説明

チタン含有部材の製造方法、チタン含有部材、露光装置及びデバイス製造方法

【課題】過酸化水素を含む溶液で洗浄する際にチタンが溶出しにくい、液浸用液体と接触するチタン含有部材及びその製造方法を提供する。
【解決手段】液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材の製造方法であって、前記チタン含有部材を用意することと、前記チタン含有部材を酸素を含む雰囲気中で加熱して、前記チタン含有部材の表面に酸化チタン膜を形成することを含む。液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材であって、前記チタン含有部材の表面が人工的に酸化されて形成された酸化チタン膜を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材の製造方法、チタン含有部材、露光装置及びデバイス製造方法に関する。
【背景技術】
【0002】
半導体デバイス、液晶表示デバイス等のマイクロデバイスの製造プロセスにおけるフォトリソグラフィ工程では、マスクに露光光を照射することでマスク上に形成されたパターンを感光性の基板上に投影露光する。近年のマイクロデバイスの高密度化に応えるべく、フォトリソグラフ工程では、基板上に形成されるパターンを更に微細化することが要求されている。そのようなパターンの更なる微細化を実現するための手段の一つとして、特許文献1に開示されているような、投影光学系と基板との間の露光光の光路空間を液体で満たし、液体を介して基板を露光する液浸法が提案されている。
【0003】
液浸法を行う露光装置(液浸露光装置)において、基板上に液浸領域が形成されている状態では、基板であるウエハ表面のレジストやトップコートに含まれる成分が液体(純水)に溶出していることがある。そのため、液浸領域を形成する部材表面に、液体(純水)中に溶出していたレジストやトップコート成分が再析出し、この析出物が水流(液流)によって剥離して基板に付着してしまう可能性がある。基板に析出物が付着した状態でその基板を露光してしまうと、例えば基板に形成されるパターンに欠陥が生じる等、露光不良が発生し、不良デバイスが発生する可能性がある。さらに、何らかの原因で液体に混入した異物が液浸領域を形成する部材に付着し、この付着した異物が再度液体に混入した状態で基板を露光することもあり得る。
【0004】
そこで、液浸領域を形成する部材又は、液体と接する部材は、定期的に洗浄し、付着した異物を取り除く必要がある。一方、半導体デバイス等の製造工程では、多くの忌避物質があるので、部材の洗浄には限られた洗浄液しか使用できない。そのような洗浄液として、過酸化水素水が用いられる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第99/49504号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0006】
液体(液浸用液体)と接する部材には、チタン又はチタン合金等のチタン含有金属を用いることが出来るが、過酸化水素はそのようなチタン含有金属に含まれるチタンをわずかに侵食する。このため、液体と接する部材を過酸化水素水で洗浄するとチタン(チタン粒子)が洗浄液中に溶出し、部材に再付着する。再付着したチタンが基板側に移転すると、露光不良を引き起こす原因となる。
【0007】
本発明はこのような事情に鑑みてなされたものであって、過酸化水素水を含む溶液で洗浄する際も、洗浄液中にチタンが溶出しにくいチタン含有部材及びその製造方法を提供することを目的とする。また、液体を介して精度良く露光処理を行うことができる露光装置及び露光方法を含むデバイス製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の第1の態様に従えば、液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材の製造方法であって、前記チタン含有部材を用意することと、前記チタン含有部材を酸素を含む雰囲気中で加熱して、前記チタン含有部材の表面に酸化チタン膜を形成することを含むチタン含有部材の製造方法が提供される。
【0009】
本発明の第2の態様に従えば、液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材であって、前記チタン含有部材の表面が人工的に酸化されて形成された酸化チタン膜を備えるチタン含有部材が提供される。
【0010】
本発明の第3の態様に従えば、液体を介して基板を露光する露光装置であって、第2の態様のチタン含有部材を備える露光装置提供される。
【0011】
本発明の第4の態様に従えば、第3の態様の露光装置を用いて基板を露光することと、露光された前記基板を現像することを含むデバイス製造方法が提供される。
【発明の効果】
【0012】
本発明の態様のチタン含有部材は、過酸化水素を含む溶液に侵食されにくい酸化チタン膜をその表面に有するので、過酸化水素を含む溶液で洗浄する際に、チタンが洗浄液中に溶出しにくい。そのため、洗浄後に、より清浄なチタン含有部材を提供できる。更に、そのようなチタン含有部材を備える本発明の態様の露光装置及び露光方法を含むデバイス製造方法においては、液体を介して精度良く露光処理を行うことができる。
【図面の簡単な説明】
【0013】
【図1】第1の実施形態に係るチタン含有部材の製造方法を示すフローチャートである。
【図2】第3の実施形態に係る露光装置を示す概略構成図である。
【図3】第3の実施形態に係る液浸部材の近傍を示す側断面図である。
【図4】第3の実施形態に係る多孔部材を説明するための図である。
【図5】第4の実施形態に係るマイクロデバイス製造工程を示すフローチャート図である。
【図6】第4の実施形態に係るマイクロデバイス製造工程における、基板処理工程を示すフローチャート図である。
【図7】第5実施形態に係る液浸部材の近傍を示す側断面図である。
【図8】第6実施形態に係る液浸部材の近傍を示す側断面図である。
【図9】第7実施形態に係る液浸部材の近傍を示す側断面図である。
【図10】実施例における、加熱温度と形成された酸化チタン膜の膜厚との関係を示した図である。
【図11】実施例の過酸化水素水への浸漬試験における、酸化チタン膜の膜厚と過酸化水素水へ溶出したチタン検出量との関係を示す図である。
【図12】実施例の紫外光照射試験における、酸化チタン膜厚とブラックライト照射前後の接触角の関係を示す図である。
【発明を実施するための形態】
【0014】
[第1の実施形態]
本発明の第1の実施形態として、液体を介して基板を露光する際に用いる、液体と接するチタン含有部材の製造方法について説明する。「液体を介して基板を露光する際に用いる、液体と接する」部材とは、後述するが、その一部が液体と接する部材であれば特に限定されず、例えば、液浸領域を形成するノズル部材(液浸部材)、ノズル部材の一部を構成する多孔部材等が挙げられる。ここで「チタン含有部材」とは、チタン又はチタン合金等のチタンを含有する金属からなる部材を意味する。本実施形態は、図1に示すように、チタン含有部材を用意すること(ステップS110)と、チタン含有部材を例えば、大気などの酸素を含む雰囲気中で加熱して、その表面を人工的に酸化して酸化チタンの膜を形成すること(ステップS120)を含む。酸化チタンは、過酸化水素を含む溶液に侵食されにくい。したがって、本実施形態の製造方法によって製造されるチタン含有部材は、過酸化水素を含む溶液で洗浄しても、チタンが洗浄液中に溶出しにくい。尚、チタンの表面には、自然酸化膜が形成されているが、この自然酸化膜は膜厚が約2nmと薄いため、過酸化水素を含む溶液へのチタンの溶出を抑制することはできない。チタン溶出抑制効果を得るためには、チタン含有部材を酸素を含む雰囲気中で加熱して、その表面に人工的に酸化膜を形成する必要がある。
【0015】
チタン含有部材の表面に人工的に酸化膜を形成する方法としては、本実施形態の他に、例えば、蒸着、スパッタリング及びイオンプレーティング等の物理蒸着法がある。しかし、これらの方法は真空プロセスであり、またチタン含有部材を設置可能な大きさの装置も必要でありコストが高い。本実施形態の製造方法は、低コストで実施でき、また後述するように加熱温度の調整によって容易に緻密な酸化膜を形成することができる。更に、本実施形態により形成された酸化チタン膜は、チタン含有部材の一部が酸化されて形成されているので、物理蒸着法等で形成した膜と比較して密着性が高く、剥離が生じにくい。ただし、膜厚が100nm程度までは緻密な膜が形成されるが、これ以上の厚さになると割れや剥離の発生する可能性がある。更に、チタン含有部材が、例えば、ノズル部材の回収口に設けられた多孔部材等、複雑かつ微細な形状の部材であっても、本実施形態の加熱による酸化であれば、物理蒸着法等と比較して、容易に酸化チタン膜を形成することができる。
【0016】
加熱により形成されるチタン含有部材の酸化チタン膜は、加熱温度が高く、加熱時間が長いほど厚くなるが、加熱温度の方が膜厚への影響が大きい。そして、膜厚が約100nm以下の範囲では、膜厚が厚いほど、チタンの過酸化水素を含む溶液への溶出を抑制できる。本実施形態において、加熱温度は、400℃〜700℃であることが好ましい。400℃以上で加熱すると、短時間で十分な膜厚の酸化チタン膜を形成することができ、700℃以下で加熱すると、緻密な酸化チタン膜を形成することができる。このため、400℃〜700℃で加熱処理したチタン含有部材は、より高いチタン溶出防止効果を得る。
【0017】
本実施形態では、チタン含有部材が露光装置の部品に装着される部材である場合に、チタン含有部材を加熱して酸化膜をその表面に形成してから、その部品に装着しても良い。あるいは、チタン含有部材を部品に装着した後、その部品と共にチタン含有部材を加熱することにより、その表面に酸化膜を形成してもよい。例えば、チタン含有部材が後述するようなノズル部材(液浸部材)の回収口に設けられた多孔部材である場合、多孔部材のみを加熱処理して、その後に、表面に酸化膜を形成し、その多孔部材をノズル部材に溶接等により装着してもよい。あるいは、まずノズル部材に多孔部材を装着した後、ノズル部材全体を加熱処理してもよい。例えば、ノズル部材の材質がアルミニウム等、耐熱性が低い材質の場合は、多孔部材のみを先に加熱した方が好ましい。一方、ノズル部材もチタン製等の耐熱性の高い材質の場合、多孔部材をノズル部材に装着した後にノズル部材全体を加熱してもよい。こうすることで、ノズル部材がチタン製であれば、多孔部材のみならず、ノズル部材にも酸化チタン膜を形成することができる。
【0018】
[第2の実施形態]
本発明の第2の実施形態として、液体を介して基板を露光する際に用いる、液体と接するチタン含有部材について説明する。本実施形態のチタン含有部材は、その表面が人工的に酸化されて酸化チタン膜が形成されており、例えば、第1の実施形態の製造方法によって製造される。表面に酸化チタン膜を有するので、本実施形態のチタン含有部材は、過酸化水素を含む溶液での洗浄の際、チタンが洗浄液に溶出しにくい。
【0019】
本実施形態における酸化チタン膜は、チタン含有部材の一部が酸化されて形成されているので、例えば、物理蒸着法等によって形成された被膜と比較して密着性が高い。また、膜厚が100nm程度までは緻密な膜を形成することができる。
【0020】
本実施形態における酸化チタン膜の膜厚は、自然酸化膜の膜厚である2nmより厚く、更に5nm以上であることが好ましい。酸化チタン膜の膜厚が厚いほど過酸化水素を含む溶液へのチタンの溶出量は減少する。実施例において後述するが、図11に示すように、酸化チタン膜の膜厚が自然酸化膜の膜厚である2nmから5nmまで増加するのに伴い、過酸化水素水へのチタンの溶出量は急激に減少する。膜厚が5nmより厚い領域では、酸化チタン膜の膜厚増加に伴うチタンの溶出量の減少は緩やかである。したがって、酸化チタン膜の膜厚が5nm以上あれば十分なチタンの溶出防止効果が得られる。また、チタンの溶出防止の観点からは、酸化チタン膜の膜厚は5nmより十分に厚くてもよいが、チタン溶出防止効果がほぼ飽和することから、酸化チタン膜の膜厚は100nm以下が好ましい。尚、酸化チタン膜の膜厚は、チタン含有部材の表面を人工的に酸化するときの酸化温度及び酸化時間により調整できる。
【0021】
更に、本実施形態のチタン含有部材は、紫外光が照射されると、表面に付着した汚染物質の除去が容易になる。つまり、紫外光による光洗浄が可能となる。紫外光が照射されると、酸化チタン膜の光触媒効果によって表面が親水性となり、汚染物質と下地の間に水が浸透して汚染物質の除去が容易になる。実施例において後述するが、図12に示すように、紫外光を照射した後のチタン含有部材の表面の接触角は、酸化チタン膜の膜厚が厚い程低くなる。接触角は親水性の指標であり、接触角が小さい程、親水性であると言える。つまり、紫外光を照射した後のチタン含有部材の表面の親水性は、酸化チタン膜の膜厚が厚い程高くなり、酸化チタン膜の膜厚が厚い程、表面に付着した汚染物質の除去が容易になる。この観点からは、酸化チタン膜の膜厚は、10nm以上が好ましい。酸化チタン膜の膜厚が10nmであれば、加熱処理前と比較して、加熱処理後のチタン含有部材の接触角は約半分に低下する。
【0022】
本実施形態のチタン含有部材は、液浸露光装置において、その一部が液体と接する部材であれば特に限定されない。例えば、液浸領域を形成するノズル部材(液浸部材)及び基板ステージ面、ノズル部材の回収口に設置される多孔部材、液浸用液体を供給及び回収する流路を形成する部材等である。特に、ノズル部材の一部を形成する多孔部材は、レジスト成分やトップコート成分等の汚染物質が再付着しやすい部材であるので、本実施形態のチタン含有部材を用いると、メンテナンスが容易となる。また、多孔部材は形状が複雑であるが、本実施形態のように、部材の表面を加熱により酸化させて酸化チタン膜を形成する方法であれば、孔の内壁へ容易に膜を形成できる。
【0023】
[第3の実施形態]
第3の実施形態として、第2の実施形態のチタン含有部材を含む液浸露光装置について説明する。図2に示すように、露光装置EXは、マスクMを保持して移動可能なマスクステージ1と、基板Pを保持して移動可能な基板ステージ2と、マスクステージ1を移動する第1駆動システム1Dと、基板ステージ2を移動する第2駆動システム2Dと、マスクステージ1及び基板ステージ2それぞれの位置情報を計測可能な干渉計システム3と、マスクMを露光光ELで照明する照明系ILと、露光光ELで照明されたマスクMのパターンの像を基板Pに投影する投影光学系PLと、露光装置EX全体の動作を制御する制御装置4とを主に備える。本実施形態の露光装置EXは、液体LQを介して露光光ELで基板Pを露光する液浸露光装置である。露光装置EXは、露光光ELの光路Kの少なくとも一部が液体LQで満たされるように液浸空間LSを形成可能な液浸部材6を備える。液浸部材6はノズル部材とも呼ばれる。図3に示すように、液浸部材6は、液体LQの回収口32に多孔部材24を備えている。この多孔部材24はチタンで形成されており、第2の実施形態のチタン含有部材に相当する。
【0024】
マスクMは、基板Pに投影されるデバイスパターンが形成されたレクチルを含む。マスクMは、例えばガラス板等の透明板上にクロム等の遮光膜を用いて所定のパターンが形成された透過型マスクである。なお、マスクMとして、反射型マスクを用いることもできる。基板Pは、デバイスを製造するための基板である。基板Pは、例えばシリコンウエハのような半導体ウエハ等の基材に感光膜が形成されている。感光膜は、感光材(フォトレジスト)の膜である。また、基板Pが、感光膜と別の膜を含んでもよい。例えば、基板Pが、反射防止膜を含んでもよいし、感光膜を保護する保護膜(トップコート膜)を含んでもよい。
【0025】
液浸空間LSは、液体LQで満たされた空間である。本実施形態においては、液体LQとして、水(純水)を用いる。本実施形態において、液浸空間LSは、投影光学系PLの複数の光学素子のうち、投影光学系PLの像面に最も近い終端光学素子5から射出される露光光ELの光路Kが液体LQで満たされるように形成される。終端光学素子5は、投影光学系PLの像面に向けて露光光ELを射出する射出面5Uを有する。液浸空間LSは、終端光学素子5とその終端光学素子5の射出面5Uと対向する位置に配置された物体との間の光路Kが液体LQで満たされるように形成される。射出面5Uと対向する位置は、射出面5Uから射出される露光光ELの照射位置を含む。
【0026】
液浸部材6は、終端光学素子5の近傍に配置されている。液浸部材6は、下面7を有する。本実施形態において、射出面5Uと対向可能な物体は、下面7と対向可能である。物体の表面が終端光学素子5の射出面5Uと対向する位置に配置されたとき、下面7の少なくとも一部と物体の表面とが対向する。射出面5Uと物体の表面とが対向しているとき、射出面5Uと物体の表面との間に液体LQを保持できる。また、液浸部材6の下面7と物体の表面とが対向しているとき、下面7と物体の表面との間に液体LQを保持できる。射出面5U及び下面7と、物体の表面との間の一部の空間によって、液浸空間LSが区画される。
【0027】
本実施形態において、射出面5U及び下面7と対向可能な物体は、終端光学素子5の射出側(像面側)で移動可能な物体を含み、射出面5U及び下面7と対向する位置に移動可能な物体を含む。本実施形態においては、その物体は、基板ステージ2、及びその基板ステージ2に保持された基板Pの少なくとも一方を含む。なお、以下においては、説明を簡単にするために、主に、射出面5U及び下面7と基板Pの表面とが対向している状態を例にして説明する。しかしながら、射出面5U及び下面7と基板ステージ2の一部の表面(基板Pが設置されている部分以外の領域の表面)とが対向している場合も同様である。
【0028】
本実施形態においては、射出面5U及び下面7と対向する位置に配置された基板Pの表面の一部のみの領域(局所的な領域)が液体LQで覆われるように液浸空間LSが形成され、その基板Pの表面と下面7との間に液体LQの界面(メニスカス、エッジ)LGが形成される。すなわち、本実施形態においては、露光装置EXは、基板Pの露光時に、投影光学系PLの投影領域PRを含む基板P上の一部の領域が液体LQで覆われるように液浸空間LSを形成する局所液浸方式を採用する。
【0029】
照明系ILは、所定の照明領域IRを均一な照度分布の露光光ELで照明する。照明系ILは、照明領域IRに配置されたマスクMの少なくとも一部を均一な照度分布の露光光ELで照明する。照明系ILから射出される露光光ELとして、例えば水銀ランプから射出される輝線(g線、h線、i線)及びKrFエキシマレーザ光(波長248nm)等の遠紫外光(DUV光)、ArFエキシマレーザ光(波長193nm)及びFレーザ光(波長157nm)等の真空紫外光(VUV光)等が用いられる。本実施形態においては、露光光ELとして、紫外光(真空紫外光)であるArFエキシマレーザ光を用いる。
【0030】
マスクステージ1は、マスクMを保持するマスク保持部1Hを有する。マスク保持部1Hは、マスクMを着脱可能である。本実施形態において、マスク保持部1Hは、マスクMのパターン形成面(下面)とXY平面とがほぼ平行となるように、マスクMを保持する。第1駆動システム1Dは、リニアモータ等のアクチュエータを含む。マスクステージ1は、第1駆動システム1Dの作動により、マスクMを保持してXY平面内を移動可能である。本実施形態においては、マスクステージ1は、マスク保持部1HでマスクMを保持した状態で、X軸、Y軸及びθZ方向の3つの方向に移動可能である。
【0031】
投影光学系PLは、所定の投影領域PRに露光光ELを照射する。投影光学系PLは、投影領域PRに配置された基板Pの少なくとも一部に、マスクMのパターンの像を所定の投影倍率で投影する。投影光学系PLの複数の光学素子は、鏡筒PKで保持される。本実施形態の投影光学系PLは、その投影倍率が例えば1/4、1/5又は1/8等の縮小系である。なお、投影光学系PLは、当倍系及び拡大系のいずれでもよい。本実施形態においては、投影光学系PLの光軸AXは、Z軸とほぼ平行である。また、投影光学系PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光学素子と屈折光学素子とを含む反射屈折系のいずれでもよい。また、投影光学系PLは、倒立像と正立像とのいずれを形成してもよい。
【0032】
基板ステージ2は、ベース部材8のガイド面8G上を移動可能である。本実施形態においては、ガイド面8Gは、XY平面とほぼ平行である。基板ステージ2は、基板Pを保持して、ガイド面8Gに沿って、XY平面内を移動可能である。
【0033】
基板ステージ2は、基板Pを保持する基板保持部2Hを有する。基板保持部2Hは、基板Pをリリース可能に保持可能である。本実施形態において、基板保持部2Hは、基板Pの露光面(表面)とXY平面とがほぼ平行となるように、基板Pを保持する。第2駆動システム2Dは、リニアモータ等のアクチュエータを含む。基板ステージ2は、第2駆動システム2Dの作動により、基板Pを保持してXY平面内を移動可能である。本実施形態においては、基板ステージ2は、基板保持部2Hで基板Pを保持した状態で、X軸、Y軸、Z軸、θX、θY及びθZ方向の6つの方向に移動可能である。
【0034】
基板ステージ2は、基板保持部2Hの周囲に配置された上面2Tを有する。本実施形態において、上面2Tは、平坦であり、XY平面とほぼ平行である。また、基板ステージ2は、凹部2Cを有する。基板保持部2Hは、凹部2Cの内側に配置される。本実施形態において、上面2Tと、基板保持部2Hに保持された基板Pの表面とが、ほぼ同一平面内に配置される(面一となる)。
【0035】
干渉計システム3は、XY平面内におけるマスクステージ1及び基板ステージ2のそれぞれの位置情報を計測する。干渉計システム3は、XY平面内におけるマスクステージ1の位置情報を計測するレーザ干渉計3Aと、XY平面内における基板ステージ2の位置情報を計測するレーザ干渉計3Bとを備えている。レーザ干渉計3Aは、マスクステージ1に配置された反射面1Rに計測光を照射し、その反射面1Rを介した計測光を用いて、X軸、Y軸及びθZ方向に関するマスクステージ1(マスクM)の位置情報を計測する。レーザ干渉計3Bは、基板ステージ2に配置された反射面2Rに計測光を照射し、その反射面2Rを介した計測光を用いて、X軸、Y軸、及びθZ方向に関する基板ステージ2(基板P)の位置情報を計測する。
【0036】
また、本実施形態においては、基板ステージ2に保持された基板Pの表面の位置情報を検出するフォーカス・レベリング検出システム(不図示)が配置されている。フォーカス・レベリング検出システムは、Z軸、θX、及びθY方向に関する基板Pの表面の位置情報を検出する。
【0037】
基板Pの露光時、マスクステージ1の位置情報がレーザ干渉計3Aで計測され、基板ステージ2の位置情報がレーザ干渉計3Bで計測される。制御装置4は、レーザ干渉計3Aの計測結果に基づいて、第1駆動システム1Dを作動し、マスクステージ1に保持されているマスクMの位置情報を実行する。また、制御装置4は、レーザ干渉計3Bの計測結果及びフォーカス・レベリング検出システムの検出結果に基づいて、第2駆動システム2Dを作動し、基板ステージ2に保持されている基板Pの位置制御を実行する。
【0038】
本実施形態の露光装置EXは、マスクMと基板Pとを所定の走査方向に同期移動しつつ、マスクMのパターンの像を基板Pに投影する走査型露光装置(所謂スキャニングステッパ)である。基板Pの露光時、制御装置4は、マスクステージ1及び基板ステージ2を制御して、マスクM及び基板Pを、露光光ELの光路(光軸AX)と交差するXY平面内の所定の走査方向に移動する。本実施形態においては、基板Pの走査方向(同期移動方向)をY軸方向とし、マスクMの走査方向(同期移動方向)もY軸方向とする。制御装置4は、基板Pを投影光学系PLの投影領域PRに対してY軸方向に移動するとともに、その基板PのY軸方向への移動と同期して、照明系ILの照明領域IRに対してマスクMをY軸方向に移動しつつ、投影光学系PLと基板P上の液浸空間LSの液体LQとを介して基板Pに露光光ELを照射する。これにより、基板Pは露光光ELで露光され、マスクMのパターンの像が基板Pに投影される。
【0039】
なお、以下の説明においては、終端光学素子5の射出面5U及び液浸部材6の下面7と対向する位置に基板Pの表面が配置されている場合を例にして説明するが、上述のように、終端光学素子5の射出面5U及び液浸部材6の下面7と対向する位置には、基板ステージ2の上面2T、上面2T上に設けられた計測部材(不図示)、ダミー基板(不図示)等の基板P以外の物体も配置可能である。また、以下の説明においては、終端光学素子5の射出面5Uを適宜、終端光学素子5の下面5Uと称する。
【0040】
図3に示すように、液浸部材6は、終端光学素子5と基板Pとの間の露光光ELの光路Kが液体LQで満たされるように液浸空間LSを形成する。液浸部材6は、環状の部材であって、露光光ELの光路Kを囲むように配置されている。本実施形態においては、液浸部材6は、終端光学素子5の周囲に配置される側板部12と、Z軸方向に関して少なくとも一部が終端光学素子5の下面5Uと基板Pの表面との間に配置される下板部13とを有する。なお、液浸部材6は、環状の部材でなくてもよい。例えば、液浸部材6が終端光学素子5及び射出面5Uから射出される露光光ELの光路Kの周囲の一部に配置されていてもよい。
【0041】
側板部12は、終端光学素子5の外周面14と対向し、その外周面に沿って形成された内周面15との間には、所定の間隙が形成されている。
【0042】
下板部13は、中央に開口16を有する。下面5Uから射出された露光光ELは、開口16を通過可能である。例えば、基板Pの露光中、下面5Uから射出された露光光ELは、開口16を通過し、液体LQを介して基板Pの表面に照射される。本実施形態においては、開口16における露光光ELの断面形状はX軸方向に長い矩形状(スリット状)である。開口16は、露光光ELの断面形状に応じた形状を有する。すなわち、XY平面内における開口16の形状は、矩形状(スリット状)である。また、開口16における露光光ELの断面形状と、基板Pにおける投影光学系PLの投影領域PRの形状とはほぼ同じである。
【0043】
また、液浸部材6は、液浸空間LSを形成するための液体LQを供給する供給口31と、基板P上の液体LQの少なくとも一部を吸引して回収する回収口32とを備えている。
【0044】
本実施形態においては、液浸部材6の下板部13は、露光光ELの光路の周囲に配置されている。下板部13の上面33は+Z軸方向を向いており、所定の間隙を介して上面33と下面5Uとが対向する。供給口31は、下面5Uと上面33との間の内部空間34に液体LQを供給可能である。本実施形態においては、供給口31は、光路Kに対してY軸方向両側のそれぞれに設けられている。
【0045】
供給口31は、流路36を介して、液体供給装置35と接続されている。液体供給装置35は、清浄で温度調整された液体LQを送出可能である。流路36は、液浸部材6の内部に形成された供給流路36A、及びその供給流路36Aと液体供給装置35とを接続する供給管で形成される流路36Bを含む。液体供給装置35から送出された液体LQは、流路36を介して供給口31に供給される。供給口31は、液体供給装置35からの液体LQを光路Kに供給する。
【0046】
回収口32は、流路38を介して、液体回収装置37と接続されている。液体回収装置37は、真空システムを含み、液体LQを吸引して回収可能である。流路38は、液浸部材6の内部に形成された回収流路38A、及びその回収流路38Aと液体回収装置37とを接続する回収管で形成される流路38Bを含む。液体回収装置37が作動することにより、回収口32から回収された液体LQは、流路38を介して、液体回収装置37に回収される。
【0047】
本実施形態において、液浸部材6の回収口32には多孔部材24が配置されている。基板Pとの間の液体LQの少なくとも一部が回収口32(多孔部材24)を介して回収される。液浸部材6の下面7は、露光光ELの光路Kの周囲に配置されたランド面21と、露光光ELの光路Kに対してランド面21の外側に設けられた液体回収領域22とを含む。本実施形態において、液体回収領域22は、多孔部材24の表面(下面)を含む。
【0048】
以下の説明において、液体回収領域22を適宜、回収面22と称する。
【0049】
ランド面21は、基板Pの表面との間で液体LQを保持可能である。本実施形態において、ランド面21は−Z軸方向を向いており、下板部13の下面を含む。ランド面21は、開口16の周囲に配置されている。本実施形態において、ランド面21は、平坦であり、基板Pの表面(XY平面)とほぼ平行である。本実施形態において、XY平面内におけるランド面21の外形は、矩形状であるが、他の形状、例えば円形でもよい。
【0050】
回収面22は、下面5U及び下面7と基板Pの表面との間の液体LQの少なくとも一部を回収可能である。回収面22は、露光光ELの光路Kに対するY軸方向(走査方向)の両側に配置されている。本実施形態においては、回収面22は、露光光ELの光路Kの周囲に配置されている。すなわち、回収面22は、ランド面21の周囲に矩形環状に配置されている。また、本実施形態において、ランド面21と回収面22とは、ほぼ同一平面内に配置される(面一である)。なお、ランド面21と回収面は同一平面内に配置されていなくてもよい。
【0051】
回収面22は、多孔部材24の表面(下面)を含み、回収面22に接触した液体LQを多孔部材24の孔を介して回収する。
【0052】
図4(A)及び(B)に示すように、本実施形態において、多孔部材24は、複数の小さい孔24Hが形成されたチタン製の薄いプレート部材である。多孔部材24は、薄いプレート部材を加工して、複数の孔24Hを形成した部材であり、メッシュプレートとも呼ばれる。そして、本実施形態の多孔部材24は、その表面が人工的に酸化されており、それによって形成された酸化チタン膜を表面に有する。
【0053】
多孔部材24は、基板Pの表面と対向する下面24Bと、下面24Bと反対側の上面24Aとを有する。下面24Bは、回収面22を形成する。上面24Aは、回収流路38Aと接する。孔24Hは、上面24Aと下面24Bとの間に形成されている。すなわち、孔24Hは、上面24Aと下面24Bとを貫通するように形成されている。以下の説明において、孔24Hを適宜、貫通孔24H、と称する。本実施形態において、上面24Aと下面24Bとは、ほぼ平行である。すなわち、本実施形態において、上面24Aと下面24Bとは、基板Pの表面(XY平面)とほぼ平行である。本実施形態において、貫通孔24Hは、上面24Aと下面24Bとの間を、Z軸方向とほぼ平行に貫通する。液体LQは、貫通孔24Hを流通可能である。基板P上の液体LQは、貫通孔24Hを介して、回収流路38Aに引き込まれる。
【0054】
本実施形態において、XY平面内における貫通孔(開口)24Hの形状は、円形である。また、上面24Aにおける貫通孔(開口)24Hの大きさと、下面24Bにおける貫通孔(開口)24Hの大きさとはほぼ等しい。なお、XY平面内における貫通孔24Hの形状は、円形以外の形状、例えば5角形、6角形等の多角形でもよい。また、上面24Aにおける貫通孔(開口)24Hの径や形状は、下面24Bにおける貫通孔(開口)24Hの径や形状と異なっていてもよい。
【0055】
本実施形態においては、制御装置4は、真空システムを含む液体回収装置37を作動して、多孔部材24の上面24Aと下面24Bとの間に圧力差を発生させることによって、多孔部材24(回収面22)より液体LQを回収する。回収面22から回収された液体LQは、流路38を介して、液体回収装置37に回収される。
【0056】
基板Pの露光中、基板Pから液体LQへと溶出した物質(例えばレジストやトップコート等の有機物)が、液浸部材6を構成する部材表面に再析出する可能性がある。液浸部材6の液体LQに接する領域に析出物が発生すると、その析出物が液流(水流)によって剥離して基板Pに付着してしまう可能性がある。レジスト成分やトップコート成分の再析出が発生しやすい領域、及び、液体LQの液流による影響を受けやすい領域としては、特に、液体回収領域22の回収口32(多孔部材24)が挙げられる。そこで、適正な露光を維持するために、多孔部材24を含む液浸部材6は、定期的に洗浄され、洗浄には過酸化水素水等が用いられる。
【0057】
酸化チタン膜は過酸化水素水に侵食されにくいので、本実施形態の多孔質部材24は過酸化水素水で洗浄した際に、チタンが洗浄液中に溶出されにくい。したがって、洗浄後により清浄なチタン含有部材を提供でき、チタンが露光中の基板Pの表面に付着して露光不良が発生することを効果的に抑制する。
【0058】
また、本実施形態の多孔部材24の酸化チタン膜は、本体のチタンの一部が酸化されて形成されているので密着性が高く、膜厚が100nm程度以下であれば剥離等が生じにくい。したがって、耐久性が高く、液浸用液体の汚染の可能性が低い。また、多孔部材24は、貫通孔24Hを有しており複雑かつ微細な構造であるが、チタン表面を人工的に酸化する方法で酸化チタン膜を形成するので、貫通孔24Hの内面も容易に酸化チタン膜を形成することができる。
【0059】
更に、酸化チタン膜か形成されている多孔部材24の表面に紫外光を照射すると、光触媒効果により表面に付着した汚染物質の除去が容易になる。これにより、汚染物質の付着しにくいチタン含有部材を提供できる。
【0060】
本実施形態において、多孔部材24は、酸素を含む雰囲気中で加熱して、その表面に酸化チタン膜を形成した後、溶接により液浸部材6に装着した。必要に応じて、多孔部材24を液浸部材6に装着した後、多孔部材24及び液浸部材6の両方を酸素を含む雰囲気中で加熱して、多孔部材24の表面に酸化チタン膜を形成してもよい。この場合、液浸部材6がチタン製であれば、液浸部材6の下板部13、供給流路36Aの表面等の液浸用液体と接する領域にも酸化チタン膜を形成することができる。酸化チタン膜が形成されることにより、液浸部材6を過酸化水素水で洗浄する際に、多孔部材24と同様にチタンの洗浄液への溶出を抑制できる。この場合、酸化チタン膜を形成した液浸部材6も第2の実施形態のチタン含有部材に相当する。
【0061】
[第4の実施形態]
第4の実施形態として、第3の実施形態の露光装置を用いたデバイス製造方法について説明する。本実施形態は、液体と接するチタン含有部材である、多孔部材又は液浸部材の洗浄工程を含んでもよい。
【0062】
半導体デバイス等のマイクロデバイスは、図5に示すように、デバイスの機能・性能設計を行うステップ210、この設計ステップに基づいたマスク(レクチル)を製作するステップ220、デバイスの基材である基板を製造するステップ230、上述の第3の実施形態の露光装置を用いて、マスクのパターンからの露光光で基板を露光する工程、露光された基板を現像する工程及び前記液浸部材等を洗浄する工程を含む基板処理ステップ240、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程などの加工プロセスを含む)250及び検査ステップ260等を経て製造される。
【0063】
本実施形態においては、図6に示すように、基板露光工程(ステップS241)の途中において、多孔部材24を含む液浸部材6を過酸化水素を含む溶液での洗浄(ステップS242〜S244)及び光洗浄(ステップS245)の2種類の方法で洗浄した。
【0064】
<過酸化水素を含む溶液での洗浄>
本実施形態では、液浸部材6をアルカリ溶液で洗浄した(ステップS242)後、過酸化水素を含む溶液で洗浄し(ステップS243)、その後、水洗浄した(ステップS244)。液浸用液体と接する部材に付着する汚染物には、露光される基板に形成されたフォトレジスト層から生じ得る有機系汚染物が主に含まれる。具体的には、フォトレジストのトップコート(撥水性のフルオロカーボン)、ベース樹脂、ベース樹脂中に含まれる光酸発生剤(PAG:Photo Acid Generator)、及びクエンチャーと呼ばれるアミン系物質などである。これら有機系汚染物は、フォトレジストのエッチング液として用いられるアルカリ溶液に溶解するため、アルカリ溶液での洗浄は好ましい。
【0065】
アルカリ溶液としては、水酸化ナトリウム、水酸化カリウム等の無機アルカリの溶液、水酸化テトラメチルアンモニウム、水酸化トリメチル(2-ヒドロキシエチル)アンモニウム等の有機アルカリの溶液を用いることができる。中でも、水酸化テトラメチルアンモニウムを用いることが好ましい。水酸化テトラメチルアンモニウムはフォトレジストの現像液として半導体工場で一般に用いられる溶剤であるので入手が容易で、半導体素子に悪影響を及ぼすアルカリ金属元素を含まず、非可燃性であり、かつ周辺を腐食することがないからである。これらの溶液の溶媒としては、半導体工場で用いられるレベルの高純度純水を使用することが望ましい。尚、本実施形態においては、液浸部材6をアルカリ溶液で洗浄したが、アルカリ溶液の洗浄は必要に応じて省略でき、過酸化水素を含む溶液のみで洗浄してもよい。
【0066】
アルカリ溶液の洗浄の後に、多孔部材24を含む液浸部材6を過酸化水素を含む溶液で洗浄した。過酸化水素は、アルカリ溶液で洗浄しきれない有機汚染物を除去することができる。本実施形態では、30wt%の過酸化水素水を用いた。また、過酸化水素濃度は、汚染物質を除去する効果及び薬品の入手しやすさの観点から、1〜30wt%であることが望ましい。
【0067】
本実施形態の多孔部材24は、表面に過酸化水素水に侵食されにくい酸化チタン膜が形成されているので、チタンが洗浄液中に溶出しにくい。したがって、過酸化水素水での洗浄後に、より清浄な多孔部材24を提供できる。
【0068】
本実施形態では、過酸化水素水での洗浄の後、多孔部材24を含む液浸部材6を水洗浄(リンス)した。水洗浄は、液浸部材6に付着している過酸化水素水を除去し、液浸用液体である水に置換することができるので好ましい。
【0069】
[光洗浄]
本実施形態においては、多孔部材24を含む液浸部材6の下面7に、365nmの紫外光を照射して光洗浄を行った。本実施形態の多孔部材24は、紫外光が照射されると、酸化チタン膜の光触媒効果によって表面が親水性となり、表面に付着した汚染物質の除去が容易になる。
【0070】
従来の光洗浄は、例えば、波長185nm等の非常に短波長の紫外光を用いていた。これは、紫外光のエネルギーによって直接、有機成分からなる汚染物を分解していたため、高いエネルギーが必要だったからである。そして、波長185nm程度の光を用いていたため、その周辺で有毒なオゾンが発生していた。これに対し、本実施形態では、酸化チタン膜の光触媒効果を利用するので、照射する紫外光は、より低エネルギーの長波長の紫外光で足りる。例えば波長254nm又は、波長365nmの紫外光でよい。波長254nm又は波長365nmの紫外光の照射では、オゾンも発生しない。更に、終端光学素子5の光洗浄用に波長254nmの紫外光ランプを備える露光装置においては、終端光学素子5の洗浄用の紫外光ランプを多孔部材24の光洗浄にも利用することができ、別個に紫外光源を用意する必要がない。
【0071】
液浸露光法における液体と接する部材の洗浄は、露光装置の露光動作を停止して行うため、洗浄と洗浄の間、すなわち洗浄(メンテナンス)周期は長い方が生産性の面から望ましい。特に、上述の過酸化水素を含む溶液での洗浄方法は、約1日(24時間)を必要とする。これに対し、光洗浄は数時間で完了する。したがって、光洗浄を定期的に繰り返すことによって、過酸化水素を含む溶液での洗浄周期を長くすることができる。つまり、定期的に複数回の多孔部材24の光洗浄を繰り返し、光洗浄では除去できない程度に汚染された場合に、多孔部材24を過酸化水素を含む溶液で洗浄する。洗浄作業の頻度・時間を低減することができるため、液浸露光装置のダウンタイムを短縮することができ、生産性の低下を抑制することが可能となる。
【0072】
また、本実施形態の光洗浄は、多孔部材24の表面の汚染物質の除去が容易になるので、光洗浄の後に続けて過酸化水素を含む溶液で洗浄してもよい。尚、本実施形態においては、基板露光の途中で多孔部材24を洗浄したが、基板露光を行う前、又は、基板露光の終了後に洗浄してもよい。
【0073】
更に、本実施形態では、過酸化水素を含む溶液での洗浄及び光洗浄の両洗浄とも、多孔部材24を含む液浸部材6を露光装置に装着したまま行うことができる。過酸化水素を含む溶液で洗浄する場合には、まず、露光動作を停止した後、基板ステージ2を液浸部材6に対向する位置から移動させる。次に、洗浄液を収容する容器を備えたメンテナンス機器(不図示)を液浸部材6に対向して位置づける。そして、容器に洗浄液を充満し、洗浄液に液浸部材6および多孔部材24が接触し、又は一部浸漬するようにメンテナンス機器を配置する。液浸部材6および多孔部材24は洗浄液に接触し、又は一部浸漬することにより洗浄される。このとき必要に応じて、洗浄液に超音波を適用してもよい。一方、光洗浄する場合にも、まず、露光動作を停止した後、基板ステージ2を液浸部材6に対向する位置から移動させる。次に、紫外光光源を液浸部材6に対向させて設置して紫外光を多孔部材24を含む液浸部材6の下面7に照射する。または、露光装置が、終端光学素子5の光洗浄用に波長254nmの紫外光ランプ備えた別ステージ(洗浄ステージ、不図視)を備える場合には、基板ステージに代えて洗浄ステージを液浸部材6に対向させ、多孔部材24を含む液浸部材6の下面7に紫外光を照射してもよい。このように多孔部材24を含む液浸部材6を露光装置に装着したまま洗浄することは、液浸露光装置のダウンタイムを短縮するという観点から好ましいが、必要に応じて、液浸露光装置から液浸部材6を取り外して洗浄してもよい。
【0074】
[第5の実施形態]
次に、第5実施形態として、図7に示す液浸露光装置について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
【0075】
液浸部材6Bの下面7は、第1ランド面51と、第1ランド面の外周に設けられた第2ランド面52より構成され、第1ランド面51と第2ランド面52はほぼ同一平面内に配置される(面一である)。流路36Aは、終端光学素子5の外周面14と対向して設けられた側板部12と、外周面57により形成されている。回収口53は多孔部材54の表面を含み、基板Pと対向せず、外周面57と対向するように配置されている。本実施形態の液浸部材6Bにおいては、第1ランド面51と、第2ランド面52の間に形成された第1開口55を介して空隙56に流入した液体LQは、回収口53の多孔部材54を介して吸引、回収される。なお、本実施形態においては、特開2008−182241号公報に開示されているような構成の液浸部材6Bでもよい。
【0076】
本実施形態において、多孔部材54はチタン製部材であり、その表面は人工的に酸化されて酸化チタン膜が形成されている。すなわち、多孔部材54が、第2の実施形態のチタン含有部材に相当する。したがって、本実施形態の液浸露光装置は、過酸化水素水等の洗浄の際、チタンが洗浄液中に溶出しにくい等、第3の実施形態の液浸露光装置と同様の効果を奏する。
【0077】
[第6の実施形態]
次に、第6実施形態として、図8に示す液浸露光装置について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
【0078】
液浸部材6Cにおいては、終端光学素子5の周囲に設置された供給部材61により形成された供給流路61Hは、供給口62が基板Pと対向している。回収部材63により供給部材61の外周に形成された回収流路63Hは、回収口64が基板Pと対向している。トラップ部材65は回収部材63の外周に取り付けられており、トラップ面66はトラップ部材65のうち基板P側を向く面(すなわち下面)であって、図8に示すように、水平面に対して傾斜している。本実施形態の液浸部材6Cにおいては、供給口62から基板Pに、基板面に対してほぼ垂直方向から供給された液体LQは、終端光学素子5の下面5Uと基板Pとの間に濡れ広がるように供給される。また、液浸空間LSの液体LQは、回収口64より基板面からほぼ垂直方向に吸引、回収される。なお、本実施形態においては、特開2005−109426号公報に開示されているような構成の液浸部材6Cでもよい。
【0079】
本実施形態において、供給部材61及び回収部材63はチタン製部材であり、その表面は人工的に酸化されて酸化チタン膜が形成されている。すなわち、供給部材61及び回収部材63が、第2の実施形態のチタン含有部材に相当する。したがって、本実施形態の液浸露光装置も、過酸化水素水等の洗浄の際、チタンが洗浄液中に溶出しにくい等、第3の実施形態の液浸露光装置と同様の効果を奏する。
【0080】
[第7の実施形態]
次に、第7の実施形態として、図9に示す液浸露光装置について説明する。以下の説明において、上述の実施形態と同一又は同等の構成部分については同一の符号を付し、その説明を簡略若しくは省略する。
【0081】
液浸部材6Dにおいては、終端光学素子5の周囲に、圧力調整用回収流路71A、圧力調整用供給流路72A、供給流路73A、回収流路74A、及び補助回収流路75Aが、液浸部材6Dの内周側から外周側に向かって順に形成されている。液浸部材6Dの下面7には、終端光学素子5の周囲に、圧力調整用回収口71B、圧力調整用供給口72B、供給口73B、回収口74B、及び補助回収口75Bが、液浸部材6Dの内周側から外周側に向かって順に、基板Pと対向して形成されている。本実施形態の液浸部材6Dにおいては、供給口73Bから供給された液体LQは、基板P上に濡れ拡がり、液浸領域LSを形成する。液浸領域LSの液体LQは、回収口74Bから吸引、回収される。基板P上の液浸領域LSの液体LQを回収口74Bで回収しきれなかった場合、その回収しきれなかった液体は回収口74Bの外側に流出するが、補助回収口75Bを介して回収することができる。また、基板Pの露光中、圧力調整用回収口71Bから液浸空間LSの液体LQを回収したり、圧力調整用供給口72Bから液浸空間LSへと液体LQを供給することにより、液浸領域LSを所望の形状・圧力に制御することができる。なお、本実施形態においては、特開2005−233315号公報に開示されているような構成の液浸部材6Dでもよい。
【0082】
本実施形態において、液浸部材6Dはチタン製部材であり、人工的に酸化されることにより、下面7、圧力調整用回収流路71A、圧力調整用供給流路72A、供給流路73A、回収流路74A、及び補助回収流路75A等の液浸用液体と接触する表面には、酸化チタン膜が形成されている。すなわち、液浸部材6Dが、第2の実施形態のチタン含有部材に相当する。したがって、本実施形態の液浸露光装置は、過酸化水素水等の洗浄の際に、チタンが洗浄液中に溶出しにくい等、第3の実施形態の液浸露光装置と同様の効果を奏する。
【0083】
なお、上述の各実施形態においては、投影光学系PLの終端光学素子5の射出側(像面側)の光路が液体LQで満たされているが、例えば国際公開第2004/019128号パンフレットに開示されているように、終端光学素子5の入射側(物体面側)の光路も液体LQで満たされる投影光学系PLを採用することができる。
【0084】
なお、上述の各実施形態においては、液体LQとして水を用いているが、水以外の液体であってもよい。液体LQとしては、露光光ELに対して透過性であり、露光光ELに対して高い屈折率を有し、投影光学系PLあるいは基板Pの表面を形成する感光材(フォトレジスト)などの膜に対して安定なものが好ましい。例えば、液体LQとして、ハイドロフロロエーテル(HFE)、過フッ化ポリエーテル(PFPE)、フォンブリンオイル等のフッ素系液体を用いることも可能である。また、液体LQとして、種々の流体、例えば、超臨界流体を用いることも可能である。
【0085】
なお、上述の各実施形態の基板Pとしては、半導体デバイス製造用の半導体ウエハのみならず、ディスプレイデバイス用のガラス基板、薄膜磁気ヘッド用のセラミックウエハ、あるいは露光装置で用いられるマスク又はレチクルの原版(合成石英、シリコンウエハ)等が適用される。
【0086】
露光装置EXとしては、マスクMと基板Pとを同期移動してマスクMのパターンを走査露光するステップ・アンド・スキャン方式の走査型露光装置(スキャニングステッパ)の他に、マスクMと基板Pとを静止した状態でマスクMのパターンを一括露光し、基板Pを順次ステップ移動させるステップ・アンド・リピート方式の投影露光装置(ステッパ)にも適用することができる。
【0087】
さらに、ステップ・アンド・リピート方式の露光において、第1パターンと基板Pとをほぼ静止した状態で、投影光学系を用いて第1パターンの縮小像を基板P上に転写した後、第2パターンと基板Pとをほぼ静止した状態で、投影光学系を用いて第2パターンの縮小像を第1パターンと部分的に重ねて基板P上に一括露光してもよい(スティッチ方式の一括露光装置)。また、スティッチ方式の露光装置としては、基板P上で少なくとも2つのパターンを部分的に重ねて転写し、基板Pを順次移動させるステップ・アンド・スティッチ方式の露光装置にも適用できる。
【0088】
また、例えば米国特許第6611316号明細書に開示されているように、2つのマスクのパターンを、投影光学系を介して基板上で合成し、1回の走査露光によって基板上の1つのショット領域をほぼ同時に二重露光する露光装置などにも本発明を適用することができる。また、プロキシミティ方式の露光装置、ミラープロジェクション・アライナーなどにも本発明を適用することができる。
【0089】
また、露光装置EXが、例えば米国特許第6341007号明細書、米国特許第6208407号明細書、米国特許第6262796号明細書等に開示されているような、複数の基板ステージを備えたツインステージ型の露光装置でもよい。
【0090】
また、露光装置EXが、例えば米国特許第6897963号明細書、米国特許出願公開第2007/0127006号明細書等に開示されているような、基板を保持する基板ステージと、基準マークが形成された基準部材及び/又は各種の光電センサを搭載し、露光対象の基板を保持しない計測ステージとを備えた露光装置でもよい。また、複数の基板ステージと計測ステージとを備えた露光装置にも適用することができる。露光装置の計測ステージやツインステージにおいても液浸領域が形成される場合には、それらのステージ表面及びステージ表面に設けられた計測部材も本実施形態におけるチタン含有部材になり得る。
【0091】
また、露光装置EXは、液浸領域の側面から気流を供給して液体を封じ込めるタイプの液浸露光装置であってもよい。この場合、気流の吹き出し口や回収を形成する部材も、本実施形態におけるチタン含有部材になり得る。
【0092】
露光装置EXの種類としては、基板Pに半導体素子パターンを露光する半導体素子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の露光装置や、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、MEMS、DNAチップ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用できる。
【0093】
なお、上述の各実施形態においては、レーザ干渉計を含む干渉計システムを用いて各ステージの位置情報を計測するものとしたが、これに限らず、例えば各ステージに設けられるスケール(回折格子)を検出するエンコーダシステムを用いてもよい。
【0094】
なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスクを用いたが、このマスクに代えて、例えば米国特許第6778257号明細書に開示されているように、露光すべきパターンの電子データに基づいて透過パターン又は反射パターン、あるいは発光パターンを形成する可変成形マスク(電子マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれる)を用いてもよい。また、非発光型画像表示素子を備える可変成形マスクに代えて、自発光型画像表示素子を含むパターン形成装置を備えるようにしても良い
【0095】
上述の各実施形態においては、投影光学系PLを備えた露光装置を例に挙げて説明してきたが、投影光学系PLを用いない露光装置及び露光方法に本発明を適用することができる。例えば、レンズ等の光学部材と基板との間に液浸空間を形成し、その光学部材を介して、基板に露光光を照射することができる。
【0096】
また、例えば国際公開第2001/035168号パンフレットに開示されているように、干渉縞を基板P上に形成することによって、基板P上にライン・アンド・スペースパターンを露光する露光装置(リソグラフィシステム)にも本発明を適用することができる。
【0097】
上述の実施形態の露光装置EXは、本願請求の範囲に挙げられた各構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てることで製造される。これら各種精度を確保するために、この組み立ての前後には、各種光学系については光学的精度を達成するための調整、各種機械系については機械的精度を達成するための調整、各種電気系については電気的精度を達成するための調整が行われる。各種サブシステムから露光装置への組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精度が確保される。なお、露光装置の製造は温度及びクリーン度等が管理されたクリーンルームで行うことが望ましい。
【実施例】
【0098】
以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0099】
[酸化チタン膜の形成]
表面を研磨したチタン片(0.1mm×10mm×10mm)を400℃で5分間、大気中で加熱して試料1を作製した。試料1の表面の色は、加熱前の銀白色からごく薄い淡黄色に変化した。この表面色は、酸化チタン膜の干渉色によるものであり、これから、試料1の表面には酸化チタン膜が形成されたことがわかった。薄膜設計ソフト(ヒューリンクス社製、TFCalc)により、酸化チタン膜の干渉色の色調から膜厚を計測したところ、5nmであった。
【0100】
同様のチタン片を用いて、450〜700℃のそれぞれの温度で5分間加熱を行い、試料2〜試料10を作製した。試料2〜試料10の表面の色も、加熱前の銀白色から変化しており、酸化チタン膜が形成されたことが確認された。試料2〜試料10についても試料1と同様に、酸化チタン膜の干渉色の色調から膜厚を計測した。試料1〜10に関して、加熱温度、表面色及び酸化チタン膜の膜厚を表1に、加熱温度と酸化チタン膜の膜厚との関係を図10に示す。また、比較のため、試料0として、加熱前のチタン片の表面色と酸化チタン膜の膜厚も表1に示す。試料0では、チタン片の表面に2nm以下の自然酸化膜が形成されている。
【0101】
【表1】

【0102】
図10から、加熱温度が高いほど酸化チタン膜が厚く形成されることがわかる。加熱温度と酸化チタン膜の膜厚は、ほぼ比例関係にあり、加熱温度が625℃以上で酸化チタン膜の膜厚増加の勾配が急になる。
【0103】
[過酸化水素への浸漬試験]
上で作製した試料0、1、2、4、6、8及び10の7個の試料を、それぞれ、5wt%過酸化水素水45mlに5分間浸漬した。その後、回収した過酸化水素水を液体クロマトグラフで分析し、過酸化水素中に溶出したチタン量を検出した。酸化チタン膜の膜厚とチタン検出量の関係を図11に示す。
【0104】
図11から、酸化チタン膜が5nm形成されると、チタン検出量が急激に低下することがわかる。そして、酸化チタン膜が5nm以上では、酸化チタン膜の膜厚の増加に伴い、チタン検出量は緩やかに減少した。
【0105】
[紫外光照射試験]
まず、上で作製した試料0、1、2、4、6及び8の6個の各試料表面の接触角を液滴法により測定した。その後、ブラックライト(波長365nm)を1時間照射した。ブラックライト照射後の各試料表面の接触角を同様の方法で再度測定した。各試料の酸化チタン膜厚とブラックライト照射前後の接触角の関係を図12に示す。接触角はその表面の親水性の指標であり、接触角が小さいほど、表面が親水性であることを意味する。
【0106】
図12から、ブラックライトを照射すると全ての試料表面の接触角が低下することがわかる。ブラックライト照射前の接触角は、各試料間に大きな差は無く75°前後であるが、ブラックライト照射後は、酸化チタン膜厚の増加に伴い接触角は低下する。酸化チタン膜の膜厚が10nmでは、紫外光照射後の接触角が、紫外光照射前の約半分に低下した。
【0107】
以上の実験結果から以下のことがわかる。図11から、チタン表面に熱酸化による酸化チタン膜を形成することで、チタンの過酸化水素水への溶出が抑制されることがわかる。そして、酸化チタン膜の膜厚は、自然酸化膜の膜厚である2nmより厚く、更に5nm以上であることが好ましい。酸化チタン膜の膜厚が5nm以上あれば十分なチタンの溶出防止効果が得られるからである。また、チタンの溶出防止の観点からは、酸化チタン膜の膜厚は5nmより十分に厚くてもよいが、チタン溶出効果がほぼ飽和すること及び緻密な膜を得る観点から、酸化チタン膜の膜厚は100nm以下が好ましい。
【0108】
図12から、酸化チタン膜が形成された表面に紫外光を照射すると、表面が親水性になることがわかる。これは、酸化チタン膜の光触媒効果によるものと考えられる。表面が親水性になると、汚染物質と下地(試料表面)の間に水が浸透して汚染物質の除去が容易になる。つまり、紫外線照射による光洗浄が可能となる。紫外光を照射した後の表面の親水性は、酸化チタン膜の膜厚が厚い程、高くなる。つまり、酸化チタン膜の膜厚が厚い程、表面に付着した汚染物質の除去が容易になる。この観点からは、酸化チタン膜の膜厚は10nm以上が好ましい。
【0109】
更に、酸化チタン膜を形成するための試料の加熱温度は、400℃〜700℃であることが好ましい。400℃以上で加熱することにより、チタンの過酸化水素水への溶出を防止できる十分な膜厚の酸化チタン膜を形成することができる。また、緻密で安定した酸化チタン膜を形成する温度は700℃以下とされていることから、加熱温度の上限は700℃が好ましい。
【産業上の利用可能性】
【0110】
本発明によれば、液体を介して基板を露光する際に用いる、液体と接するチタン含有部材を過酸化水素を含む溶液で洗浄する際に、チタンの洗浄液への溶出を抑制することができる。そのため、洗浄後により清浄なチタン含有部材を提供することができる。また、チタン含有部材に適宜、紫外光を照射することにより、稼動時に汚染物質の付着しにくいチタン含有部材を提供することができる。
【符号の説明】
【0111】
1 液浸機構
10 液体供給機構
12 供給口
20 液体回収機構
22 回収口
25 多孔部材
30 メンテナンス機器
31 容器
37 超音波振動子
70 ノズル部材
140 支持機構
EL 露光光
EX 露光装置
K1 光路空間
LK 洗浄用液
LQ 液体
LS1 第1光学素子
P 基板
PL 投影光学系

【特許請求の範囲】
【請求項1】
液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材の製造方法であって、
前記チタン含有部材を用意することと、
前記チタン含有部材を酸素を含む雰囲気中で加熱して、前記チタン含有部材の表面に酸化チタン膜を形成することを含むチタン含有部材の製造方法。
【請求項2】
前記チタン含有部材の加熱を、400〜700℃の温度で行う請求項1に記載のチタン含有部材の製造方法。
【請求項3】
前記チタン含有部材は、液体を介して基板を露光する露光装置の部品に装着される部材であって、
前記チタン含有部材を前記部品に装着する前に、前記チタン含有部材の表面に酸化チタン膜を形成する請求項1又は2に記載のチタン含有部材の製造方法。
【請求項4】
前記チタン含有部材は、液体を介して基板を露光する露光装置の部品に装着される部材であって、
前記チタン含有部材を前記部品に装着した後に、前記チタン含有部材と前記部品の両方を酸素を含む雰囲気中で加熱して、前記チタン含有部材の表面に酸化チタン膜を形成する請求項1又は2に記載のチタン含有部材の製造方法。
【請求項5】
液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材であって、
請求項1〜4のいずれか一項に記載の製造方法によって製造されたチタン含有部材。
【請求項6】
液体を介して基板を露光する際に用いる、前記液体と接するチタン含有部材であって、
前記チタン含有部材の表面が人工的に酸化されて形成された酸化チタン膜を備えるチタン含有部材。
【請求項7】
前記酸化チタン膜の膜厚が、5nm以上である請求項5又は6に記載のチタン含有部材。
【請求項8】
前記酸化チタン膜の膜厚が、10nm以上である請求項5〜7のいずれか一項に記載のチタン含有部材。
【請求項9】
前記チタン含有部材は、液体を介して基板を露光する露光装置の部品に装着される部材であって、
前記部品は、前記液体を回収する回収口を有し、前記チタン含有部材は、前記回収口に設けられた多孔部材である請求項5〜8のいずれか一項に記載のチタン含有部材。
【請求項10】
液体を介して基板を露光する露光装置であって、請求項5〜9のいずれか一項に記載のチタン含有部材を備える露光装置。
【請求項11】
請求項10に記載の露光装置を用いて基板を露光することと、
露光された前記基板を現像することを含むデバイス製造方法。
【請求項12】
更に、前記チタン含有部材を過酸化水素を含む溶液で洗浄することを含む請求項11に記載のデバイス製造方法。
【請求項13】
前記チタン含有部材を過酸化水素を含む溶液で洗浄する前に、
前記部材をアルカリ溶液で洗浄することを含む請求項12に記載のデバイス製造方法。
【請求項14】
前記チタン含有部材に、紫外光を照射することを含む請求項11〜13のいずれか一項に記載のデバイス製造方法。
【請求項15】
前記紫外光の波長が、254nm又は365nmである請求項14に記載のデバイス製造方法。
【請求項16】
前記チタン含有部材を前記露光装置に装着したまま、過酸化水素を含む溶液で洗浄する請求項12〜15のいずれか一項に記載のデバイス製造方法。
【請求項17】
前記チタン含有部材を前記露光装置に装着したまま、紫外光を照射する請求項14に記載のデバイス製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2012−9668(P2012−9668A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−144961(P2010−144961)
【出願日】平成22年6月25日(2010.6.25)
【出願人】(000004112)株式会社ニコン (12,601)
【Fターム(参考)】