説明

タイヤ製造方法

【課題】部位による加硫度の差を抑え、気泡等の発生を低減するタイヤ製造方法を提供することを課題とする。
【解決手段】生タイヤ20の表面において加硫が十分に進行した時点(前加硫終了時点)で半加硫タイヤ22を加硫機10より取り出す。次いで一旦は加硫機10の外で大気開放された半加硫タイヤ22は再度、圧力容器30内に移され、周囲から気圧あるいは液圧が付与されることによって、未だ加硫が十分に進行していない半加硫タイヤ22内部(最遅部)の加硫を進行させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はタイヤ製造方法に関し、特に空気入りタイヤ製造方法に関する。
【背景技術】
【0002】
一般的なタイヤの製造方法には、剛性コア上に成型した生タイヤを、その剛性コアとともにモールド内にて加熱・加圧することで加硫し、製品のパターンを決定しゴム材料に必要な物性を与える加硫工程が含まれ、当該工程において加硫中にタイヤに及ぼす温度・圧力がそのタイヤの加硫度・物性を決定する要因となる。
【0003】
従来一般に加硫工程における加硫度は2段階に分かれて進む。第1段階は一般に前加硫と呼ばれ、生タイヤを加硫機に収納し温度及び圧力を制御して予め決められた時間に亘って加熱及び加圧を行い、タイヤ内で加硫が最も遅い部分である最遅部の加硫度が所望の加硫度になるように加硫機の温度・圧力を制御している。
【0004】
これに続く第2段階は後加硫と呼ばれ、この後加硫は、前加硫が終了したタイヤを加硫機から取り出した後、自然冷却するまでの間に進む加硫であって、場合によってはこれをポストキュアインフレーション装置(通常PCI装置という)等にタイヤを取り付けて行われている。そして加硫開始から後加硫終了までの加硫度を所定範囲内の加硫度に制御している。
【0005】
しかし自然冷却に委ねられる後加硫においては、例えば、部屋の奥まった場所や外気に触れやすい場所等の後加硫が行われる場所、例えば、PCI装置が設置されている位置や、気温の変化等によって加硫の進み具合もそれぞれ異なってしまい後加硫開始から終了までの加硫度(後加硫度)がばらついてしまう。また加硫モールド内で加硫が終了するのを待ってPCI装置に投入するのでは時間がかかりすぎ、生産性が良くない等の問題があった。
【0006】
そこで上記の問題に対する対策として、目標加硫量の途中まで加硫機でタイヤを加硫したのち、該半加硫タイヤの内部に流体を充填し加熱・冷却する製造方法が提案されている(例えば、特許文献1参照)。また、保温されたPCI装置内でマイクロ波を用いて後加硫する製造方法が提案されている(例えば、特許文献2参照)。あるいは被加硫物の後加硫での雰囲気温度を制御する製造方法が提案されている(例えば、特許文献3参照)。
【0007】
しかし上記特許文献1および特許文献2に開示された例は何れも半加硫タイヤの内部に液体を注入する装置、あるいはマイクロ波発生装置などの追加設備を必要とするためコストが嵩み、また特許文献3の例では放冷して自然冷却する方法に比較すると後加硫での雰囲気温度を制御するための設備にコストを必要とする等の欠点がある。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平6−238669号公報
【特許文献2】特開平9−193159号公報
【特許文献3】特開平7−032374号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、上記の各製造方法では前加硫が終了した時点で加硫機よりタイヤを排出しているが、タイヤ内部の最も加硫が遅い最遅部の加硫度を確保するために必要な温度(熱量)をタイヤの内面・外面から絶えず供給しているため、加硫の初期にあってもタイヤの表層近傍では既に加硫が進行している。
【0010】
このためタイヤ表面部では加硫が過剰傾向にあり、またタイヤ全体としても加硫度の進み方の部分的な差異が大きくなる。且つ加硫の初期にはタイヤおよびコアは共に熱膨脹量が少なく、タイヤの加圧力が小さい状況下でタイヤ表面の加硫が進むため、表面では圧力不足により所謂ブローンや気泡発生の虞があるという問題がある。
【0011】
本発明は上記事実を考慮し、部位による加硫度の差を抑え、気泡等の発生を低減するタイヤ製造方法を提供することを課題とする。
【課題を解決するための手段】
【0012】
請求項1に記載の発明は、加硫金型中のタイヤを加硫機内で加圧、加熱する前加硫工程と、前記タイヤを加硫完了前に前記加硫金型より取り出す工程と、前記タイヤを圧力容器へ移して加圧保持し、余熱で加硫完了させる後加硫工程と、を含むことを特徴とする。
【0013】
上記の発明では、タイヤ内部の加硫が最も遅い最遅部が加硫を終えるまえに加硫機よりタイヤを取り出すので、タイヤ表面での過度な加硫を防ぎつつ、再度タイヤを圧力容器内で加圧しつつ余熱で加硫完了することで、圧力不足による気泡やブローンの発生を抑え、最遅部まで不足なく加硫を進めることができる。
【0014】
請求項2に記載の発明は、請求項1に記載の構成において、前記前加硫工程では前記タイヤ全体を加硫するに足る熱量を前記タイヤに付与することを特徴とする。
【0015】
上記の発明では、タイヤ内部において加硫の最も遅い最遅部まで十分に加硫するに足る熱を既に前加硫工程で付与されているので、後加硫工程では加圧に加えて表面部からの伝導熱が加わることで最遅部まで十分に加硫され、既に加硫を終えている表面部と最遅部との加硫度の差異を小さく抑えることができる。
【0016】
請求項3に記載の発明は、請求項1または請求項2に記載の構成において、前記後加硫工程では前記タイヤを液中で加圧することを特徴とする。
【0017】
上記の発明では、後加硫工程では液中でタイヤを加圧することで、気中での加圧に比較して高圧を付与することができる。
【発明の効果】
【0018】
本発明によれば、部位による加硫度の差を抑え、気泡等の発生を低減するタイヤ製造方法とすることができる。
【図面の簡単な説明】
【0019】
【図1】本発明に係るタイヤの製造方法を示す概念図である。
【図2】図1に示すタイヤの製造方法における、タイヤに付与される圧力を示す概念図である。
【図3】従来のタイヤの製造方法を示す概念図である。
【図4】図3に示すタイヤの製造方法における、タイヤに付与される圧力を示す概念図である。
【発明を実施するための形態】
【0020】
<全体構成>
以下、本発明の一実施形態として空気入りタイヤの製造方法を例として挙げ、これに従って説明する。
【0021】
図1(A)は、本実施形態の加硫機10を示した概略見取図である。図1(A)に概念図で示すように、加硫機10は、生タイヤ20を外側から包み込む上側モールド12及び下側モールド14で構成されているモールドユニット16と、生タイヤ20を内側から外側へ押圧するように変形可能なブラダユニット(図示せず)とを備えている。
【0022】
生タイヤ20の内部に配置されたブラダユニットの膨張により、生タイヤ20の外側表面が上側モールド12及び下側モールド14の内側面に圧着されて製品パターンを形成するとともに、加熱により生タイヤ20の表面より加硫が開始され、タイヤとしてのゴム物性が与えられる。
【0023】
モールドユニット16の周囲は、ジャケット18によって覆われている。このジャケット18には加熱流体(例えば、蒸気)が流動する構成になっている。このジャケット18によってモールドユニット16(上側モールド12及び下側モールド14)の、生タイヤ20の外周面に対応する側が加熱される。
【0024】
このように構成された加硫機10内には、モールドユニット16の温度を検出するモールドユニット温度センサ(図示せず)と、生タイヤ20の内部空間の温度を検出するブラダ温度センサ(図示せず)とが備えられ、これらのセンサによって検出された温度を基に、図示しない加硫制御回路がモールドユニット16及びブラダユニットが所定の温度になるように加熱流体を流動等させる。
【0025】
このとき、モールドユニット16及びブラダユニットにより生タイヤ20に対しては、生タイヤ20が全体として十分な加硫度を得られるのに足る熱量を加えるため、上記の加硫制御回路にて必要な熱量を算出して加熱流体を流動等させ、加硫機10の内部で処理を終了する前加硫終了までの段階で生タイヤ20全体が加硫度を得るのに必要な熱量を付与する。
【0026】
図1(B)に示すように、上側モールド12及び下側モールド14による加圧および加熱により生タイヤ20の表面に製品パターンが形成され、生タイヤ20の表面において加硫が十分に進行した時点(前加硫終了時点)で上側モールド12、下側モールド14を開いて半加硫タイヤ22を加硫機10より取り出す。この時点で前加硫終了とする。
【0027】
ここで図1(B)に示すように、前加硫工程を終えた生タイヤ20は半加硫タイヤ22として加硫機10の外で大気開放される。このとき、例えば自然冷却により半加硫タイヤ22の表面はそれ以上加硫が進行しない程度の温度まで冷却される可能性があるため、場合によっては保温容器にて保持する等の対策を取ってもよい。一方で半加硫タイヤ22の内部では加硫機10で付与された熱が表面より熱伝導によって浸透し、加圧されれば更なる加硫が進行する状態とされている。
【0028】
さらに図1(C)に示すように、半加硫タイヤ22は圧力容器30内に移され、周囲から気圧あるいは液圧が付与される。このとき、前述のように加硫機10内で既に付与された熱(余熱)によって、未だ加硫が十分に進行していない半加硫タイヤ22内部(最遅部)の加硫を進行させる。本願発明に係るタイヤ製造方法においては、この工程が後加硫に相当する工程となる。
【0029】
すなわち、従来のタイヤ製造方法において、前加硫が終了したタイヤを加硫機から取り出した後、ポストキュアインフレーション装置(PCI装置)等に取付け、自然冷却するまでの間に進行する加硫度(加硫開始から後加硫終了までの加硫度)を所定範囲内の加硫度としているのに対して、本願発明に係るタイヤ製造方法においては、前加硫が終了した半加硫タイヤ22を圧力容器30内で再度加圧処理する間に余熱で加硫度の進行する工程を後加硫工程としている。
【0030】
上記の図1(A)〜図1(C)に示す各工程における、生タイヤ20(半加硫タイヤ22)に加えられる圧力(加硫圧)の変化を、加硫時間との関係で示した概念図を図2に示す。
【0031】
図2中、A部分は加硫機10の中でモールドユニット16およびブラダユニットにより所定の圧力で加圧された状態が維持され、前加硫終了と共に半加硫タイヤ22は大気中に開放され、加圧されない状態となる。このとき、部位によっては完全に加硫が完了していないため、前述のように圧力不足となり、気泡やブローンの発生する可能性がある。
【0032】
次いでB部分では、半加硫タイヤ22は大気中に開放され、外部より加圧されていないため、半加硫タイヤ22の表面ではそれ以上に加硫が進行せず、表面のみ過度に加硫が進行する事態とはならない一方、半加硫タイヤ22の内部で未だ加硫が十分に進行していない所謂最遅部では、この時点では未だ加硫が不足した状態とされている。
【0033】
最後にC部分では、半加硫タイヤ22を圧力容器30の内部にて気圧または液圧で加圧することにより、再び圧が付与されている。この時点で付与される加硫圧はA部分で加硫機10内部にて付与された圧力と、必ずしも同等の圧力が付与される必要はない。すなわち、半加硫タイヤ22の表面は前加硫工程にてモールドユニット16による成型が既に行われ、タイヤとしての形状を維持できる程度の物性を備えているので、前述のように圧力が不足して気泡やブローンの発生する事態を防止できる程度の圧力を付与すればよい。
【0034】
<効果>
従来のタイヤ製造方法においては、図3(A)、(B)に示すように、加硫機100の内部で前加硫が終了した半加硫タイヤ22は、加硫機100より取り出され自然冷却するまで放冷するか、或いはポストキュアインフレーション装置等にタイヤを取り付けて後加硫を行う。このときタイヤに付与される圧力の変化は、図4に示すように加硫機100の内部で加熱・加圧された以降は加熱・加圧されることはなく、そのまま大気圧下で後加硫が進む。
【0035】
このとき、加硫機100内部で付与される熱と圧力は、タイヤ内部において最も加硫が遅い部分である最遅部が所望の加硫度となるように制御されている。しかし最遅部の加硫度を確保するために必要な圧力および熱を生タイヤ20(図示せず)の内面および外面より付与しているので、加硫度の進行が早いタイヤ表面においては加硫が過度となる傾向があり、またタイヤ全体として加硫度の進行に差が生じる虞があった。
【0036】
本願発明に係るタイヤ製造方法においては、図1(A)で加硫機10内において行われる前加硫の工程で、生タイヤ20全体が加硫度を得るのに必要な熱量を付与している。この後に図1(B)で半加硫タイヤ22を大気圧開放すると、前加硫工程で生タイヤ20に付与された熱は、加硫度の進行が早い表面より未だ加硫が十分に進行していない所謂最遅部へ伝導熱として供給される。一方、加硫度の進行が早い表面では加熱停止により温度が低下し、加硫の進行は停止する。
【0037】
次いで図1(C)に示すように圧力容器30内で半加硫タイヤ22を加圧する工程において、半加硫タイヤ22の表面部分では既に加熱停止のため温度は低下し、更なる加硫は進行しない。一方、加硫の進行が遅い半加硫タイヤ22内部においては、前述のように表面からの伝導熱として熱が供給されるため、加熱を停止した以降も加硫度の進行が進む。
【0038】
これにより、既に加硫度の進行している半加硫タイヤ22の表面では更なる加硫度の進行は起こらず、その一方で十分に加硫度の進行していない半加硫タイヤ22の内部では、表面からの伝導熱で、更なる加硫度の進行が起こる。且つ圧力容器30内部にて加圧されているため、圧力不足による気泡やブローンの発生を防止することができる。
【0039】
このため、半加硫タイヤ22の表面と内部とで加硫度の進行に生じる差異を小さく抑えることができ、全体として部位による加硫度のムラが少ないタイヤ製造方法とすることが可能となる。特に表面における加硫度を過度に進行させないため、摩耗度などのタイヤ性能を向上させることができる。
【0040】
さらに、後加硫工程は加硫機10ではなく圧力容器30内で半加硫タイヤ22を加圧し、かつ気圧に限定されず液圧を付与してもよいので、付与される圧力の設定に自由度が大きく、また液体は気体よりも比熱が大きいため温度が変化しにくく、温度管理等も容易に行うことができる。
【0041】
また、半加硫タイヤ22は内部の加硫が十分に進行していない状態で一旦、大気圧開放するため、タイヤ単体で任意の場所(圧力容器30の設置箇所に限定されない)へ移動可能となる。同時に、生タイヤ20が加硫機10を占有する時間が短縮できるので、より効率よく作業を行うことができる。
【0042】
さらに、前述のようにタイヤの加硫度が低い時点で加圧力が不足する場合に屡々タイヤ内の揮発分やエアの膨脹を抑えるに足る十分な圧力を得られず、ブローン(凹み)あるいはエア入り(気泡)等が発生する問題が知られているが、発明者らは半加硫タイヤ22を加硫機10より取り出した時点でブローンが発生している場合であっても、圧力容器30内部で加圧保持することにより既に発生したブローンが縮小する効果を見い出した。
【0043】
以上、実施形態を挙げて本発明の実施の形態を説明したが、これらの実施形態は一例であり、本発明の権利範囲がこれらの実施形態に限定されず、本発明の要旨を逸脱しない範囲内で種々変更して実施できることは言うまでもない。
【符号の説明】
【0044】
10 加硫機
12 上側モールド
14 下側モールド
16 モールドユニット
18 ジャケット
20 生タイヤ
22 半加硫タイヤ
30 圧力容器

【特許請求の範囲】
【請求項1】
加硫金型中のタイヤを加硫機内で加圧、加熱する前加硫工程と、
前記タイヤを加硫完了前に前記加硫金型より取り出す工程と、
前記タイヤを圧力容器へ移して加圧保持し、余熱で加硫完了させる後加硫工程と、
を含むことを特徴とするタイヤ製造方法。
【請求項2】
前記前加硫工程では前記タイヤ全体を加硫するに足る熱量を前記タイヤに付与することを特徴とする請求項1に記載のタイヤ製造方法。
【請求項3】
前記後加硫工程では前記タイヤを液中で加圧することを特徴とする請求項1または請求項2に記載のタイヤ製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−11684(P2012−11684A)
【公開日】平成24年1月19日(2012.1.19)
【国際特許分類】
【出願番号】特願2010−151014(P2010−151014)
【出願日】平成22年7月1日(2010.7.1)
【出願人】(000005278)株式会社ブリヂストン (11,469)
【Fターム(参考)】