・ キャリパを取付けるための構造変更を必要としないため、車両の左右など取付け位置に応じて特殊な形状の軸受を別々に製造する必要がない。
・ 追加のセンサや構造変更を必要としないため、キャリパの取付け位置や構造が異なる場合に対しても、荷重演算係数の変更だけで対応することができる。また、部品を共通化・単純化できるため、製造コストの低減、メンテナンスの容易化を実現できる。
【0060】
次に、図1のセンサユニット20および信号処理手段31の具体例を説明する。図2の4箇所に設けられた各これらのセンサユニット20は、図3および図4に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つの歪検出素子22とでなる。歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状である。また、歪み発生部材21は、外方部材1の外径面にスペーサ23を介して接触固定される3つの接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向けて1列に並べて配置される。2つの歪検出素子22のうち1つの歪検出素子22Aは、図4において、左端の接触固定部21aと中央の接触固定部21aとの間に配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪検出素子22Bが配置される。図3のように、歪み発生部材21の両側辺部における前記各歪検出素子22A,22Bの配置部に対応する2箇所の位置にそれぞれ切欠き部21bが形成されている。切欠き部21bの隅部は断面円弧状とされている。歪検出素子22は切欠き部21b周辺の周方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が印加された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形がセンサユニット20に伝わらず、歪みの測定に影響を及ぼすからである。想定される最大の力は、例えば、その力が作用しても車輪用軸受100は損傷せず、その力が除去されると車輪用軸受100の正常な機能が復元される範囲で最大の力である。
【0061】
前記センサユニット20は、その歪み発生部材21の3つの接触固定部21aが、外方部材1の軸方向の同寸法の位置で、かつ各接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aがそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25からスペーサ23のボルト挿通孔26に挿通し、外方部材1の外周部に設けられたねじ孔27に螺合させる。このように、スペーサ23を介して外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21aを有する各部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。
【0062】
接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。外方部材1の外径面へセンサユニット20を安定良く固定する上で、外方部材1の外径面における前記スペーサ23が接触固定される箇所には平坦部1bが形成される。
【0063】
このほか、図5に断面図で示すように、外方部材1の外径面における前記歪み発生部材21の3つの接触固定部21aが固定される3箇所の各中間部に溝1cを設けることで、前記スペーサ23を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。
【0064】
歪検出素子22としては、種々のものを使用することができる。例えば、歪検出素子22を金属箔ステレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪検出素子22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。
【0065】
このセンサ付車輪用軸受装置では、荷重演算処理ユニット30の信号処理手段31において、各センサユニット20の出力信号として、これらセンサユニット20における2つの歪検出素子22A,22Bの信号の平均値や振幅値等を抽出する。この場合の平均値とは、2つの歪検出素子22A,22Bの信号を加算したものである。また、この場合の振幅値とは、2つの歪検出素子22A,22Bの信号の差分値を用いて算出した振幅値である。
【0066】
センサユニット20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪検出素子22A,22Bの信号a,bは、図6のようにセンサユニット20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪検出素子22A,22Bの信号a,bは、転動体5の位置の影響を受ける。すなわち、転動体5がセンサユニット20における歪検出素子22A,22Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪検出素子22A,22Bの信号a,bは最大値となり、図6(A),(B)のように転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPでセンサユニット20の設置部の近傍を順次通過するので、歪検出素子22A,22Bの信号a,bは、転送体5の配列ピッチPを周期として図6(C)に実線で示すように周期的に変化する正弦波に近い波形となる。また、歪検出素子22A,22Bの信号a,bは、温度の影響やナックル16と車体取付用フランジ1a(図1)の面間などの滑りによるヒステリシスの影響を受ける。ここでは、信号処理手段31において、上記したように2つの歪検出素子22A,22Bの信号a,bを加算したものを平均値とし、2つの歪検出素子22A,22Bの信号a,bの差分を用いて振幅値を抽出し、これをセンサユニット20の出力信号とする。これにより、平均値は転動体5の通過による変動成分をキャンセルした値となる。また,振幅値は、2つの歪検出素子22A,22Bの各信号a,bに現れる温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。したがって、この平均値や振幅値をセンサユニット20の出力信号とし、これを次段の荷重演算処理手段32の演算での変数として用いることにより、車輪用軸受100やタイヤ接地面に作用する荷重をより正確に演算・推定することができる。
【0067】
図6では、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪検出素子22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪検出素子22A,22Bの信号a,bは略180度の位相差を有することになり、その加算値として求められる平均値は転動体5の通過による変動成分をキャンセルしたものとなる。また、その差分値を用いて求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
【0068】
なお、図6では、接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定し、隣り合う接触固定部21aの中間位置に各1つの歪検出素子22A,22Bをそれぞれ配置することで、2つの歪検出素子22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの略1/2となるようにした。これとは別に、直接、2つの歪検出素子22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定しても良い。
この場合に、2つの歪検出素子22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪検出素子22A,22Bの信号a,bの加算値として求められる平均値は転動体5の通過による変動成分をキャンセルした値となり、差分値を用いて求められる振幅値は温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
【0069】
軸方向荷重Fy の演算においては、前記複数のセンサユニット20のうち、外方部材1の円周方向における180度の位相差をなして対向配置された2つのセンサユニット20の出力信号の振幅値の差分値を演算することにより、この差分値から軸方向荷重Fy の方向を判別することができる。例えば、その2つのセンサユニット20として、上下に対向配置されたセンサユニット20を選ぶことができる。図12(A)は外方部材1の外径面の上面部に配置されたセンサユニット20の出力信号を示し、図12(B)は外方部材1の外径面の下面部に配置されたセンサユニット20の出力信号を示している。これらの図において、横軸は軸方向荷重Fy を表し、縦軸は外方部材1の歪み量つまりセンサユニット20の出力信号を表し、最大値および最小値は前記出力信号の最大値および最小値を表す。これらの図から、軸方向荷重Fy が+方向の場合、個々の転動体5の荷重は外方部材1の外径面上面部で小さくなり、外方部材1の外径面下面部で大きくなることが分かる。これに対して、軸方向荷重Fy が−方向の場合には逆に、個々の転動体5の荷重は外方部材1の外径面上面部で大きくなり、外方部材1の外径面下面部で小さくなることが分かる。このことから、前記差分値は、軸方向荷重Fy の方向を示していることになる。
【0070】
このように、このセンサ付車輪用軸受によると、車輪用軸受100に加わる荷重を検出するセンサとして1つ以上(ここでは4つ)のセンサユニット20を設け、各センサユニット20の出力信号を信号処理手段31で処理して信号ベクトルSを生成し、その信号ベクトルSを用いて車輪に加わる荷重を荷重演算処理手段32で演算するものとし、前記荷重演算処理手段32が、荷重の演算結果に影響する車両の所定状況の有無(ここではブレーキのON・OFF)を判別して、その有無に対応した2種類の演算処理を行う機能を有するものとしているので、軸受部での検出荷重がブレーキ動作時のような車両の所定状況に影響を受けるのを補正して、車両の状況がブレーキ中など所定の状況にあっても正確な荷重を検出できる。
【0071】
車輪のタイヤと路面間に荷重が作用すると、車輪用軸受100の固定側部材である外方部材1にも荷重が印加されて変形が生じる。この実施形態では、センサユニット20における歪み発生部材21の3つの接触固定部21aが、外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪検出素子22A,22Bで感度良く検出される。
【0072】
また、この実施形態では前記センサユニット20を4つ設け、各センサユニット20を、タイヤ接地面に対して上下位置および左右位置となる外方部材1の外径面の上面部、下面部、右面部、および左面部に円周方向90度の位相差で等配しているので、車輪用軸受100に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、軸方向荷重Fy を推定することができる。
【0073】
また、この実施形態で用いたセンサユニット20は、前記固定側部材の外径面に接触して固定される歪み発生部材21と、この歪み発生部材21に取付けられてこの歪み発生部材21の歪みを検出する2つの歪検出素子22A,22Bとで構成されたが、歪み発生部材21に1つの歪検出素子を設けた構成であっても良く、この場合には、その1つの歪検出素子の信号の平均値や振幅値を変数として荷重演算に用いるようにしても良い。
【0074】
なお、この実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、センサユニット20は内方部材の内周となる周面に設ける。
また、この実施形態では第3世代型の車輪用軸受100に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受装置は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
【符号の説明】
【0075】
1…外方部材
2…内方部材
3,4…転走面
5…転動体
20…センサユニット
21…歪み発生部材
21a…接触固定部
22,22A,22B…歪検出素子
31…信号処理手段
32…荷重演算処理手段
33…コンパレータ
34…制御ECU
35…荷重値補正手段
100…車輪用軸受

【特許請求の範囲】
【請求項1】
複列の転走面が内周に形成された外方部材、前記転走面と対向する転走面が外周に形成された内方部材、および両部材の対向する転走面間に介在した複列の転動体を有し、車体に対して車輪を回転自在に支持する車輪用軸受と、
軸受に加わる荷重を検出する1つ以上のセンサと、前記各センサの出力信号を処理して信号ベクトルを生成する信号処理手段と、前記信号ベクトルから前記車輪に加わる荷重を演算する荷重演算処理手段とを備え、
前記荷重演算処理手段は、前記荷重の演算結果に影響する車両の所定状況の有無を判別して、その有無に対応した2種類の演算処理を行う機能を有することを特徴とするセンサ付車輪用軸受装置。
【請求項2】
請求項1において、前記荷重演算処理手段で判別される車両の所定状況の有無が、ブレーキのON・OFFであるセンサ付車輪用軸受装置。
【請求項3】
請求項2において、前記荷重演算処理手段で判別されるブレーキON・OFFの情報が、荷重演算処理手段の外部から入力されるセンサ付車輪用軸受装置。
【請求項4】
請求項2において、前記荷重演算処理手段は、ブレーキON・OFFに対応した2種類の演算処理結果の両方を出力するものとしたセンサ付車輪用軸受装置。
【請求項5】
請求項2ないし請求項4のいずれか1項において、前記荷重演算処理手段は、少なくとも前後方向に作用する荷重Fx を演算するものとしたセンサ付車輪用軸受装置。
【請求項6】
請求項5において、前記荷重演算処理手段は、その演算処理結果である前後方向に作用する荷重Fx を用いてブレーキのON・OFFを判別するものとしたセンサ付車輪用軸受装置。
【請求項7】
請求項2ないし請求項6のいずれか1項において、前記荷重演算処理手段によって演算される車輪の荷重が駆動輪に加わる荷重であって、荷重演算処理手段がブレーキONと判別したとき、車両が印加している駆動力の情報が車両側から荷重演算処理手段に与えられ、その情報に基づいて荷重演算処理手段が演算処理結果を補正するものとしたセンサ付車輪用軸受装置。
【請求項8】
請求項2ないし請求項6のいずれか1項において、前記荷重演算処理手段によって演算される車輪の荷重が駆動輪に加わる荷重であって、ブレーキON時に、車両が印加している駆動力の情報に基づいて荷重演算処理手段の演算処理結果を車両側のECUで補正するものとし、その補正に必要な計算パラメータを荷重演算処理手段から読み出してECUに与えるものとしたセンサ付車輪用軸受装置。
【請求項9】
請求項1ないし請求項8のいずれか1項において、軸受に加わる荷重を検出する前記センサを3つ以上設け、前記荷重演算処理手段は、前記3つ以上のセンサの出力信号から、車輪用軸受に作用する垂直方向荷重Fz 、前後方向の荷重Fx 、および軸方向荷重Fy を演算するものとしたセンサ付車輪用軸受装置。
【請求項10】
請求項2ないし請求項9のいずれか1項において、前記荷重演算処理手段の演算処理では、ブレーキONに対応する荷重演算係数行列とブレーキOFFに対応する荷重演算係数行列とが用いられ、ブレーキONに対応する荷重演算係数行列は、ブレーキOFFに対応する荷重演算係数行列を所定の変換式で変換して算出するものとしたセンサ付車輪用軸受装置。
【請求項11】
請求項1ないし請求項10のいずれか1項において、軸受に加わる荷重を検出する前記センサは、前記外方部材と内方部材の間の相対変位を検出するものであるセンサ付車輪用軸受装置。
【請求項12】
請求項1ないし請求項10のいずれか1項において、軸受に加わる荷重を検出する前記センサは、前記外方部材および内方部材のうちの固定側部材の歪みを検出するものであるセンサ付車輪用軸受装置。
【請求項13】
請求項12において、前記信号処理手段は、前記センサの出力信号から平均値および振幅値を算出し、これらの値から信号ベクトルを生成するものとしたセンサ付車輪用軸受装置。
【請求項14】
請求項13において、前記センサは、前記外方部材および内方部材のうちの固定側部材の外径面に設けたセンサユニットであり、このセンサユニットは、前記固定側部材の外径面に接触して固定される歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する1つ以上の歪検出素子とを有するものとしたセンサ付車輪用軸受装置。
【請求項15】
請求項14において、前記センサユニットを、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部および左面部に円周方向90度の位相差で4つ等配したセンサ付車輪用軸受装置。
【請求項16】
請求項14において、前記センサユニットは、前記固定側部材の外径面に接触して固定される3つ以上の接触固定部を有する歪み発生部材と、この歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つ以上の歪検出素子を有するセンサ付車輪用軸受装置。
【請求項17】
請求項16において、前記歪検出素子を、前記歪み発生部材の隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間にそれぞれ設け、隣り合う前記接触固定部の間隔、もしくは隣り合う前記歪検出素子の間隔を、転動体の配列ピッチの{n+1/2(n:整数)}倍に設定したセンサ付車輪用軸受装置。
【請求項18】
請求項17において、前記信号処理手段が、前記センサユニットにおける隣り合う歪検出素子の出力信号の和を平均値として用いて信号ベクトルを生成するものとしたセンサ付車輪用軸受装置。
【請求項19】
請求項1ないし請求項18のいずれか1項において、前記センサ、前記信号処理手段、および前記荷重演算処理手段を、前記車輪用軸受に搭載したセンサ付車輪用軸受。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2013−76573(P2013−76573A)
【公開日】平成25年4月25日(2013.4.25)
【国際特許分類】
【出願番号】特願2011−215081(P2011−215081)
【出願日】平成23年9月29日(2011.9.29)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】