説明

ツインフローセルとそれを用いる濃度測定システム

【課題】溶液中の濃度の光学的分光測定において、配管ラインにフローセルを設けるとともに測定精度を保つための校正も簡単に行えるようにする。
【解決手段】フローセルは、フローセルは、分光測定装置に使用されるフローセルであって、光が入射する光透過性の第1平面板と、入射された光が出射する光透過性の第2平面板と、平行に配置される第1と第2の平面板の間に、2つの独立した同一形状の第1と第2の空間を仕切るように配置される3つの互いに平行な壁板とからなる。第1平面板、第2平面板および3つの壁板から第1と第2の空間が構成されている。好ましくは、さらに、光を出射する光路の端部である第1端部と、フローセルを挟んで第1端部に対向する第2端部とを固定する取付部と、この取付部の位置を、フローセルに相対的に、第1と第2の空間の一方に光を透過する位置から他方に光を透過する位置に移動可能な移動装置とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体の透過光強度による光学的濃度測定、より詳細には、それに用いるフローセルおよび濃度測定システムに関する。
【背景技術】
【0002】
分光分析による水溶液などの濃度測定において、分光測定装置内のフローセルに試料を流し、フローセルの透過光を検出することにより、濃度が測定できる(たとえば、特開平6−265471号公報参照)。ここで、透過光の吸光度を求め、予め求められた検量線式を用いて濃度が決定できる。長期間にわたる測定の場合は、測定の精度を保つため、分光測定装置の校正が必要である。
【0003】
半導体デバイスの製造工程では、使用する薬液の濃度を測定して、濃度を管理している。ここで、たとえば、薬液槽からあふれた薬液を取り出し、元の薬液槽に戻す循環ラインを設け、その循環ラインの途中から配管を分岐して、分光測定装置内のフローセルにサンプル液を導入する。フローセルを流れるサンプル液に光を透過し、透過光を測定し、測定データを解析することにより濃度を決定する。1回の測定にはたとえば5分以上を要する。校正の際には、循環ラインからの薬液の取り出しを中止し、フローセルに校正液のみを流して、透過光を測定する。
【0004】
循環ラインに直接にフローセルを設けて、よりリアルタイムに測定できる濃度測定装置も知られている。たとえば、特開平7−12713号公報に記載された濃度測定装置では、流体が流れる配管にフローセルを設けている。フローセルにおける流れの方向に直交して光を透過して、透過光を測定することにより液体中の物質の濃度が分析できる。校正については記載されていない。また、特開2005−164255号公報に記載された分光分析装置では、試料光、参照光およびダーク光は、異なる光路を通す。試料光の場合にのみ光がフローセルのサンプルを透過する。
【特許文献1】特開平6−265471号公報
【特許文献2】特開平7−12713号公報
【特許文献3】特開2005−164255号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
特開平7−12713号公報に記載された濃度測定装置では、配管ラインにフローセルが取り付けてあるが、濃度測定装置の精度確認を実施するための既知濃度のサンプルを流すことができないために、濃度測定の精度を確認できない。校正ができないため、濃度測定値が徐々にずれていく。
【0006】
他方、特開2005−164255号公報に記載された分光分析装置では、測定光路および参照光路のそれぞれに光学部品が必要である。したがって、校正機構を取り付けるためには、装置全体が大きくなり、部品点数も増えてコストが高くなる。その上、試料光路と参照光路が別であるため、透過光強度から吸光度を求める際、環境などによる光学部品などの変動が除去できない。このために、校正を行っても、濃度測定値に、除去しきれない誤差が出てくる。
【0007】
本発明の目的は、溶液中の濃度の光学的分光測定において、測定を速くかつ高精度で行えるようにすることである。
【課題を解決するための手段】
【0008】
本発明に係るフローセルは、分光測定装置に使用されるフローセルであって、光が入射する光透過性の第1平面板と、入射された光が出射する光透過性の第2平面板と、平行に配置される第1と第2の平面板の間に、2つの独立した同一形状の第1と第2の空間を仕切るように配置される3つの互いに平行な壁板とからなる。第1平面板、第2平面板および3つの壁板から第1と第2の空間が構成されている。なお、好ましくは、前記第1と第2の空間について、一方の空間での光透過方向での第1と第2の平面板の間隔と、他方の空間での光透過方向での第1と第2の平面板の間隔との差が1μm以下である。
【0009】
前記フローセルは、好ましくは、さらに、取付部と移動装置とを備える。取付部は、光源から発生された光を当該フローセルに入射し、フローセルを透過した光を受光素子に導く光路の一部である第1端部と第2端部であって、フローセルの方に光を出射する第1端部と、前記フローセルを挟んで第1端部に対向する第2端部であって、前記フローセルを透過した光を受光する第2端部とを固定し、移動装置は、この取付部の位置を、前記フローセルに相対的に、前記第1と第2の空間の一方に光を透過する位置から他方に光を透過する位置に移動可能である。
【0010】
本発明に係る濃度分析システムは、薬液を収容する薬液槽と、前記フローセルと、薬液槽から供給される薬液を前記フローセルの一方の空間に供給する配管ラインと、複数波長の光を発生して前記フローセルに入射し、前記フローセルのいずれかの空間を透過した透過光を測定する濃度測定装置とからなる。
【発明の効果】
【0011】
フローセルにおいて、配管ラインに直結された1つの空間にサンプル液を流すことにより濃度測定が速く行えるとともに、配管ラインに純水などの校正液が流せない場合でも、他方の空間に既知濃度のサンプルなどを簡単に流すことができるので、濃度測定装置の精度確認(校正)を容易に実施できる。
【発明を実施するための最良の形態】
【0012】
以下、添付の図面を参照して発明の実施の形態を説明する。
図1は、混酸濃度監視のシステムを示す。濃度監視のため、混酸が入れられている薬液槽10からあふれ出た一部の薬液(サンプル)が取り出され、フローセル12、フィルタ14およびポンプ16を含む循環ライン(配管ライン)を通される。フローセル12で濃度が測定されたサンプルは、ポンプ16により元の薬液槽10の中に戻される。フローセル12は、2本の光ファイバ13により濃度測定装置18と接続される。濃度測定装置18は、分光測定装置であり、所定波長の光を発生し、光ファイバ13を通してフローセル12に入射する。フローセルを透過した光は、光ファイバ13を通って濃度測定装置18にて検出され、それを基に濃度が決定される。このようにフローセル12は循環ラインに直結されている。フローセル12を流れる薬液を測定することにより、よりリアルタイムに(1回の測定に10秒程度で)複数時点で測定できる。
【0013】
フローセルを循環ラインの配管に直接に取り付けた場合、校正液を流すための校正ラインを取り付けられない。そこで、図2に示すように、フローセル12として、2つの同じ構造のセル12a、12bからなるツインセルを用いる。そして、一方のセルから他方のセルに切り替える場合には、光ファイバ13の位置のみをずらして光路を切り替える。したがって、光路を切り換えたとき、切り換え部分を除いて光学系は変化しない。また、セルは同じ構造をとり、2つのセルは光路長が同じになるようにできる限り平行に保たれている。ツインセルの一方(メインセル12a)を循環ラインの配管に直接に取り付け、サンプル液が流れるようにする。また、他方のセル(サブセル12b)には、校正液や既知濃度サンプルを流すようにする。したがって、メインセル12a側から、サブセル12b側に光路を切り替えること以外は他の光学系の構成を同じにして、校正または確認測定が行える。校正のための余計な配管を取り付ける必要はない。また、薬剤に対する防曝への対応が容易である。
【0014】
図3にツインセルを備えるフローセル12の構造を示す。一般的には、前述したように、フローセルは、光が入射する光透過性の第1平面板と、入射された光が出射する光透過性の第2平面板と、平行に配置される第1と第2の平面板の間に、2つの独立した同一形状の第1と第2の空間を仕切るように配置される3つの互いに平行な壁板とからなり、第1平面板、第2平面板および3つの壁板から第1と第2の空間が構成されている。図3はフローセルの具体例を示し、図3において、(a)は平面図、(b)は正面図、(c)は(a)のA−A’線での断面図である。ツインフローセル12は、光透過が可能な上面部12cおよび下面部12dと両者の間の第1側面部12e、中央分離部12fおよび第2側面部12gからなり、これらは、石英、サファイヤなどの光透過性材料で作成されている。光透過性とは、赤外領域、可視領域または紫外領域の光を透過することである。フローセル12を構成するガラス基板12c〜12gをオプティカルコンタクトにて高精度に接合することにより、フローセルを製作する。オプティカルコンタクトとは、各々のガラス面を研磨加工することにより、厳密に似合った、高度な平面性と平滑性のある2つの表面を作り出し、基板表面の分子間力で接合させる方法をいう。すなわち、高精度に研磨された2つの基板表面を接着剤などを使わないで接合する技術である。ガラス基板12c〜12gは、オプティカルコンタクトでメインセル12aとサブセル12bを構成可能な平坦度で研磨されており、それらは、オプティカルコンタクトで接合されている。メインセル12aは、ガラス基板12c,12d,12eおよび12fで囲まれ、サブセル12bは、ガラス基板12c,12d,12fおよび12gで囲まれる。したがって、メインセル12aとサブセル12bは、同一形状として構成でき、また、それぞれ独立した空間である。薬液の入口と出口では、外方向に向かって円錐状に狭まる形状としている。メインセル12aとサブセル12bは、(c)に示されるように、赤外領域、可視領域または紫外領域の光を透過する中央部では矩形断面を有するが、両端では、実際には、(a)、(b)に示されるように、円錐形状で狭くなって外部に開口される。開口部から測定対象のサンプルが導入され、もう1つの開口部から排出される。透過光は、セル内のサンプルの流れに垂直に入射する。
【0015】
メインセル12aとサブセル12bを構成するガラス基板12c,12dの間の光路のセル長は1〜20mmである。セル長は、測定対象の光吸収の程度に応じて適当な長さとする。ガラス基板12c,12dは、光路に対して、できる限りの平行度が保たれている。すなわち、ガラス基板12c,12dの光を透過する面は、オプティカルコンタクトが可能な平坦度で研磨されている。具体的には、光透過部分でのセルの総厚みの差が1μm以下であり、セルに加工する前のガラス基板の状態で、平行度が0.5μm以下とする。このように、光透過板の平行度を高精度に保つことにより、光路長の差がほとんどなく、2つのセル12a、12bが事実上同一の形状となり、1つのセルで濃度測定と校正とを行う場合に近い精度で校正が可能となった。もちろん、平行度がさらに高くなることが望ましい。なお、1例では、各セル12a、12bにおける光路の大きさは、φ3mmであり、メインセル12aとサブセル12bの間の分離壁は1.5mmであり、さらに、中央部近傍にけられを防止するための余分の間隔が必要である。
【0016】
図4は、濃度測定装置18の構成を示す。濃度測定装置18は、分光部20、サンプリング部40およびデータ処理部50からなる。
【0017】
分光部20は、2つの部分20a、20bからなる。たとえばタングステン・ハロゲンランプからなる光源22からの放射光は凸レンズ24により集光され、凸レンズ24の焦点位置に配置された絞り26を通る。回転円板30は、複数の干渉フィルタ28を等角度間隔で保持しており、駆動モータ32によりたとえば1000rpmで回転駆動される。絞り26を通過し、回転円板30のいずれかの干渉フィルタ28を透過した光は凸レンズ34により集光される。集光された光は、サンプリング部40において、光ファイバ13を通って、フローセル12の一方のセルに入射する。フローセル12を透過し、もう1本の光ファイバ13を戻った光は、凸レンズ36により集光され、受光素子38に入射する。受光素子38は入射光を光電流に変換する。
【0018】
回転円板30の干渉フィルタ28は、入射光を特定の波長に分光するが、その波長として、水の特性吸収帯が顕著にあらわれる近赤外域において、特定成分の濃度変化に対してスペクトルの変動が大きく、他成分の妨害や干渉の影響が少ない波長が選択される。具体的には、水の特性吸収帯である980nmとその近傍、1200nmとその近傍、1460nmとその近傍、1940nmとその近傍、2500nmとその近傍において、近赤外吸収スペクトルの変動は、各イオン種によって固有のスペクトルを与える。また、酢酸に関しては、1680nm、1720nm、2260nm、2480nm、2510nmに特性吸収がある。そこで、干渉フィルタ28としては、これら波長の光を含む800nmないし2600nmの範囲の波長のうちから、測定対象の混酸に応じて、たとえば8つの波長を選択し、これら8つの波長の光をそれぞれ透過させる干渉フィルタ28を8枚使用する。なお、ここでは、近赤外領域での分光について説明したが、一般に、赤外領域、可視領域または紫外領域の光を分光する干渉フィルタ28を使用してよいことはいうまでもない。
【0019】
(サンプリング部40の構成)
サンプリング部40は、図2に示すように、循環ラインの一部に直結されたフローセル12と、フローセル12に光を透過するための2本の光ファイバ13からなる。また、このフローセル12は、メインセル12aとサブセル12bからなるツインセル構造である。メインセル12aがOリングなどを用いて循環ラインと直接に接続されている。1対の光ファイバ13は、通常はメインセル12aに、流れに直交する方向に光を透過するように位置されて、循環ラインからの薬液の濃度測定が行われる。一方、サブセル12bでは、校正のため、校正液や既知濃度サンプルを流すことができ、たとえば純水のラインを接続する。また、純水を封入したチューブを接続してもよい。これによりサブセル12aに校正用の液体を簡単に導入できる。したがって、サブセル12bを設けることにより校正に要する時間は短くなる。
【0020】
フローセル12を挟んで位置される1対の光ファイバ取付部44に、光ファイバ13と接続するためのコネクタ(図示しない)が設けられており、そこに光ファイバ13が接続される。光路の切替のため、滑らかに移動する移動装置を用いる。ここでは、エアーアクチュエータ42(図2の下方に設置されるので図示されない)を用いる。この切替の移動距離は、平行度を保つため、できるだけ短く、15mm以下であることが望ましい。これにより、アクチュエータといった機械的な移動手段を用いても、平行度が保たれていれば、位置再現性のずれがあっても、同一光路と見なせる。光ファイバ取付部44を光路と垂直な方向にエアーアクチュエータ42により滑らかに所定位置に移動することにより、メンインセル12aを通る光路とサブセル12bを通る光路が切り替えられる。エアーアクチュエータ42による光路切り換えは、データ処理装置53により制御される。濃度測定の際には、1対の光ファイバ13の間の光路がメインセル12aを通るように光ファイバ取付部44が位置される。濃度測定の校正をする場合は、1対の光ファイバ13の間の光路がサブセル12bを通るように光ファイバ取付部44が位置される。このように、光ファイバ13でセル内の流体に光を透過させて測定を行い、エアーアクチュエータ42で光路を切り替えることで、校正やメンテナンス測定を行うことができる。
【0021】
(データ処理部50の構成)
データ処理部50では、図4に示すように、増幅器51は、受光素子38から光電流として出力された、フローセル12の透過光の強度に対応する透過光強度信号を増幅し、A/D変換器52は、増幅器51の出力をディジタル信号に変換する。データ処理装置53は、A/D変換器52より入力する透過光強度信号から複数波長の光の吸光度をそれぞれ演算し、演算した各波長の光の吸光度および後述するように予め求められて記憶した検量線式に基づいて各波長の吸光度から混酸中の酸の濃度を演算する。
【0022】
データ処理装置53は、混酸中の酸の濃度の上記演算を行なうマイクロプロセッサ54、検量線式や各種データを記憶するRAM55、マイクロプロセッサ54を動作させるためにプログラム等が格納されたROM56、データや各種の命令を入力するキーボード等の入力装置57、上記データ処理の結果を出力するプリンタやディスプレイ等の出力装置58等から構成される。マイクロプロセッサ54は、また、回転円板30を回転する駆動モータ32などの駆動制御信号を発生する。
【0023】
なお、フローセル12の光出射側に、検出器38および上述の演算部を設けてもよい。
【0024】
データ処理部50における濃度定量のためのデータ処理は、特開平6−265471号公報に記載された公知の方法を用いる。図5は、データ処理装置53のマイクロプロセッサ54によるデータ処理のより具体的な内容を示す。図4の受光素子38は、駆動モータ32の回転により回転円板30が回転駆動されると、この回転円板30に保持されている8枚の干渉フィルタ28の透過波長の光がメインセル12a内の混酸を透過した透過光に比例する信号を発生する。これら信号は増幅器51で増幅された後、A/D変換器52でディジタル信号に変換される。このディジタル信号を入力する(ステップS1)。
【0025】
次に、このディジタル信号について、次の式(1)の演算を実行し、吸光度Aを演算する(ステップS2)。
【0026】
【数1】

ここで、i=1〜8、R=測定対象サンプルのi波長目の透過強度値、B=基準濃度の混酸(たとえば、フッ酸+硝酸+酢酸)をサブセル12bに入れたときのi波長の透過強度値、D=メインセル12aを遮光したときのi波長目の透過強度値。BおよびDは予め測定しておき、キーボード等の入力装置57からデータ処理装置53のRAM55に格納されている。
【0027】
次に、式(1)の演算により得られた吸光度Aに次の式(2)の変換を行なう(ステップS3)。
【0028】
【数2】

この変換を行なうのは次の理由による。式(1)により演算される吸光度Aは、光源22の明るさの変動、受光素子38の感度変動、光学系のひずみ等により変化する。しかしこの変化はあまり波長依存性はなく、8波長の各吸光度データに同相、同レベルで重畳する。したがって、式(2)のように、各波長間の差を取ることにより、上記変化を相殺できる。また、サンプル自体の温度変動による吸光度Aの変動もあるが、この変動の除去には、たとえば本出願人の出願に係る特開平3−209149号公報に記載の方法を採用できる。
【0029】
次に、式(2)で得られたSをもとに次の式(3)の演算を行い、混酸がたとえば(フッ酸+硝酸+酢酸)である場合には、フッ酸濃度C1,硝酸濃度C2および酢酸濃度C3を演算する(ステップS4)。
【0030】
【数3】

【0031】
式(3)において、F(S)はフッ酸の検量線式であり、Sのそれぞれの1次項から高次項を含むとともに、SとSi+1あるいはその高次項の各乗算であるクロス項および定数項を含み、次の式(4)で表される。
【0032】
【数4】

【0033】
式(4)において、S,Si+1は式(1),(2)により得られたデータ、α,β,γは検量線式の係数、Z0は定数項である。式(4)は、既知濃度の混酸(フッ酸+硝酸+酢酸)の標準サンプルを用いて、図1の混酸の濃度測定装置により予め求めておき、RAM55に格納されている。
【0034】
また、式(3)において、G(S)およびH(S)はそれぞれ硝酸の検量線式および酢酸の検量線式であって、いずれも式(4)と同様の式である。これら検量線式についても、同様に、既知濃度の混酸(フッ酸+硝酸+酢酸)の標準サンプルを用いて、図1の混酸の濃度測定装置により予め求めておき、RAM55に格納されている。
【0035】
次に、式(4)の演算により得られたフッ酸の濃度C1、硝酸の濃度C2および酢酸の濃度C3を、CRT画面に表示し、または、プリンタ等の出力装置58において印字用紙にハードコピーとして出力し、または、外部へ送信する(ステップS5)。
【0036】
また、上記で得られたフッ酸の濃度C1、硝酸の濃度C2および酢酸の濃度C3のデータにもとづいて、現時点における薬液槽10(図1参照)の状態を把握し、これらデータより演算することができる薬液槽10の管理に必要なパラメータ値、たとえば原液追加量、原液追加の時間、廃液量、廃液時間を演算し、その結果を上記出力装置58に出力する(ステップS6)。
【0037】
上記の例では、混酸がフッ酸+硝酸+酢酸の3成分からなるため、3行×3列の行列で表される補正係数を使用した。たとえばフッ酸+硝酸等の2成分の混酸の場合は、補正係数が2行×2列となる点が異なるだけで、補正係数は同様に求めることができる。
【0038】
なお、特開平6−265471号公報には、濃度測定装置を長時間使用している場合の、濃度の演算値の温度変化、光学系のひずみ等による変化の補正について説明されている。これは、既知濃度のサンプルをサブセル12bで測定する場合に適用できる。データ処理装置53による補正演算について説明すると、式(5)は補正演算に用いる式である。
【0039】
【数5】

この式(5)において、C1,C2およびC3は式(3)により得られた値であり、また、C1´,C2´およびC3´は補正後の各酸の濃度である。さらに、pij(i=1〜3,j=1〜3)は補正係数である。
【0040】
補正係数pijは、式(3)を求めてから長時間経過しておらず、補正する必要のないときには、以下の関係がある。p11=p22=p33=1、p12=p13=p21=p23=p31=p32=0、C1´=C1、C2´=C2、C3´=C3
【0041】
補正係数pijは、次のようにして求められる。すなわち、濃度比率の異なる既知濃度の混酸のn種類(n=3以上)のサンプル1ないしサンプルnを用意する。これらサンプル1ないしサンプルnが次の式(6)で示される値の既知濃度を有しているものとする。
【0042】
【数6】

【0043】
また、混酸の濃度をデータ処理装置53により測定した補正前の測定濃度が次の式(7)で示されるものとする。
【0044】
【数7】

【0045】
このとき、サンプル1ないしnの既知濃度と測定濃度との間には、次の式(8)で示す関係が成立する。
【0046】
【数8】

【0047】
式(8)における3つの行列をそれぞれ
【0048】
【数9】

【0049】
【数10】

【0050】
【数11】

とおくと、式(8)はC´=PCで表わされ、補正係数pijは、次の式(12)(nが3の場合)および式(13)(nが3よりも大の場合)により求められる。ここで、行列Cは行列Cの転置行列であり、行列C-1は行列Cの逆行列である。
【0051】
【数12】

【0052】
【数13】

【0053】
補正では、濃度既知のサンプル1ないし3(n=3の場合)をサブセル12bの透過光の光路に挿入し、式(7)の値を求める。また、式(6)の値は予めデータ処理装置53のRAM55に格納しておき、式(9)から式(13)により、補正値を算出し、式(5)より、真値からのずれを補正した濃度値が求まる。
【図面の簡単な説明】
【0054】
【図1】混酸濃度監視のシステムの図
【図2】ツインフローセルの構造を示す図
【図3】ツインフローセルの構造を示す図
【図4】濃度測定装置の構成を示す図
【図5】データ処理装置のマイクロプロセッサによるデータ処理のフローチャート
【符号の説明】
【0055】
10 薬液槽、 12 フローセル、 12a メインセル、 12b サブセル、 13 光ファイバ、 18 濃度測定装置、 20 分光部、 40 サンプリング部、 50 データ処理部、 53 データ処理装置。

【特許請求の範囲】
【請求項1】
分光測定装置に使用されるフローセルであって、
光が入射する光透過性の第1平面板と、入射された光が出射する光透過性の第2平面板と、
平行に配置される第1と第2の平面板の間に、2つの独立した同一形状の第1と第2の空間を仕切るように配置される3つの互いに平行な壁板とからなり、
第1平面板、第2平面板および3つの壁板から第1と第2の空間が構成されている
フローセル。
【請求項2】
前記第1平面板、第2平面板および3つの壁板は、オプティカルコンタクトで第1と第2の空間を構成可能な平坦度で研磨されており、前記第1平面板、第2平面板および3つの壁板はオプティカルコンタクトで接合されており、かつ、第1平面板と第2平面板の光を透過する面は、オプティカルコンタクトが可能な平坦度で研磨されていることを特徴とする請求項1に記載のフローセル。
【請求項3】
さらに、
光源から発生された光をフローセルに入射し、フローセルを透過した光を受光素子に導く光路の一部である第1端部と第2端部であって、フローセルの方に光を出射する第1端部と、前記フローセルを挟んで第1端部に対向する第2端部であって、前記フローセルを透過した光を受光する第2端部とを固定する取付部と、
この取付部の位置を、前記フローセルに相対的に、前記第1と第2の空間の一方に光を透過する位置から他方に光を透過する位置に移動可能な移動装置と
を備えることを特徴とする請求項1または2に記載のフローセル。
【請求項4】
前記第1と第2の空間について、一方の空間での光透過方向での第1と第2の平面板の間隔と、他方の空間での光透過方向での第1と第2の平面板の間隔との差が1μm以下であることを特徴とする請求項1〜3のいずれかに記載のフローセル。
【請求項5】
薬液を収容する薬液槽と、
請求項1〜4のいずれかに記載されたフローセルと、
薬液槽から供給される薬液を前記フローセルの一方の空間に供給する配管ラインと、
複数波長の光を発生して前記フローセルに入射し、前記フローセルのいずれかの空間を透過した透過光を測定する濃度測定装置と
からなる濃度測定システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2007−155494(P2007−155494A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−350968(P2005−350968)
【出願日】平成17年12月5日(2005.12.5)
【出願人】(000001096)倉敷紡績株式会社 (296)
【Fターム(参考)】