説明

ハイブリッド導体およびその製造方法

広い周波数範囲にわたって向上した導電性および電流容量を達成できるハイブリッド導体を開示する。ハイブリッド導体は、電気的用途または熱的用途、もしくは両方を組み合わせたものに用いることができる。そのようなハイブリッド導体を製造する方法は、導電性金属元素(例えば、銀、金、銅)、遷移金属元素、合金、ワイヤ、またはそれらの組合せを、カーボンナノチューブ材料と複合化することとを含む。代わりに、ハイブリッド導体は、カーボンナノチューブ材料を塩溶液内でドープすることにより形成されてもよい。

【発明の詳細な説明】
【背景技術】
【0001】
本発明は、電気的および熱的導体、より詳しくは、広い周波数範囲にわたって向上した導電性および電流容量を有するハイブリッド導体に関する。
【0002】
<背景技術>
カーボンナノチューブは、高い破断点歪み(または破壊に至る歪み、strain to failure)および比較的高い引張係数を含む極端な引張強さを有することが知られている。カーボンナノチューブは、疲労、放射線障害および熱に対しても高い耐性を有し得る。そのため、カーボンナノチューブを複合材料に加えることによって、複合材料の抗張力および剛性を向上させることができる。
【0003】
最近の15年間で、カーボンナノチューブの特性がよりよく理解されたことによって、カーボンナノチューブに対する関心は研究団体の内外でおおいに増加した。これらの特性を利用することの1つの要点は、ナノチューブが広範に開発されるのに十分な量でそれらが合成されることである。例えば、マクロスケール構造(例えば、1cmよりも大きい寸法を有する構造)の複合材料の高張力要素として用いる場合には、大量のカーボンナノチューブが必要となるだろう。
【0004】
ナノチューブを合成する一般的ルートの1つに、気相式熱分解(例えば、化学蒸着に関連して用いられるもの)を用いるものがある。この方法では、ナノチューブは、触媒ナノ粒子(catalytic nanoparticle)の表面から形成されるだろう。具体的には、触媒ナノ粒子は、ナノ粒子の表面からナノチューブを生成させるための原材料としての役割をはたす炭素化合物を含有するガスにさらされるだろう。
【0005】
近年、大量のナノチューブを製造する有望なルートの1つは、反応ガス中を「漂う(float)」触媒粒子からナノチューブを成長させる化学蒸着システムを使用することであった。そのようなシステムでは、一般的に、反応ガスから析出したナノ粒子からナノチューブを成長させる加熱チャンバ(heated chamber)の中に、反応ガスの混合物を通している。触媒粒子を前もって供給することも含めて、その他多数のバリエーションも可能である。
【0006】
しかしながら、カーボンナノチューブを大量に発生させようとする場合、ナノチューブは反応チャンバの壁に付着して、結果としてナノ材料がチャンバを出るときの障害物となるだろう。更に、これらの障害物は反応チャンバ内の圧力上昇を誘発して、全体の反応動力学に変更をもたらすことにもなり得る。動力学の変更は、製造する材料の均一性の低下につながりかねない。
【0007】
ナノ材料についてのさらなる懸念は、空中移送される粒子を大量に生じることなく、それらナノ材料が取り扱われ処理される必要があることであるが、それは、ナノスケール材料に関連する危険性がまだよく理解されていないためである。
【0008】
ナノスケール用途のためのナノチューブまたはナノスケール材料を処理することが近年着実に増加している。紡織繊維および関連する材料へのナノスケール材料の使用も、増加している。繊維製品分野において、固定長で、大量に処理されている繊維は、短繊維(staple fibers)と称されるだろう。例えば亜麻、ウールおよび綿などの短繊維を扱う技術は、長い間に確立されてきている。短繊維を織物または他の構造要素に利用するためには、短繊維は、最初に、例えば糸、トウ(tows)またはシートなどのバルク構造に形成され、その後適切な材料へと加工することができる。
【0009】
従って、カーボンナノチューブの特徴および特性を利用できる材料を提供することは望ましいことである。そして、カーボンナノチューブ製の導体(コンダクタ)は最終用途の応用のために加工することができる。
【発明の概要】
【0010】
本発明は、1つの実施形態によれば、それぞれ表面積を有する複数のナノ構造体と、前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材と、前記複数のナノ構造体の表面積全体より小さい表面積に接触するように配置された導電性材料と、を含むハイブリッド導体であって、前記導電性材料と前記複数のナノ構造体との組合せによって、導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低下させたことを特徴とするハイブリッド導体を提供する。
【0011】
一実施形態では、前記ナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素、またはそれらの組合せのいずれか1つから形成される。一実施形態では、前記複数のナノ構造体は、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩またはそれらの組合せのいずれか1つを含む溶液中でドープされて成る(be doped in a solution)。一実施形態では、前記複数のナノ構造体によって規定される前記部材は、糸またはシートのいずれか1つを含む。一実施形態では、前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む。一実施形態では、前記導電性材料は、前記複数のナノ構造体の前記表面積全体より小さい表面積に接触する導電性被覆、前記複数のナノ構造体の前記表面積合計より小さい表面積に接触する導電性ワイヤ、またはそれらの組合せのいずれか1つを含む。一実施形態では、前記導電性材料は、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀、またはそれらの組合せのいずれか1つを含む。
【0012】
いくつかの実施形態では、熱導体、電気モータ用の低渦電流・低抵抗の巻線(windings)、およびソレノイド用の低渦電流・低抵抗の巻線の少なくとも1つに、上述したハイブリッド導体の実施形態の少なくとも1つを組み込んで製造することができる。
【0013】
別の実施形態では、複数のナノ構造体であって、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩、またはそれらの組合せのいずれか1つを含む溶液中でドープされて成る複数のナノ構造体と、前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材であって、前記複数のナノ構造体が導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低減させた部材と、を含むハイブリッド導体を開示する。一実施形態では、前記複数のナノ構造体によって規定される部材は、糸またはシートのいずれか1つを含む。一実施形態では、前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む。
【0014】
別の実施形態では、ハイブリッド導体を形成する方法であって、それぞれ表面積を有する複数のナノ構造体を提供する工程と、前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材を形成する工程と、導電性材料を、前記複数のナノ構造体の表面積全体より小さい表面積に接触させる工程と、を含み、前記導電性材料と前記複数のナノ構造体とを組合せることによって、導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低下させることを特徴とする方法が開示されている。
【0015】
一実施形態では、前記提供する工程において、前記ナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素、またはそれらの組合せのいずれか1つから形成される。一実施形態では、この方法は、前記形成する工程に付随して、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩、またはそれらの組合せのいずれか1つを含む溶液中で前記複数のナノ構造体をドープする工程を更に含む。一実施形態では、前記形成する工程において、前記複数のナノ構造体によって規定される前記部材は、糸またはシートのいずれか1つを含む。一実施形態では、前記形成する工程において、前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む。一実施形態では、前記接触させる工程は、前記部材を導電性部材で被覆して、前記複数のナノ構造体の表面積全体より小さい表面積に接触させること、導電性ワイヤを前記複数のナノ構造体の表面積全体より小さい表面積に撚り合わせること、またはそれらの組合せのいずれか1つを含む。一実施形態では、前記接触させる工程において、前記導電性材料および前記導電性ワイヤは、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀、またはそれらの組合せのいずれか1つを含む。
【図面の簡単な説明】
【0016】
【図1A】図1Aは、本発明の一実施形態に係るナノチューブを製造するための化学蒸着(CVD)システムを示している。
【図1B】図1Bは、本発明の一実施形態に係るナノチューブを製造するための化学蒸着(CVD)システムを示している。
【図1C】図1Cは、本発明の一実施形態に係るナノチューブを製造するための化学蒸着(CVD)システムを示している。
【図1D】図1Dは、本発明の一実施形態に係るナノチューブを製造するための化学蒸着(CVD)システムを示している。
【図2】図2は、本発明の一実施形態に係る電気的及び熱的導体を示している。
【図3】図3は、本発明の別の実施形態に係る電気的及び熱的導体を示している。
【図4A】図4Aは、本発明の種々の実施形態に係る拡張可能な電気的及び熱的導体を示している。
【図4B】図4Bは、本発明の種々の実施形態に係る拡張可能な電気的及び熱的導体を示している。
【図4C】図4Cは、本発明の種々の実施形態に係る拡張可能な電気的及び熱的導体を示している。
【図4D】図4Dは、本発明の種々の実施形態に係る拡張可能な電気的及び熱的導体を示している。
【図4E】図4Eは、本発明の種々の実施形態に係る拡張可能な電気的及び熱的導体を示している。
【図5A】図5Aは、金属−カーボンナノチューブのハイブリッド導体の概略平面図を示している。
【図5B】図5Bは、金属−カーボンナノチューブのハイブリッド導体の概略側面図を示している。
【図5C】図5Cは、金属−カーボンナノチューブのハイブリッド導体の実際の平面図を示している。
【図6】図6は、種々の金属−カーボンナノチューブのハイブリッド導体について測定された周波数応答解析(Frequency analysis response)を示している。
【図7】図7は、6本編み(6 ply)のカーボンナノチューブと1本編み(1 ply)の40−AWG裸銅線とを有する導体のイメージである。
【図8】図8は、導線の一端が銅で被覆された150本編み(150 ply)の裸のカーボンナノチューブ導線を有する導体のイメージである。
【図9】図9は、銅−カーボンナノチューブのハイブリッド導体、カーボンナノチューブ導体、ならびにアルミおよび銅ワイヤについて、種々の温度における測定された周波数応答解析を示している。
【図10】図10は、酸処理されたカーボンナノチューブのハイブリッド導体についての測定された周波数応答解析を示している。
【図11】図11は、酸処理されたカーボンナノチューブのハイブリッド導体、銅ワイヤおよび銅シートについてのモデル化され測定された周波数応答解析を示している。
【図12】図12は、酸処理されたカーボンナノチューブのハイブリッド導体、未処理のカーボンナノチューブ、SbI、FeClおよび銅について、温度依存の抵抗率を示している。
【図13】図13は、銅被覆カーボンナノチューブのハイブリッド導体、未被覆のカーボンナノチューブ、および銅ストリップについてのモデル化され測定された抵抗率 対 周波数応答を示している。
【図14】図14は、銅被覆カーボンナノチューブのハイブリッド導体、未被覆のカーボンナノチューブ、ならびにアルミニウムおよび銅ストリップの比導電率を示している。
【発明を実施するための形態】
【0017】
2つの可動導体(例えば高エネルギーキャパシタ、アース用ストラップ、バスバー(bus bar:母線)もしくはバスパイプ(bus pipe)またはパルス発生回路等)の間の比較的高い電流パルスを、波形の劣化なしにまたは接合部の加熱なしに外部回路へ伝える必要性のためには、伝導経路の慎重な技術(careful engineering)が必要となる。このことは、より一般的に用いられる銅導体に疲労損傷を生じさせ得る動きを導体が受けた場合に重要となり得る。この必要性を満足するため、本発明は、一実施形態において、ナノ構造ベースの導電性部材、例えばリボン、スパンケーブル、もしくはシートの形態のカーボンナノチューブから形成されるようなナノ構造ベース導電性部材を用いることによって、比較的高い電流パルスを伝えるアプローチを提供する。
【0018】
今日、ナノチューブを成長させるために、そしてそれらのナノチューブからシートまたはケーブル構造を形成するために、多様なプロセスおよびそのバリエーションが存在している。それらには、(1)ほぼ周囲圧力または高い圧力と約400℃を超える温度で起こり得る一般的なプロセスである、化学蒸着(CVD)、(2)ナノチューブに高度な完全性を生じさせることができる高温プロセスである、アーク放電、および(3)レーザーアブレーションが含まれる。
【0019】
本発明では、一実施形態において、CVDプロセスまたは業界で知られている類似の気相熱分解の手法を用いて、カーボンナノチューブを含む適切なナノ構造体を生成させる。CVDプロセスでの成長温度は、比較的低い範囲、例えば、約400℃〜約1350℃の範囲であってよい。本発明の実施形態では、単層ナノチューブ(SWNT)および多層ナノチューブ(MWNT)の両方のカーボンナノチューブとも、反応性炭素含有ガス(例えば、ガス状の炭素源)の存在下でナノスケールの触媒粒子を露出させることで、成長させることができる。特に、ナノスケールの触媒粒子は、既存の粒子を添加することによって、または金属−有機前駆体もしくは非金属触媒からの粒子のその場合成(in situ synthesis)によって、反応性炭素含有ガスの中に導入することができる。単層ナノチューブ(SWNT)および多層ナノチューブ(MWNT)の両者を成長させることができるが、場合によっては、成長速度が比較的高く且つロープ状の構造を形成する傾向のある単層ナノチューブ(SWNT)が選ばれてもよく、取扱い性、熱伝導性、電子的特性および強度の点で有利であろう。
【0020】
本発明に関連して生成する個々のカーボンナノチューブの強度は、約30GPaもしくはそれ以上であり得る。注意すべきことであるが、強度は欠陥に影響される。しかしながら、本発明において製造される個々のカーボンナノチューブの弾性係数は欠陥に影響されず、約0.9〜約1.2TPaの範囲で変化し得る。更に、これらのナノチューブの破断点歪み(または破壊に至る歪み:strain to failure)は、一般に構造感受性パラメータであり得るが、本発明では約10%から最大で約25%までの範囲だろう。
【0021】
更に、本発明のナノチューブは、比較的小さい直径を備えることができる。本発明の一実施形態では、本発明で製造されたナノチューブが約1nm未満から約10nmまでの範囲の直径を備えることができる。
【0022】
本発明のナノチューブはまた、リッツ線またはリッツケーブルと同様に比較的高い電流を伝える導電性部材として用いることもできる。しかしながら、コネクタ部にはんだ付けされるリッツ線またはリッツケーブルとは異なり、本発明のナノチューブ導体部材は比較的低いインピーダンスを呈することができる。特に、本発明によれば、銅リボンまたはリッツ線と比較した場合、ナノチューブベースのワイヤーケーブルまたはリボンは、電流パルスが短くなるほどより良好に機能することが観察された。より良好な性能が観察される理由の1つは、矩形で短い(例えば、約100msから約1ms未満)電流パルスの波形のフーリエ変換から計算可能であるパルスの有効周波数成分を、非常に高くすることができるということであろう。具体的には、本発明の個々のカーボンナノチューブは伝導路として機能することができ、そしてそれらの小寸法ゆえに、バルク構造がこれらのナノチューブから形成される場合には、バルク構造体は並外れて多数の導体要素(例えば1014/cmまたはそれ以上のオーダー)で含むことができる。
【0023】
本発明のカーボンナノチューブは、導電性の基本的な手段として、バリスティック伝導を示すこともできる。このように、本発明のナノチューブから形成される材料は、AC電流条件下で、銅および他の金属導電性部材を越える大幅な進歩を示すことができる。しかしながら、このタイプの導電性部材を外部回路に接続するには、本質的に、各ナノチューブを電気的または熱的に接触させて、接合部での接触抵抗を回避することが必要である。
【0024】
本願の全体にわたって、炭素から合成されるナノチューブについて説明しているが、他の化合物、例えばホウ素、MoSまたはこれらの組合せを、本発明に関連するナノチューブの合成に用いてもよいことにも留意されたい。例えば、異なる化学的前駆体を用いるが、ボロンナノチューブ(boron nanotubes)を成長させることもできるということも理解されるべきである。更に、ホウ素(ボロン)は、個々のカーボンナノチューブの抵抗率を低減するために用いてもよいことにも留意されたい。更に、本発明のナノチューブを作るためには、プラズマCVD等の他の方法を用いることもできる。
【0025】
<ナノチューブを作成するシステム>
図1Aを参照すると、2006年7月17日付けで出願され、2007年2月15日付けで米国特許出願番号第20070036709号(以下『’709号出願』)として公報掲載された、米国特許出願第11/488,387号(参照して本明細書に組み込む)に開示されたシステムと同様の、ナノチューブの製造に用いるシステム10が示されている。一実施形態では、システム10は、合成チャンバ11に接続することができる。合成チャンバ11は、一般に、反応性ガス(即ち、ガス状の炭素源)を内部に供給できる入口端部111と、延長された長さを有するナノチューブ113の合成が生じ得るホットゾーン112と、反応生成物(即ち、ナノチューブおよび排ガス)を排出および捕集できる出口端部114と、を有する。合成チャンバ11は、一実施形態では、炉116を通って延在する石英管115を含むことができる。一方、システム10によって作成されるナノチューブは、個々の単層ナノチューブ、そのようなナノチューブの束(バンドル)、および/または撚り合わされた単層ナノチューブ(即ち、ナノチューブのロープ)であってもよい。
【0026】
本発明の一実施形態では、システム10は、潜在的に有害な浮遊粒子が合成チャンバ11の内部から環境へと放出されるのを最小限にすべく、実質的に気密であるように設計されたハウジング12を有することもできる。ハウジング12は、酸素がシステム10に入って合成チャンバ11に達するのを防止する役目を果たすこともできる。特に、合成チャンバ11内に酸素が存在すると、ナノチューブ113の完全性に影響を及ぼしたり、製造を危うくしたりする可能性がある。
【0027】
システム10はまた、ハウジング12内に位置し、システム10の合成チャンバ11内でCVD法によって作成された合成ナノチューブ113を捕集するように設計された移動ベルト120を有してもよい。特に、ベルト120は、その上に捕集されたナノチューブが、その後に、実質的に連続的に延在可能な構造体121(例えば、不織布シート)を形成できるように使用することもできる。そのような不織布シートは、圧縮され(compacted)実質的に無配向(non-aligned)で且つ混ぜられた(intermingled)ナノチューブ113や、ナノチューブの束や、または撚り合わされたナノチューブ(例えば、ナノチューブのロープ)から生成することができ、シートとして取り扱うことができる十分な構造的完全性を備えている。
【0028】
製造したナノチューブ113を捕集するために、ベルト120を合成チャンバ11の出口端部114に隣接させて配置し、ベルト120の上にナノチューブを析出させることもできる。一実施形態では、ベルト120は、図1Aに示すように、出口端部114からのガスの流れと実質的に平行に配置することができる。代わりに、ベルト120は、出口端部114からのガスの流れに実質的に垂直に配置し、そして、ナノ材料を搬送するガスの流れが通過できるように本質的に多孔質にすることもできる。ベルト120は、従来のコンベアベルトと同様に、連続したループとして設計することができる。そのためには、ベルト120は、一実施形態では、対向する回転要素122(例えば、ローラ)のまわりでループ状にされていてよく、機械的デバイス、例えば電気モータによって駆動されてもよい。代わりに、ベルト120は硬質のシリンダ(a rigid cylinder)であってもよい。一実施形態では、張力および速度が最適化されるように、モータは、制御システム(例えばコンピュータまたはマイクロプロセッサ)を用いて制御されてもよい。
【0029】
別の実施形態では、不織布のシートの代わりに、製造された単層ナノチューブ113を合成チャンバ11から集めて、その後に、図1Bに示すように、糸131を形成することもできる。具体的には、ナノチューブ113が合成チャンバ11から噴出(emerge from)したら、それらを集めて束(バンドル)132にし、スピンドル134の吸入端133に供給し、その後に、その中で紡いでまたは撚って糸131にする。連続して糸131を撚ることによって、新たなナノチューブ113が達するスピンドル134に達してさらに糸を形成するプロセスが起こる位置の近傍で、回転を生じさせるのに十分な角応力(angular stress)を確立することができることに留意されたい。更に、スプール135の周囲に糸を取り込むことができるように、糸131に連続的な張力をかけてもよく、または、収集チャンバ13中への糸の前進が制御された速度で許容されてもよい。
【0030】
一般に、糸131の形成は、後にきつく紡いで撚糸とすることができるナノチューブ113の束形成(bundling:バンドリング)に起因する。代わりとして、糸131の主撚り部(main twist)をシステム10内のあるポイントにて固定して、収集したナノチューブ113を撚糸131の上に巻きつけてもよい。これらの成長モードの両方とも、本発明に関連して実施することができる。
【0031】
一実施形態では、図1C〜Dに示すように、炉内で生成したカーボンナノチューブを炉管202に沿って引っぱり、巻き取りリール210に集めることもできる。斜視図(図1C)に示すように、炉管202から生成するカーボンナノチューブは、炉管202の長手方向に沿って引っぱられて、円錐形状のアンカー204に衝突してもよい。アンカー204は、カーボンナノチューブを集める際のリールと同様のはたらきをする。カーボンナノチューブは、その後アンカー204から引き離されて、紡糸ボックス(spinning box)216の中のウィグルチューブ(またはくねくね動くチューブ(wiggle tube))206の中へ導かれる(図1Dの平面図に最もよく示されている)。ウィグルチューブは、カーボンナノチューブを糸に紡ぐことができる。ウィグルチューブ206から出てきたカーボンナノチューブの糸は、必要な張力を糸に付与するために、テンションゲージ208に案内される。場合によっては、巻き取りリール210のまわりに糸を捕集するためにはどれだけ速くスピンするかをモータ212に示すために、テンションゲージ208が張力を測定することができる。
【0032】
この例では、モータ212は、紡糸ボックス216の中に延びるロッドを介してウィグルチューブ206を制御する。別のモータ212がアンカー204を駆動しており、そのモータ212はアンカー204の下側に配置される(図1Cに最もよく示されている)。そして、もう1つのモータ212は巻き取りリール210の紡糸速度を制御しており、そのモータ212は紡糸ボックス216の頂部側に配置されている(図1Cに最もよく示されている)。紡糸ボックス216は、紡糸ボックス216自体がその中で爆発するのを軽減するための吹出膜(blow-out membrane)214を更に有する。紡糸ボックス216の側面には複数のコネクタ218を配置することもでき、そのコネクタ218は不活性ガス(例えばヘリウム)をシステムへ供給することや、適切なセンサによる酸素および水素測定を実施することを可能にする。
【0033】
あるチャンバシステムでは、紡糸システムは糸に正しくないスピンを提供する。他のチャンバシステムでは、紡糸システムは糸に正しいスピンを提供する。いくつかの実施形態では、紡糸は、システムから離れる糸と同一線上で行われる。他の実施形態では、紡糸は、システムから離れている糸に対して90度の角度で行われる。
【0034】
固定された基板から、延長された長さを有するカーボンナノチューブ(CNTs)を非常に多数生成させるためおよび成長させるための1つの方法は、2005年1月14日付けで出願され、2005年8月4日付けで米国特許出願番号第20050170089号として公報掲載された、米国特許出願第11/035471号に開示されており、参照して本明細書に組み込む。この方法は、とりわけ、一群のナノスケールチューブまたは繊維を糸に紡ぐことを含む。その後、その糸は、捕集されてもよく、または従来の繊維処理手段を用いて更に紡がれてもよい。そのようなアプローチは、一実施形態では、この分野において利用可能な既知の手順のいずれかを使用することができ、そして本発明の製造プロセスに組み込むことができる。
【0035】
ナノ構造ベースの材料から形成された導電性部材を製造するための別の方法は、2009年5月7日付けで出願された米国出願番号第12/437,537号にて提供されており、参照して本明細書に組み込む。
【0036】
<導体>
2つの可動導体(例えば高エネルギーキャパシタ、アース用ストラップ、バスバーもしくはバスパイプ、またはパルス発生回路等)の間の比較的高い電流パルスを、波形の劣化なしにまたは接合部の加熱なしに外部回路へ伝えるために、本発明は、一実施形態において、図2に示すような導体20を提供する。導体20は、とりわけ、導電性のナノ構造ベースの材料21と、コネクタ部22と、実質的に低抵抗率のカップリングを提供できる材料から形成されたカップリング機構23と、を有することができると同時に、伝導性に能動的に関与し得る導電性ナノ構造体の数を実質的に最大にすることができる。
【0037】
一実施形態では、導体20は、導電性のナノ構造ベースの材料から形成される導電性部材21を有する。導電性のナノ構造ベースの材料は、一実施形態では、上述した’709号出願に開示されたものと同様の方法で作成されたカーボンナノチューブから形成される、糸、リボン、ワイヤ(導線)、ケーブル、テープまたはシート(例えば、製織もしくは不織のシート)であってよい。一実施形態では、導電性部材21は、炭素、銅、銀、窒化ホウ素、ホウ素、MoSまたはそれらの組合せの1つから製造することもできる。更に、例えば、導電性部材21を製造することができる材料は、一実施形態では、いずれかの種類のグラファイト、例えば、熱分解黒鉛繊維(pyrograph fibers)からのものをも含み得る。
【0038】
導体20は、導電性部材21を接続することができるコネクタ部22を有することもできる。一実施形態では、コネクタ部22は、金属材料(例えば銅、アルミニウム、金、銀、銀被覆された銅、カドミウム、ニッケル、スズ、ビスマス、ヒ素、これらの金属の合金)、ホウ素、窒化ホウ素、それらの組合せ、または電気的および/または熱的伝導性を有する他の材料から形成することができる。コネクタ部22は、材料が電気的および/または熱的伝導性を有し得る限り、非金属材料、例えば、ガラス質カーボン、セラミック、シリコン、シリコン化合物、ヒ化ガリウムもしくは類似の材料、またはそれらの組合せを含む材料から形成することができる。一実施形態では、コネクタ部22は、導電性部材21に接続されたときに、導電性部材21によって運ばれる電源(source)からの比較的高い電流を実質的に劣化なしに外部回路に導くことができる。
【0039】
そのために、導体20は、導電性部材21をコネクタ部22に接続するために、導電性部材21とコネクタ部22との間に設けられるカップリング機構23を更に有することができる。一実施形態では、カップリング機構23は、実質的に低い抵抗接続を提供できるガラス質のカーボン材料から製造することもできる。ガラス質のカーボンは、一般に、カーボンナノチューブに関連するカーボンの形態であってよく、アモルファス炭素のマトリクスを有するリボン状のグラフェンをかなりの量で含み得る。これらのリボンは、sp結合されたナノチューブと実質的に同様のものであり得るsp結合されたリボンを含む。その結果、それらは、比較的良好な熱的および電気的伝導性を有し得る。ガラス質のカーボンを形成することができる前駆体材料の例には、フルフリルアルコール、RESOL樹脂(即ち、触媒作用を及ぼされたアルキル−フェニルホルムアルデヒド)、PVAもしくは液状樹脂、または、熱処理されるとガラス質カーボンを形成することが知られているいずれかの材料が含まれる。当然のことながら、その他の市販のガラス質カーボン材料または前駆体材料を使用することもできる。
【0040】
加えて、カップリング機構23は、コネクタ部22上の接触表面積全体にわたってコネクタ部22と実質的に一様に接触する導電性部材21を提供することもできる。そのためには、カップリング機構23は、電気的および熱的移送(transport)の効率を向上させるために導電性に能動的に関与し得る導電性部材21中の導電性ナノ構造体の数を実質的に最大にするように機能することができる。例えば、導電性部材21によって運ばれる電源からの比較的高い電流は、実質的な劣化なしに外部回路に導くことができる。このように、本発明の導体20は、従来の電気的および/または熱的回路システムに用いられる標準コネクタに有効な伝導性をもたらすために用いることができる。特に、導体20は、ナノスケール環境と従来の電気的および/または熱的回路システムとの間に、例えば電気的および/または熱的伝導を通じて、効率的な相互作用をもたらすことができる。このように、導体20は、ナノスケール環境と従来の電気的および/または熱的回路システムとの間の電気的および/または熱的伝導を通じて、ならびに、従来の電気的および/または熱的回路システムに用いられる標準的コネクタへの伝導を通じて、効率的な相互作用を可能にするように用いることができる。
【0041】
比較のため、ガラス質カーボンについての電気的および熱的伝導特性を、黒鉛によって呈されるそれら特性と対比する。下記の表1に示すように、グラフェンリボンが存在することによって、黒鉛について観察された結果に比べて、ガラス質カーボンの電気的そして従って熱的伝導性を向上させることができる。
【0042】
【表1】

【0043】
別の実施形態では、本発明の導体を作成する方法が提供される。その方法は、最初に、導電性部材21と同様の、ナノ構造ベースの材料から形成された導電性部材と、コネクタ部22と同様の、導電性部材を接続し得るコネクタ部を提供することを含む。ナノ構造ベースの材料は、一実施形態では、導電性カーボンナノチューブから形成されるもの、例えば、カーボンナノチューブから形成される糸、テープ、ケーブル、リボンまたはシートから作られたものであってよい。他方で、コネクタ部は、金属材料例えば、銅、ニッケル、アルミニウム、銀、金、カドミウム、スズ、ビスマス、ヒ素、これら金属の合金、ホウ素、窒化ホウ素、その他の導電性金属、金または銀で被覆されたいずれかの導電性金属、またはそれらの組合せから形成することができる。コネクタ部22は、材料が電気的および/または熱的伝導性を有し得る限り、非金属材料、例えば、ガラス質カーボン、セラミック、シリコン、シリコン化合物、ヒ化ガリウムもしくは類似の材料を含む材料から形成することができる。
【0044】
次に、カップリング機構23と同様のカップリング機構は、導電性部材とコネクタ部との間の接続部に配置することができる。一実施形態では、カップリング機構は、ガラス質のカーボン前駆体、例えばフルフリルアルコール、レゾール樹脂、PVA、または、加熱処理したときに接続部の中に析出可能なガラス質カーボンを形成することが知られているどのような材料であってよい。当然のことながら、ガラス質のカーボン樹脂または材料の、導電性部材のナノチューブを「濡らす(wet)」傾向は、個々のナノチューブをコーティングするのを助け、それにより個々のナノチューブが電子または熱の移送に貢献できる、ということが理解されるべきである。
【0045】
その後、導電性部材およびコネクタ部を相互に対して保持しつつ、導電性部材とコネクタ部との間の接続部を、ガラス質のカーボン前駆体を熱分解させてガラス質カーボン低抵抗カップリング機構を形成させるのに十分な温度範囲まで、加熱することができる。一実施形態では、熱分解の最低気温は、少なくとも約400℃〜約450℃付近であるべきである。熱分解を不活性雰囲気にて実施する場合、熱分解プロセスを完了させることができるように、その温度はより高くすることが必要となり得る。
【0046】
当然のことながら、この温度に感受性を有し得る材料は、本発明には好適ではない可能性がある。更に、導電性部材を接続するための常套の手段よりも優れた接触抵抗をもたらすために、この接続のための熱分解を完了することが必要とされるものではない。
【0047】
図3を参照すると、本発明の別の実施形態では、波形の実質的な劣化なしにまたは接合部を実質的に加熱することなしに、電源から外部回路に比較的高い電流を伝えるための導体30が示されている。
【0048】
図3に示す実施形態では、導体30は、導電性ナノ構造ベース材料から形成された導電性部材31を有する。一実施形態では、導電性のナノ構造ベース材料は、上述した’709号出願に開示されたものと同様の方法で作成されたカーボンナノチューブから形成される、糸、リボン、ケーブル、テープまたはシート(例えば、製織もしくは不織のシート)を含むことができる。一実施形態では、導電性部材31は、炭素、銅、銀、窒化ホウ素、ホウ素、MoSまたはそれらの組合せの1つから製造することもできる。例えば、導電性部材31を製造することができる材料は、一実施形態では、いずれかの種類のグラファイト、例えば、熱分解黒鉛繊維からのものをも含み得る。
【0049】
導体30は、図示するように、導電性部材31のそれぞれの対向する端部におけるコネクタ部32を含み得る。本発明の一実施形態では、コネクタ部32は、例えば電気メッキのような、導電性部材31の各端部に直接的に析出するコーティングであってもよい。導電性部材31へのコネクタ部32の析出または電気メッキは、この技術分野において知られている方法を用いて行うことができる。電気メッキを施されたコネクタ部32の例には、金、銀、ニッケル、アルミニウム、銅、ビスマス、スズ、亜鉛、カドミウム、スズ−ニッケル合金、銅合金、スズ−亜鉛合金、ビスマス−銅合金、カドミウム−ニッケル合金、他の導電性金属およびそれらの合金、またはそれらの組合せが含まれる。
【0050】
一実施形態では、コネクタ部32は、コネクタ部32の接触表面積全体にわたって導電性部材31中のナノチューブと実質的に一様に接触するように、導電性部材31上に析出させまたは電気メッキすることができる。このように、コネクタ部32は、伝導性に能動的に関与し得る導電性部材31内の導電性ナノ構造体の数を実質的に最大にするように機能して、電気的および熱的移送の効率を向上させ且つ接触抵抗を低下させることができる。そのため、導電性部材31によって運ばれる電源からの比較的高い電流は、実質的な劣化なしに外部回路に導くことができる。このように、導体30は、ナノスケール環境と従来の電気的および/または熱的回路システムとの間の電気的および/または熱的伝導を通じて、ならびに、従来の電気的および/または熱的回路システムに用いられる標準的コネクタへの伝導を通じて、効率的な相互作用を可能にするように用いることができる。
【0051】
図4A−Bを参照すると、本発明の更なる実施形態では、導体40は、導体40の抵抗率を損なったりまたは実質的に変化させたりすることなく、少なくとも1つの方向に、例えば長手方向について伸張したりもしくは拡張したりするように構成することもできる。換言すれば、導体40の抵抗率または抵抗特性は、仮に導体40の伸張もしくは拡張の程度が実質的に極端な程度であるとしても、導体40の伸張もしくは拡張とは無関係であり得る。
【0052】
導体40は、一実施形態では、伝導ナノ構造ベース材料から形成される導電性部材41を含む。そのような材料は、’709出願に開示されているものと同様に、カーボンナノチューブから形成されるシート(例えば、製織もしくは不織のシート)、複数のテープまたはリボンであってよい。更に、例えば、導電性部材が形成される材料は、一実施形態では、いずれかの種類のグラファイト、例えば、熱分解黒鉛繊維からのものをも含み得る。
【0053】
しかしながら、図3に示す導体30とは異なって、導体40の導電性部材41は、例えば、導体40の対向する端部(両端)から軸方向に引っ張った場合に、長手方向について(即ち、X軸に沿って)、導体40を伸張もしくは拡張させ得る、図4Aおよび4Bに示すものを含めて、種々のパターンが付与されたりエッチングされたりし得る。当然のことながら、図4Aおよび4Bに示すパターンに加えて、パターンまたは構成が導体40に拡張を行わせる限り、導電性部材41は他のパターンまたは構成を含むことができる。
【0054】
長手方向に伸張して示されている一方で、導体40はその幅方向に(即ち、Y軸に沿って)伸張するように構成することもできる。図4C−Dに示すように、導電性部材41には、導体40をその幅方向に沿って伸張もしくは拡張させ得るこの技術分野において知られているいずれかのパターンを付与し得る。当然のことながら、導電性部材41は、導体40にその長手方向および幅方向に沿って(即ち、二次元について)伸張させ得るパターンをも有し得る。
【0055】
要求される範囲に、図4Eを参照して、それらの長さ方向に沿って、導体40は2層もしくはそれ以上の導電性部材41(1つが他の上にある)を含むことができ、実質的に互いに接着されていないことによって、その導体40はZ軸方向に沿って拡張することもできる。このような実施形態では、導電性部材41は、それらのそれぞれの端部43に沿って互いに接続することもできる。一実施形態では、端部43の接着は、例えば上述したようなガラス質カーボン材料を用いることによって達成することができる。
【0056】
伸張可能であることに加えて、導電性部材41は、形状記憶特性を具備することもできる。具体的には、導電性部材41が形成され得るナノチューブは、一次元、二次元もしくは三次元方向に沿って導電性部材41を伸張させた後(図4Bを参照)に、導電性部材41をその本来の長さ、幅もしくは形状(図4Aを参照)へ実質的に後退収縮させることができる。
【0057】
導電性部材に41に付与されるパターン、構成またはエッチングは、一実施形態では、スタンピング、レーザーエッチング等を含む、この技術分野において知られているプロセスによって行われ得る。
【0058】
導体40は、導電性部材41の両端部にそれぞれコネクタ部42を有することもできる:本発明の一実施形態では、コネクタ部42は、例えば電気メッキによって、導電性部材41の両端部に直接的に析出されたコーティングであってもよい。導電性部材41へのコネクタ部42の析出または電気メッキは、この技術分野において知られている方法を用いて行うことができる。一実施形態では、コネクタ部42は、例えば金、銀、ニッケル、アルミニウム、銅、ビスマス、スズ、亜鉛、カドミウム、スズ−ニッケル合金、銅合金、スズ−亜鉛合金、ビスマス−銅合金、カドミウム−ニッケル合金、他の導電性金属およびそれらの合金またはそれらの組合せ等の金属材料から形成することができる。コネクタ部42は、材料が電気的および/または熱的伝導性を有し得る限り、非金属材料、例えば、ガラス質カーボンの形態を有する材料もしくは類似の材料から形成することもできる。図4Dに示すのと同様に、導電性部材41がその幅方向に沿って伸張もしくは拡張し得るように導体40を構成することができる程度まで、コネクタ部42も導電性部材41の横方向に沿って伸張もしくは拡張するように構成することができる。
【0059】
一実施形態によれば、コネクタ部42を導電性部材41上に、実質的に均一に析出または電気メッキすることによって、コネクタ部42上の接触表面積全体にわたって導電性部材41のナノチューブと実質的に一様に接触することができる。そのため、コネクタ部42は、伝導性に能動的に関与し得る導電性部材41内の導電性ナノ構造体の数を実質的に最大にするように機能し、電気的および熱的移送の効率を向上させることができる。本発明の導体40は、例えば、ナノスケール環境と従来の電気的および/または熱的回路システムとの間の電気的および/または熱的伝導を通じて、ならびに、従来の電気的および/または熱的回路システムに用いられる標準的コネクタへの伝導を通じて、効率的な相互作用を可能にするように用いることができる。
【0060】
導体20、30および40は、高電流の導体部材、コンデンサ、電池電極、燃料電池電極を含む電流導体材料として、ならびに、熱伝達、高周波伝達および多くの他の用途のための導体材料として使用することができる。導体40に関しては、その伸張しうる特性、形状記憶特性、ならびにその熱的および電気的伝導特性のために、導体40を、航空宇宙産業に関連する用途、例えば、上にカーブしたデザインを有する現代的な飛行機翼における導体部材としての用途を含む多様な構造的および機械的用途に用いることができる。
【0061】
<ハイブリッド導体>
広範囲の周波数にわたって向上した導電性および電流容量を達成することができるハイブリッド導体を開示する。そのようなハイブリッド導体を形成する1つの方法は、導電性材料(例えば銀、金、銅)を複数のナノ構造体に接触させることを含む。ある場合には、導電性材料は、複数のナノ構造体に沿って電気的および/または熱的伝導性を向上させる。一実施形態では、複数のナノ構造体はナノチューブの糸である。別の実施形態では、複数のナノ構造体はナノチューブのシートである。いくつかの実施形態では、複数のナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素またはそれらの組合せの1つから形成されるナノチューブを含む。ナノ構造体は、本明細書にて開示する他のタイプのナノチューブを含むこともできる。一般に、接触させることには、複数のナノ構造体の表面の一部だけをも含む。例えば、複数のナノ構造体を利用することによって、隣接するナノ構造体の周辺の若干の部分は、導電性材料と物理的に接触していてもよいが、その代わりに他のナノ構造体とも接触している。
【0062】
一実施形態では、ハイブリッド導体を形成することができ、そのハイブリッド導体は、それぞれ表面積を有する複数のナノ構造体と、複数のナノ構造体によって規定される幾何学的プロファイルを有する部材と、複数のナノ構造体の表面積全体より小さい表面積に接触するように配置された導電性材料と、を有しており、導電性材料と複数のナノ構造体との組合せによって、導電性を向上させつつ、部材の長手方向に沿って抵抗率を低下させている。本明細書において、「表面積全体より小さい表面積」等の表現は、100%ではないことを意味する。いくつかの実施形態では、導電性材料と、複数のナノ構造体の表面積全体との間の接触は、約95%以下、または約90%以下、または約85%以下、または約80%以下、または約75%以下、または約70%以下、または約65%以下、または約60%以下、または約55%以下、または約50%以下であり得る。他の実施形態において、導電性材料は、複数のナノ構造体の表面積全体より小さい表面積に接触する導電性被覆、複数のナノ構造体の表面積全体より小さい表面積に接触する導電性ワイヤ、またはそれらの組合せの1つを含む。一実施形態では、複数のナノ構造体により規定される部材は、糸またはシートの1つを含む。いくつかの実施形態では、部材は、複数の糸、複数のシートまたはそれらの組合せの1つを含む。
【0063】
一例を挙げると、接触させることは、2つの異なる材料(例えば、複数のナノ構造体と銅ワイヤ、複数のナノ構造体とアルミニウムワイヤ)を絡み合わせたりまたは織り交ぜたりすることを含む。別の実施形態では、接触させることは、1つの材料をもう1つの材料の上にコーティングすることおよび/または析出させること(例えば、複数のナノ構造体に銅を電気メッキすることや、複数のナノ構造体に銅を物理蒸着すること)を含む。ある場合には、接触させることは、2つの材料を物理的接触状態に置くかまたは配置することを含む。いくつかの実施形態では、接触させることによって複合生成物またはハイブリッド生成物を形成することができる。
【0064】
一実施形態では、カーボンナノチューブを銅ワイヤに接触させて、ハイブリッド導体を形成することができる。いくつかの実施形態では、カーボンナノチューブの糸を金属ワイヤに接触させて、複合導体を形成することができる。ある場合には、本出願に開示する技術によって、カーボンナノチューブを製造することができる。一実施形態では、ハイブリッド導体は、金属的およびナノ構造体材料を含む。他の実施形態では、ハイブリッド導体は、非金属的およびナノ構造体材料を含む。いくつかの実施形態では、導電性材料は、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀またはそれらの組合せの少なくとも1つを含む。
【0065】
一実施形態は、接続された複数のナノ構造体とその複数のナノ構造体のまわりに周方向に配置された伝導性材料とを有するハイブリッド導体であって、複数のナノ構造体に沿って伝導性が向上しているハイブリッド導体を開示している。一実施形態では、複数のナノ構造体は、ナノチューブの糸を含む。いくつかの実施形態では、ナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素、MoSもしくは同様の化合物、またはそれらの組合せの1つから形成することができる。
【0066】
いくつかの実施形態では、複数のナノ構造体は、FeCl、SbCl、SbI、SbF、SbCl、Bi(NO、TeCl、CuSO、CuCl、HCl、NaCl、NaSO、Fe(NO、ヒドロニウムイオン、塩化水素酸、臭化水素酸、フッ化水素酸、ヨウ化水素酸、炭酸、硫酸、硝酸、フルオロ硫酸、クロロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、発煙硫酸、これらの薬剤、またはこれらの組合せの1つを含む溶液中でドープさせることもできる。ナノチューブのドーピングは、次の検討においてより明らかになる。他の実施形態において、複数のナノ構造体は、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、硝酸塩、硫酸塩またはそれらの組合せの1つを含む溶液中でドープさせることができる。
【0067】
いくつかの実施形態では、導電性材料は、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀、銀被覆銅、カドミウム、ニッケル、スズ、ビスマス、ヒ素、これらの金属の合金、ホウ素、窒化ホウ素、ガラス質カーボン、セラミック、シリコン、シリコン化合物、ガリウムヒ素、それらの組合せ、または電気的および/または熱的伝導性を有するその他の材料の1つから形成することができる。
【0068】
一実施形態では、導電性材料を、複数のナノ構造体に被覆することができる。一例を挙げると、「被覆する」とは、第1の物体を第2の物体によって覆うことを意味する。例えば、第1の物体は複数のカーボンナノチューブで、第2の物体は金属、半金属または非金属層であってよい。金属、半金属または非金属層は、複数のカーボンナノチューブを部分的にカバーすることができる。もう1つの例では、第1の物体はワイヤの形態の複数のカーボンナノチューブで、第2の物体はワイヤを実質的に封止する銅フィルムであってよい。更にもう1つの例では、第1の物体は複数のカーボンナノチューブで、第2の物体はカーボンナノチューブを実質的に封止する金フィルムの層であってもよい。別の実施形態では、複数のナノ構造体は、例えば金または銅フィルムなどの導電性材料で被覆されたナノチューブのシートであってもよい。
【0069】
一実施形態では、導電性材料は、導電性部材の上に析出させることができる。1つの例において、「析出させる」とは、材料層を物体の表面に横たえることを意味し、その材料はその物体とは異なる。いくつかの実施形態では、導電性材料を複数のナノ構造体上に析出させるために、電気メッキまたは無電解めっきを含む技術を用いることができる。一実施形態では、ハイブリッド導体は、カーボンナノチューブのストリップ上に遷移金属(例えば銅)の電気メッキを施すことによって形成することもできる。この場合、カーボンナノチューブのストリップは、ナノチューブの束または糸と類似していてもよい。一実施形態では、遷移金属は、カーボンナノチューブの上に直接析出させることができる。もう1つの例では、カーボンナノチューブのストリップの上にシード層(例えばニッケル)を析出させ、その後、遷移金属材料の電気メッキを行うことができる。もう1つの例において、導電性材料は、他の技術のうちでも電気メッキまたは物理蒸着法(physical vapor deposition)によって、ナノチューブのシートの上に析出させることができる。いくつかの実施形態では、遷移金属は、銀、銅、金、アルミニウム、チタン、プラチナ、ニッケル、もしくはそれらの合金、またはそれらの組合せの元素および/または合金を含む。
【0070】
一実施形態では、ハイブリッド導体は、ナノスケール環境と、従来の電気および/または熱回路システムとの間での効果的な伝導を可能にするように設計されている。他の実施形態では、ハイブリッド導体の導電性材料は、束(バンドル)によって運ばれる電源からの比較的高い電流を、実質的な低下なしに外部回路に導くことができる。
【0071】
いくつかの実施形態では、ハイブリッド導体は、熱伝導、電気伝導、EMI用途、高電流の伝送、RF用途、パルス化用途、熱−電気および/または電力生成、センサ用途または他の同様の用途の1つに用いるように構成される。もう1つの実施形態において、ハイブリッド導体は、従来の電気および/または熱回路システムに用いられる標準コネクタに効率的な伝導を可能にするように設計されている。
【0072】
ある場合には、ハイブリッド導体は、中でも電気または熱の導体として組み込まれてもよい。他の例において、ハイブリッド導体は、これに限定されないが、同軸ケーブル、ケーブルワイヤ、汎用シリアルバス(USB)ケーブルを含む電気的または光学的ワイヤもしくはケーブルを含む。いくつかの実施形態では、ハイブリッド導体は、高い電流容量および導電性を必要とされると同時に広範囲の周波数(例えば、DC(直流)からGHz(ギガヘルツ)まで)および/または広範囲の温度(例えば、約0℃〜約200℃以上の温度)にわたって作動するいずれかの電気的または熱的導体を含んでもよい。
【0073】
一例を挙げると、導電性部材および導電性材料は、互いに(例えば、物理的に織り合わされた(interwoven))物理的接触状態に置かれまたは配置され得る。一実施形態では、複数のナノ構造体および導電性材料は、幾何学的なパターンを形成するように互いに物理的に接続することができる。いくつかの実施形態では、接続技術は、2、3の例を挙げると、撚り合わせること(ツイニング:twining)、編むこと(ブレーディング:braiding)、巻くこと(ワインディング:winding)および撚ること(プライイング:plying)を含み得る。一実施形態では、「撚り合わせること(twining)」とは、カーボンナノチューブの糸と伝導性部材とを一緒に撚り合わせて、織り合わされたパターンを形成することを意味する。もう1つの例では、「巻き付けること」とは、カーボンナノチューブのシートのまわりに導電性部材を巻きつけて、またはその逆に、導電性部材のまわりにカーボンナノチューブのシートを巻きつけて、コイル状のパターン(coiled pattern)を形成することを意味する。更にもう1つの例では、「編むこと」とは、カーボンナノチューブのシートと伝導性部材とを一緒にねじって螺旋形状にすることを意味する。ある場合には、導電性材料(例えば、金またはアルミニウム)は、カーボンナノチューブの糸またはシートの上に、電気メッキしたものでもよい。
【0074】
いくつかの実施形態では、複数のナノ構造体は、ストリップ、ワイヤ、シート、糸またはそれらの組合せから成る形態のカーボンナノチューブであってよい。一実施形態では、複数のナノ構造体は、ストリップ(例えば、厚さが約2mm以下で、長さまたは幅は問わない)の形態であってよい。一実施形態では、複数のナノ構造体は、ワイヤ(例えば、直径が約20mm以下で、長さは問わない)の形態であってよい。いくつかの実施形態では、複数のナノ構造体は、1本のストリップと1本のワイヤ、2本のストリップ、2本のワイヤ、またはそれらの組合せの形態であってよい。他の実施形態では、複数のナノ構造体は、複数のカーボンナノチューブのシートであってよい。
【0075】
一実施形態では、ハイブリッドワイヤ導体は、ハイブリッドストリップ導体の場合と同様に、電気メッキを施すこともできる。別の実施形態では、ハイブリッドワイヤ導体は、カーボンナノチューブのいくつかのストランドを、金属ワイヤ(例えば、約30〜約50AWG(American Wire Gauge))と一緒に撚るまたは編むことによって形成することができる。編んで形成された幾何学的パターンを、(例えば、本願明細書に記載するリッツ線と同様に)金属ワイヤが内側から外側に動くように変更することや、またはコア導体のまわりをカーボンナノチューブで包囲したコア導体として変更することもできる。このことは、以下の図面および考察においてより明らかになる。
【0076】
一実施形態では、カーボンナノチューブの導電性および生産性を向上させるためにカーボンナノチューブを処理してもよい。これらの例において、カーボンナノチューブは、シート、ストリップ、ワイヤ、糸またはそれらの組合せの1つであってよい。導電性および生産性を向上したカーボンナノチューブシートは、処理プロセスによって生じでもよい。同様に、ナノチューブストリップを生成する場合、ストリップ中のナノチューブの導電性および生産性を向上させるために、ストリップに処理プロセスを受けさせてもよい。形成した後の複合シートの処理は、一実施形態では、複合シートをプロトン化剤にさらすことを含み得る。プロトン化剤の1つの特徴は、カーボンナノチューブを互いにより近くに接近させることであり得る。カーボンナノチューブを互いにより近付けることによって、プロトン化剤は、シートの表面張力を低下させ、抵抗率を低下させ、そして伝導性を向上させるように作用するだろう。
【0077】
プロトン化剤の例は、ヒドロニウムイオン、塩化水素酸、臭化水素酸、フッ化水素酸、ヨウ化水素酸、炭酸、硫酸、硝酸、フルオロ硫酸、クロロスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、発煙硫酸(oleum)、これらの薬剤またはこれらの組合せ等の酸、または電気的および/または熱的に伝導性を有することが可能な他の材料を含んでよい。他の実施形態において、複数のナノ構造体は、フッ化物塩、塩化物塩、臭化物塩、ヨウ化物塩、硝酸塩、硫酸塩またはそれらの組合せの1つを含む溶液中でドープすることができる。これらの実施形態では、「ドーピング」には、ナノ構造体を、予め定められた温度および時間で溶液に浸漬しおよび/または沈めることを含む。このドーピングはカーボンナノチューブのシートについて行っているが、ドーピング処理は、とりわけカーボンナノチューブの糸およびストリップについて行うことができる。
【0078】
いくつかの実施形態では、溶液は、溶媒、ポリマー、金属またはそれらの組合せを含むことができる。本発明の溶液と関連して使用する溶媒は、シートを濡らして、カーボンナノチューブの特性のより良好な調整および向上を得ることができる。この溶液と関連して用いることができる溶媒の例には、トルエン、ケロシン、ベンゼン、ヘキサン、エタノール、メタノール、ブタノール、イソプロパノールを含むがこれらに限定されることのないいずれかのアルコール、ならびにテトラヒドロフラン、1−メチル−2−ピロリジノン、ジメチルホルムアミド、塩化メチレン、アセトンまたはその他の溶媒が含まれるが、本発明はこれらに限定されるものではない。一実施形態では、溶媒は、ポリマー、モノマー、無機塩または金属酸化物のキャリアとして使用することができる。
【0079】
この溶液と関連して用いることができるポリマーの例には、小分子または(熱硬化性または熱可塑性の)ポリマーマトリクスを含み、これらに限定されるものではないが、ポリウレタン、ポリエチレン、ポリ(スチレンブタジエン)、ポリクロロプレン、ポリ(ビニルアルコール)、ポリ(ビニルピロリドン)、ポリ(アクリロニトリル−コ−ブタジエン−コ−スチレン)、エポキシ、ポリウレアシラザン、ビスマレイミド、ポリアミド、ポリイミド、ポリカーボネート、またはスチレン、ジビニルベンゼン、メチルアクリレートおよびt−ブチルアクリレートを含むいずれかのモノマーが含まれる。一実施形態では、ポリマーは、液体の形態で得ることが困難なポリマー粒子を含むことができる。
【0080】
この溶液と関連して用いることができる金属の例には、塩(水酸化ニッケル、水酸化カドミウム、塩化ニッケル、塩化銅、亜鉛酸カルシウム(CaZn(OH))を含むが、これらに限定されることのないいずれかの遷移金属塩、アルカリ金属塩若しくはアルカリ土類金属塩またはこれらの混合物)または金属酸化物(酸化亜鉛、酸化鉄、酸化銀、酸化銅、酸化マグネシウム、LiCoO、LiNiO、LiNiCo1−x、LiMnを含むが、これらに限定されることのないいずれかの遷移金属の酸化物、アルカリ金属の酸化物またはアルカリ土類金属の酸化物)が含まれる。一実施形態では、金属は、ポリマーまたは揮発性の溶媒を含み、カーボンナノチューブ金属マトリクス複合材料を形成することができる。そのようなポリマーまたは揮発性溶剤の例には、アルミニウムもしくはその合金、ニッケル超合金、銅、銀、錫、コバルト、鉄または鉄合金の粉末の形態、または複合二元合金、複合三元合金または超伝導体をも含む粉末の形態を形成することができるいずれかの元素が含まれる。
【0081】
別の実施形態では、導電性ワイヤを複数のナノ構造体と導電性材料の表面の一部に接触させることを開示している。いくつかの実施形態では、導電性ワイヤは、銅、アルミニウム、チタン、ニッケル、金、銀またはそれらの組合せをであってよい。例えば、銅ワイヤは、ハイブリッド導電性材料およびナノ構造体と絡み合わせることができる。この場合、銅ワイヤは、上述したものと同様に、複数のナノ構造体の(例えば、電気的、熱的)伝導性を向上させることを支援することができる。一実施形態では、カーボンナノチューブのシートは、導電性材料、例えば銅のフィルムに接触させることができる。銅とカーボンナノチューブのハイブリッドシートは、それからカーボンナノチューブのハイブリッドシートの向上した(例えば、電気的、熱的)伝導性のために、複数のアルミニウムワイヤに接触させることができる。これら複数のハイブリッドシートまたはそれらの種々の組合せは、互いに隣接して配置して、向上したハイブリッド導体を提供することができる。
【0082】
別の実施形態は、複数のナノ構造体を有するハイブリッド導体を開示しており、それにより、複数のナノ構造体は、導電性を向上するためにドープされてもよい。いくつかの実施形態では、ナノ構造体は、FeCl、SbCl、SbI、SbF、SbCl、Bi(NO、TeCl、CuSO、CuCl、Fe(NOまたはそれらの組合せの1つを含む溶液に浸漬させることもできる。他の実施形態では、ナノ構造体は、塩化物塩(例えば、HCl、NaCl、CuCl)、硝酸塩(例えば、Bi(NO)、硫酸塩類(例えば、CuSO、NaSO)またはそれらの組合せの1つを含む溶液に浸漬させることもできる。ドーピングは、p型、n型、カソード、アノード、またはそれらの組合せであってよい。一例を挙げると、ドーピングは、本明細書に開示する析出および/またはコーティング技術に関連して行うことができる。他の例において、ドーピングは、ハイブリッド導体を形成する際に、それ自体で行うことができる。他の実施形態において、溶液には、本明細書に記載されたものを含むことができる。
【0083】
ある場合には、ドーピングまたは浸漬溶液は、本明細書に記載する塩を、溶媒(例えば、水、アセトン、エタノール、トルエン)またはその溶媒の混合物中に約10重量%溶液で混合し、カーボンナノチューブをその溶液中に約1時間浸漬させることによって調製することができる。例えば、複数のカーボンナノチューブは、それらをCuSO溶液中に予め定められた時間で、予め定められた温度にてソーキング(soaking、浸す)かまたは浸漬させることによって、CuSO溶液中でドープすることができる。浸漬させたサンプルは、約120の℃で約1時間乾燥して、ドーピングしたカーボンナノチューブを製造することができる。上述したように、ドーピングは、接触工程(例えば、析出および/またはコーティング技術)の有無にかかわらず行うことができる。いくつかの実施形態では、種々の濃度の溶液を用いることができる。例えば、カーボンナノチューブは、約50重量%の硝酸溶液中で少なくとも約5秒間にて、ドープすることができる。他の例では、カーボンナノチューブのドープは、約40重量%の塩溶液、または約30重量%の塩溶液、または少なくとも約10重量%の塩溶液、または約90重量%以下の塩溶液中で行うこともできる。いくつかの実施形態では、ソーキングまたは浸漬時間は、少なくとも約5秒、または少なくとも約10秒、または少なくとも約30秒、または少なくとも約1分、または10分以下、または5分以下であってよい。
【0084】
ドーピングカーボンナノチューブに関する付加的な詳細事項は、2009年5月7日付けで出願された、米国特許出願第12/437,538号に提供されており、その全体を参照して本明細書に組み込む。その方法は、中でも、実質的に平面の本体、本体内でマトリックスを規定する複数のナノチューブ、および、隣接するナノチューブ相互の近接性を向上させるためのナノチューブのマトリクスの全体にわたって分散されたプロトン化剤を有するナノ構造体シートを含む。そのような方法は、一実施形態では、この技術分野において利用できるいずれか既知の手順を用いることができ、本発明の製造プロセスに組み込むことができる。
【0085】
カーボンナノチューブ(CNTs)をドープするためのもう1つの方法は、2008年8月14日付けで出願され、2009年2月19日付けで米国特許出願番号第20090044848号として公報掲載された、米国特許出願第12/191,765号に開示されており、参照して本明細書に組み込む。その方法には、とりわけ、ナノチューブ成長プロセス中に微量の異なる原子を導入すること(例えば、ドーピング)により、ナノチューブシートまたは糸の抵抗率を低下させ、導電性を向上させることが含まれる。この方法はまた、p型ドーパント、n型ドーパントまたはその両方のうちのいずれか1つを含むナノチューブ熱素子(nanotube thermal element)をドーピングすることを含む。そのようなアプローチは、一実施形態では、この技術分野で利用できるいずれか既知の手順を用いることができ、本発明の成長プロセスに組み込むことができる。
【0086】
カーボンナノチューブ(CNTs)をドープするための更にもう1つの方法は、2009年5月7日付けで出願された米国特許出願第12/437,535号に開示されており、参照して本明細書に組み込む。
【0087】
いくつかの実施形態では、DC(直流)からGHz(ギガヘルツ)まで(例えば、約50Hzから約200MHzまで)の全周波数範囲にわたって導電性を最大にするために、電気メッキされた金属を有する(例えばドーピングされた又はされていない)カーボンナノチューブ導体は、いかなるドーピングもされず、電気メッキされたいかなる金属も備えていないカーボンナノチューブ導体と、並列操作(parallel operation)されてもよい。他の実施形態では、周波数範囲にわたって導電性を最大にするために、電気メッキされた金属を備えていない(例えばドーピングされた又はされていない)カーボンナノチューブ導体は、いかなるドーピングもされず、電気メッキされたいかなる金属も備えていないカーボンナノチューブ導体と、並列操作(parallel operation)されてもよい。更に他の実施形態では、それら(例えば、ドーピングされていないカーボンナノチューブ導体、ドーピングされたカーボンナノチューブ導体、ドーピングされず電気メッキされたカーボンナノチューブ導体、ドーピングされ電気メッキされたカーボンナノチューブ導体)の組合せを、包含することができる。ある場合には、導体は、他の導体と直列操作されてもよい。他の例では、導体の組合せは、遷移金属ワイヤ(例えば、銅ワイヤ、アルミニウムワイヤ)を含むことができる。例えば、カーボンナノチューブストリップは、1本の銅ワイヤ、または2本の金ワイヤ、もしくはそれらの組合せと編むまたは撚ることができる。他の実施形態では、2本のカーボンナノチューブワイヤは、1本の金ワイヤ、または2本の銅ワイヤ、もしくはそれらの組合せと編むまたは撚ることができる。
【0088】
ある場合には、電子は、導体の金属部または伝導性部材(例えば、金属ワイヤ)の中を低い周波数で移動し、(例えば上記のMHzの)より高い周波数で作動するときに、カーボンナノチューブ部分へ移動することができる。従って、重量節減は導電性部材または金属ワイヤを組み込むことによってより低い周波数で達成することができる一方で、カーボンナノチューブの容量性カップリング挙動はより高い周波数で達成することができる。
【実施例】
【0089】
図5A〜5Cを参照すると、銅504によって被覆されたカーボンナノチューブストリップ502の平面図、側面図、および実際の平面図が示されている。このサンプル500では、カーボンナノチューブストリップ502の両側に(図示しない)ニッケルの薄い層が電着され、更により熱い銅の層504が電着されており、それによって、ストリップ502の両側の銅金属504の厚みは約20ミクロンとなっている。
【0090】
このサンプル500は、他のサンプルと同様に、その後、約300℃の最大温度にて周波数および電流容量の関数として抵抗について試験した。下記の表2に示すように、厚み、電流および電流容量の測定は、5つの異なるサンプルについて行った。原料サンプル(原料1、原料2および原料3)は、接触抵抗を低下させるために、ストリップの端部について銅で被覆した。結果に示すように、より高い電流で、温度を約300の℃まで上昇させる場合、銅の被覆サンプル(銅被覆1、銅被覆2)はより高い電流容量を達成することができる。
【0091】
【表2】

(*は25Aに限定したシステム)
【0092】
銅の被覆サンプルは、DC(直流)から約200GHzまでの周波数の関数として抵抗率について試験した。図6を参照すると、縮合されたカーボンナノチューブリボン導体(A)、銅被覆されたカーボンナノチューブリボン導体(C)、および2つの平行な組合せ(B)が、純粋な銅ストリップ参照サンプル(E)について、線形密度に対する抵抗が周波数の関数として示されている。
【0093】
縮合されたカーボンナノチューブリボン導体(A)は、約10cmの長さ、約0.9cmの幅、約28ミクロンの厚さおよび約0.03564グラムの質量を有する。銅被覆ナノチューブリボン導体(C)は 、約9.8cmの長さ、約1cmの幅、約106ミクロンの厚さおよび約0.11465グラムの質量を有する。銅ストリップ参照サンプル(E)は、約18.3cmの長さ、約3.3mmの幅、約50ミクロンの厚さおよび約0.29703グラムの質量を有する。
【0094】
図示するように、質量および寸法を考慮に入れて、原料の(例えば、未被覆のまたは未処理の)銅ナノチューブストリップ(A)の抵抗についての測定された周波数応答は、約10kHz程度でロールオフ挙動を示し、これは容量結合に起因し得るが、約30MHzまで抵抗の減少を示し続け、そしてそこから増加し始めている。対照的に、銅被覆ハイブリッドサンプル(B、C)は、約200MHzまでの測定値の残りについて、それが銅ストリップ(E)よりも拘束性が低下する(例えば、より伝導的になる)ところのロールオフポイントまで、銅ストリップ(E)の場合と類似し得る。
【0095】
図7を参照すると、約40AWGの裸銅ワイヤとパイルされたカーボンナノチューブワイヤが示されている。この例では、導体は、1つの銅ワイヤに接続された6つのカーボンナノチューブワイヤから形成されている。この場合、パフォーマンスは、上述したように、銅被覆カーボンナノチューブストリップ導体のものと類似していてもよいが、幾何学的パターンは異なる。
【0096】
銅被覆カーボンナノチューブワイヤを含む導体を示している図8を参照する。この例では、150撚りカーボンナノチューブワイヤは、ワイヤ端部が銅で被覆されていた。
【0097】
図9を参照すると、銅−カーボンナノチューブのハイブリッド導体(A)、カーボンナノチューブ導体(B)、および種々の温度でのアルミニウム(C)および銅(D)のワイヤについての約50Hzから約200MHzまでで測定された周波数応答解析が示されている。図中のすべてのサンプルは同じ断面を有しており、比導電率は材料密度で割った導電率の尺度である。
【0098】
図示するように、アルミニウム(C)および銅(D)サンプルは、すべての温度にわたって、周波数の増加と共に、比導電率の低下を伴っている。金属サンプルについての低下は、およそ1MHzから始まるように観察されている。更に、金属サンプルも、試験したいずれの周波数でも、温度上昇と共に、比導電率の低下を示すように観察されている。例えば、20の℃でのアルミニウムの比導電率は100℃でのアルミニウムの値よりもわずかに高く、それは200℃でのアルミニウムの値よりもわずかに高い。このことは、試験されるすべての周波数全体について明らかである。同様の傾向は銅についても当てはまる。
【0099】
対照的に、未コーティングまたは未処理のカーボンナノチューブ(B)は、(約100kHz未満の)より低い周波数にて金属サンプルよりも低い比導電率を有しており、約3MHzから始まる金属サンプルを越える比導電率の増加とより高い周波数での続行を示すことが観察されている。同様に、銅−カーボンナノチューブのハイブリッド導体(A)は、(約100kHz未満の)より低い周波数にて、20℃でのアルミニウムより喪低い非導電性を有しており、約100KHzから始まるより高い周波数で増大する比導電率と、より高い周波数での続行を示すことが観察されている。更に、銅−カーボンナノチューブのハイブリッド導体(A)は、すべての周波数で、100℃〜200℃にて、銅ワイヤ(D)よりも高い比導電率を示すことが観察される。このことは、本明細書に記載するように、ハイブリッド導体の特性がすべての周波数にわたってより高い温度にて、銅または他の金属ワイヤを上回るということを示唆するように観察される。いくつかの実施形態では、ハイブリッド導体は周波数に依存しないこともあり得る。他の実施形態において、ハイブリッド導体は、少なくとも約1KHz、もしくは少なくとも約10KHz、もしくは少なくとも約100KHz、もしくは少なくとも約1MHz、もしくは少なくとも約10MHz、もしくは少なくとも約100MHz、もしくは少なくとも約1GHz、もしくは少なくとも約2GHz、もしくは少なくとも約5GHz、もしくは少なくとも約10GHzの周波数にて、金属ワイヤよりも良好なパフォーマンスを達成することができる。いくつかの実施形態では、ハイブリッド導体は、銅または広い周波数範囲で、もしくは全周波数範囲で、もしくは全ての周波数範囲で、もしくは周波数とは無関係に、銅またはアルミニウムワイヤよりも良好なパフォーマンスを達成することができる。同様に、ハイブリッド導体は、種々の温度で、そして、すべての温度範囲全体でこれらのパフォーマンスを達成することができる。
【0100】
カーボンナノチューブ材料(A、B)を周囲温度(約20℃)で試験すると、高温(例えば100℃または200℃)で観察されたのと同様のパフォーマンスが観察された。これは、カーボンナノチューブの材料特性は温度感受性ではないためである。
【0101】
図10を参照すると、酸処理されたカーボンナノチューブシートハイブリッド導体の約50Hzから約200MHzまでで測定された周波数応答解析が示されている。この場合、酸処理されたカーボンナノチューブのハイブリッド導体は、約50重量%の硝酸溶液中、周囲温度(例えば20℃)にて少なくとも約5秒間で処理された。酸処理されたカーボンナノチューブのハイブリッド導体は、周波数の増加と共に減少するインピーダンスを示すことが観察されている。具体的には、インピーダンスの減少は、約10KHzから始まり、周波数の増加と共に続き、約1MHzで漸減することが観察される。これは、ハイブリッド導体がより高い周波数で、向上したパフォーマンス(低いインピーダンス)を提供できるということの現れであり得る。このハイブリッド導体がシート形態であるとしても、本明細書に記載するいかなるフォーマットのハイブリッド導体をも製造することができる。
【0102】
図11を参照すると、モデル化した、酸処理されたカーボンナノチューブのハイブリッド導体(A)、測定された酸−カーボンナノチューブのハイブリッド導体(B)、モデル化した、銅シート(C)およびモデル化した銅ワイヤ(D)の周波数応答解析が示されている。銅シート(C)およびワイヤ(D)は、ハイブリッド導体(A、B)と同じ断面積を有している。図示するように、モデル化した銅シート(C)およびワイヤ(D)は、同様のインピーダンス傾向を示しており、約20KHzでインピーダンスの増加を始めて、1GHzを越えて続いており、銅ワイヤ(D)は銅シート(C)よりもわずかに1桁高いインピーダンスを示している。対照的に、カーボンナノチューブは、モデル化した(A)も測定した(B)も、約20KHzから約10MHzまでの間で、減少する同様の傾向を示した。約10MHzから最高の約1GHzまででインピーダンスは増加を開始したが、それは表皮効果(skin effect)のためでありそうである。更に、すべての周波数にて、測定したハイブリッド導体(B)は、モデル化したハイブリッド導体(A)のインピーダンスと実質的に同様のインピーダンスを示した。
【0103】
図12を参照すると、未処理のカーボンナノチューブ(A)酸処理したカーボンナノチューブのハイブリッド導体(B)、Sbl(C)、FeCl(D)および銅(E)の温度に依存する抵抗率が示されている。図示するように、酸処理されたカーボンナノチューブのハイブリッド導体(B)が広い温度範囲(約−200℃〜約100℃)にわたってわずかな抵抗率の変動(約0.15mΩ−cm)を示したのに対して、SbI(C、約0.28mΩ−cm〜約約0.45mΩ−cm)、FeCl(D、約0.40mΩ−cm〜約約0.60mΩ−cm)および銅(E、約0.2μΩ−cm〜約約2.5μΩ−cm)はいずれも温度上昇(約−200℃〜約100℃)に伴って上昇する抵抗率を示した。このデータから、カーボンナノチューブは一般に、温度上昇と共に抵抗率を変えないと推測することもできるが、銅および他の金属材料の場合は変化する。
【0104】
図13を参照すると、銅ストリップ(A)、銅被覆カーボンナノチューブのハイブリッド導体(B)、未被覆カーボンナノチューブ(C)およびモデル化した銅ストリップ(D)の周波数応答に対する周波数が示されている。これらの実施例では、銅ストリップ(A)は、銅被覆カーボンナノチューブのハイブリッド導体(B)の約4.9倍の重量である。図示するように、銅被覆カーボンナノチューブのハイブリッド導体(B)は、高い周波域(約10MHz)付近で、未被覆カーボンナノチューブ(C)の場合に近い抵抗(約0.7Ω)に達することができるが、通常は、未被覆カーボンナノチューブ(C)の抵抗を上回ることはない。対照的に、銅ストリップ(A)の抵抗は上昇を続けて、最終的に、未被覆のカーボンナノチューブ(C)の値を上回っている。更に、銅被覆カーボンナノチューブのハイブリッド導体(B)は、測定した銅ストリップ(A)およびモデル化した銅ストリップ(D)の場合と実質的に同様の抵抗を示すことができるが、劇的な密度優位性を有する。このことは、以下の考察において、より明らかになる。
【0105】
図14を参照すると、モデル化した32AWGアルミニウムストリップ、モデル化した32AWG銅ストリップ、6層銅被覆カーボンナノチューブのハイブリッド導体(ハイブリッド型)、および未被覆のカーボンナノチューブ(原料)の比導電率が示されている。図示するように、ハイブリッド導体(ハイブリッド型)は、より低い周波数域(約50Hz〜約2KHz)でアルミニウムおよび銅の場合と同様の比導電率を示すことができるが、約1桁低い。同様に、未被覆のカーボンナノチューブ(原料)もより低い周波数域で低い比導電率を有するが、アルミニウムおよび銅より約2桁低い。しかしながら、より高い周波数域では、ハイブリッド導体(ハイブリッド型)および未被覆のカーボンナノチューブ(原料)は、アルミニウムおよび銅の場合よりも高い比導電率を示すことができる。具体的には、銅に対するハイブリッド導体のクロスオーバーは約15KHzであり、アルミニウムに対するハイブリッド導体のクロスオーバーは約55KHzである。同様に、銅に対する未被覆カーボンナノチューブのクロスオーバーは約800KHzであり、アルミニウムに対する未被覆カーボンナノチューブのクロスオーバーは約15MHzである。
【0106】
一実施形態では、M17−RG400単一導体同軸ケーブルは、重量の約9%を銅導体(内部銅ワイヤ)とし、約21%を内部絶縁とし、約50%を銅シールドもしくはメッシュとし、切り上げて約20%を外部または外側絶縁とすることができる。対照的に、カーボンナノチューブのハイブリッド導体の場合は、重量の約1%をカーボンナノチューブ導体とし、約43%を内側絶縁とし、約4%をカーボンナノチューブシールドとし、切り上げて約52%を外側またはその他の絶縁とすることができる。これらの例において、M17−RG400単一導体同軸ケーブルの銅シールドもしくはメッシュをカーボンナノチューブシールドに置換すると、(約50%〜約4%への)約46重量%の重量削減がもたらされる。
【0107】
別の実施形態では、M27500ツイステッドペアシールドケーブルについて、重量の約38%は銅導体(例えば銀メッキされた銅または合金)とし、約17%を内側絶縁(例えばePTFE)とし、約25%を銅シールディング(例えばブレーディングした銀メッキワイヤ)とし、切り上げて約20%をその他の絶縁(例えば、ePTFE上のPTFE)とすることができる。対照的に、カーボンナノチューブのハイブリッド導体について、重量の約6%をカーボンナノチューブ導体とし、約32%を内側絶縁とし、約5%をカーボンナノチューブシールディングとし、約57%を外側またはその他の絶縁とすることができる。これらの例において、銅シールディングをカーボンナノチューブシールディングと置換すると、(約25%〜約5%への)約20重量%の重量削減がもたらされる。
【0108】
<用途>
ハイブリッド導体およびその他のハイブリッドナノ構造体導体を形成することによって、それらの並外れた機械的および電子的特性を利用する用途が可能となる。本発明のシステム及び方法によって形成されるハイブリッド導体およびハイブリッドナノ構造体導体は、繊維状材料に編んだり組み込んだり、ヒートシンク、強度および導電性を必要とする電力伝送線、低抵抗率および最小限の渦電流損失を必要とする電気モータおよびソレノイド巻線、カーボン−カーボンおよびカーボン−エポキシを含む高強度の繊維強化複合材料、ならびにハイブリッドナノチューブベースのケーブル、繊維、タウ、繊維製品および織物に関連して用いるために処理したりすることができる。また、これらのハイブリッドナノチューブおよびナノ構造体および導体から形成される装置、ならびに例えば種々の防護具、防護服、エネルギー生成索などの繊維製品も含まれる。本発明は、ハイブリッドナノチューブもしくはナノチューブの群を熱硬化性エポキシもしくは高カーボンポリマー、例えば複合材料前駆体として作用するフルフリルアルコールもしくはRESOLで被覆することをも意図している。
【0109】
カーボンから形成される構造体は、本明細書で説明している。しかしながら、ナノチューブを含むナノ構造体は、例えば、窒化ホウ素、タングステン硫化物、バナジウム酸化物、および窒化ホウ素炭素(上述したものと同様の触媒的プロセスを用いるもの)を含む他の材料から形成することができるということも認識されるべきである。従って、本発明には、例えばバナジウム酸化物および窒化ホウ素などの無機材料から形成される、および、例えば窒化ホウ素炭素などの他の要素と組み合わされたカーボンから形成される、ハイブリッド導体およびその他のハイブリッドナノ構造体導体およびプリズムナノ構造体も含まれる。一実施形態では、本発明には、関連するハイブリッドナノ構造体材料を製造する方法、ならびに、上述した構造的、熱的、および、電気的用途も含まれる。
【0110】
一実施形態では、高周波ソレノイド用の低渦電流かつ低抵抗の巻線を、本明細書に記載されたハイブリッド導体の実施形態を組み込んで製造することができる。別の実施形態では、高周波トランス用の巻線を、本明細書に記載されたハイブリッド導体の実施形態を組み込んで製造することができる。いくつかの実施形態では、その各々に、本明細書に記載されたハイブリッド導体の実施形態を組み込むことが可能な、熱導体、電気モータ用の低渦電流かつ低抵抗の巻線、およびソレノイド用の低渦電流低抵抗巻線をすべて製造することができる。
【0111】
いくつかの実施形態では、本明細書に記載されたハイブリッド導体の実施形態を、ソレノイドの形態、または、発電機およびモータ用の巻線として組み込むことができる。ナノ構造体が利用できるためハイブリッド導体は電気的により効率的であってよい。それは、これらの特性が温度によっては実質的には変化しないためである。更にまた、ナノ構造体ハイブリッド導体は、渦電流の最小化を支援して、高速または高周波ソレノイド巻線を、他の電気的および熱的システムの中でも、燃料噴射システムに組み込むこともできる。
【0112】
カーボンナノチューブのハイブリッド導体の重量および/または密度の軽減を、限定されるものではないが、中でも、電線、光ファイバー、ケーブルワイヤを含む他の従来の電気および/または熱導体に適用することもできると当業者には認められるであろう。
【0113】
本発明を特定の実施形態に関して説明したが、本発明の真の精神および範囲から逸脱することなく、種々の修正を行ったり、均等物と置換したりすることができる。更に、本発明の趣旨および範囲から逸脱することなく、多くの変更実施形態を物質、プロセス工程または工程の特定の状況、表示、材料および化合物に適合させることができる。すべてのそのような変更実施形態は、本明細書に添付の特許請求の範囲内のものであることが意図されている。

【特許請求の範囲】
【請求項1】
それぞれ表面積を有する複数のナノ構造体と、
前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材と、
前記複数のナノ構造体の表面積全体より小さい表面積に接触するように配置された導電性材料と、を含むハイブリッド導体であって、
前記導電性材料と前記複数のナノ構造体との組合せによって、導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低下させたことを特徴とするハイブリッド導体。
【請求項2】
前記ナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素、またはそれらの組合せのいずれか1つから形成される請求項1に記載のハイブリッド導体。
【請求項3】
前記複数のナノ構造体は、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩またはそれらの組合せのいずれか1つを含む溶液中でドープされて成る請求項1に記載のハイブリッド導体。
【請求項4】
前記複数のナノ構造体によって規定される前記部材は、糸またはシートのいずれか1つを含む請求項1に記載のハイブリッド導体。
【請求項5】
前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む請求項4に記載のハイブリッド導体。
【請求項6】
前記導電性材料は、前記複数のナノ構造体の前記表面積全体より小さい表面積に接触する導電性被覆、前記複数のナノ構造体の前記表面積合計より小さい表面積に接触する導電性ワイヤ、またはそれらの組合せのいずれか1つを含む請求項1に記載のハイブリッド導体。
【請求項7】
前記導電性材料は、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀、またはそれらの組合せのいずれか1つを含む請求項6に記載のハイブリッド導体。
【請求項8】
請求項1に記載のハイブリッド導体を含む熱導体。
【請求項9】
請求項1に記載のハイブリッド導体を含む電気モータ用の低渦電流かつ低抵抗の巻線。
【請求項10】
請求項1に記載のハイブリッド導体を含むソレノイド用の低渦電流かつ低抵抗の巻線。
【請求項11】
複数のナノ構造体であって、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩、またはそれらの組合せのいずれか1つを含む溶液中でドープされて成る複数のナノ構造体と、
前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材であって、前記複数のナノ構造体が導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低減させた部材と、を含むハイブリッド導体。
【請求項12】
前記複数のナノ構造体によって規定される部材は、糸またはシートのいずれか1つを含む請求項11に記載のハイブリッド導体。
【請求項13】
前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む請求項12に記載のハイブリッド導体。
【請求項14】
それぞれ表面積を有する複数のナノ構造体を提供する工程と、
前記複数のナノ構造体によって規定される幾何学的プロファイルを有する部材を形成する工程と、
導電性材料を、前記複数のナノ構造体の表面積全体より小さい表面積に接触させる工程と、を含む方法であって、
前記導電性材料と前記複数のナノ構造体とを組合せることによって、導電性を向上させつつ、前記部材の長手方向に沿って抵抗率を低下させることを特徴とする方法。
【請求項15】
前記提供する工程において、前記ナノ構造体は、炭素、銅、銀、ホウ素、窒化ホウ素、またはそれらの組合せのいずれか1つから形成される請求項14に記載の方法。
【請求項16】
前記形成する工程に付随して、フッ化物塩、塩化物塩、臭化物塩、ヨウ素酸塩、硝酸塩、硫酸塩、またはそれらの組合せのいずれか1つを含む溶液中で前記複数のナノ構造体をドープする工程を更に含む請求項14に記載の方法。
【請求項17】
前記形成する工程において、前記複数のナノ構造体によって規定される前記部材は、糸またはシートのいずれか1つを含む請求項14に記載の方法。
【請求項18】
前記形成する工程において、前記部材は、複数の糸、複数のシート、またはそれらの組合せのいずれか1つを含む請求項17に記載の方法。
【請求項19】
前記接触させる工程は、前記部材を導電性部材で被覆して、前記複数のナノ構造体の表面積全体より小さい表面積に接触させること、導電性ワイヤを前記複数のナノ構造体の表面積全体より小さい表面積に撚り合わせること、またはそれらの組合せのいずれか1つを含む請求項14に記載の方法。
【請求項20】
前記接触させる工程において、前記導電性材料および前記導電性ワイヤは、銅、アルミニウム、チタン、プラチナ、ニッケル、金、銀、またはそれらの組合せのいずれか1つを含む請求項19に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4A−4B】
image rotate

【図4C−4D】
image rotate

【図4E】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公表番号】特表2012−533158(P2012−533158A)
【公表日】平成24年12月20日(2012.12.20)
【国際特許分類】
【出願番号】特願2012−519729(P2012−519729)
【出願日】平成22年7月8日(2010.7.8)
【国際出願番号】PCT/US2010/041374
【国際公開番号】WO2011/005964
【国際公開日】平成23年1月13日(2011.1.13)
【出願人】(506243220)ナノコンプ テクノロジーズ インコーポレイテッド (16)
【Fターム(参考)】