説明

ハードディスク基板用研磨液組成物

【課題】生産性を損なうことなく、アルミナ砥粒の基板への突き刺さりを低減できるハードディスク基板用研磨液組成物の提供。
【解決手段】アルミナ粒子、シリカ粒子、及び水を含み、前記アルミナ粒子の二次粒子のレーザー光回折法により測定される体積中位粒径が0.1〜0.8μmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される体積中位粒径が40〜150nmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される粒径の個数基準の標準偏差が11〜35nmである、ハードディスク基板用研磨液組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハードディスク基板用研磨液組成物、並びにこれを用いた研磨方法及びハードディスク基板の製造方法に関する。
【背景技術】
【0002】
コンピューターの急速な普及やデジタル放送の開始等に伴い、ハードディスクドライブの高容量・小径化が求められている。例えば、ハードディスクドライブに使用されるメモリーハードディスクの記録密度を上げる方法として、磁気ヘッドの浮上量を低下させて、単位記録面積を小さくすることが提案されている。しかしながら、ヘッドの低浮上化に対応するためには、ハードディスク基板の表面の表面粗さ、微小うねりなどを低減する必要がある。かかる要求を満たすために、研磨後の基板の表面特性を改善し得る研磨剤スラリー(特許文献1〜3)が知られている。
【0003】
ハードディスク基板の製造方法においては、より平滑で、傷が少ないといった表面品質向上と生産性向上の両立の観点から、2段階以上の研磨工程を有する多段研磨方式が採用されることが多い。多段研磨方式の最終研磨工程、即ち、仕上げ研磨工程では、表面粗さの低減、傷の低減という要求を満たすために、一般に、コロイダルシリカ粒子を使用した仕上げ用研磨液組成物で研磨される。一方、仕上げ研磨工程より前の研磨工程(粗研磨工程ともいう)においては、生産性の観点から、高い研磨速度を実現し得る比較的粒径の大きな砥粒、例えばアルミナ粒子が使用される傾向にある。
【特許文献1】特開2005−186269号公報
【特許文献2】特開2006−518549号公報
【特許文献3】特開2007−168034号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、アルミナ粒子を砥粒として使用した場合、アルミナ粒子の基板への突き刺さりに起因するテキスチャースクラッチによって、メディアの欠陥を引き起こし、さらに、磁気特性の低下、即ち、シグナルノイズ比(SNR)の低下を引き起こすという問題がある。前記従来技術では、アルミナ粒子の基板への突き刺さりを十分に低減することができない。
【0005】
また、ハードディスクにおける記録方式は、記録容量の大容量化の要請に伴い、水平磁気記録方式から垂直磁気記録方式へと移行しつつある。垂直磁気記録方式のハードディスクの製造過程では、水平磁気記録方式で採用されていたテキスチャー工程を経ることなく磁性層が形成されるため、基板の研磨工程で発生したアルミナ粒子の突き刺さりがテキスチャー工程で低減されず、SNRの低下が顕著になることが予想される。
【0006】
本発明は、生産性を損なうことなく、メディア欠陥及び磁気特性の低下の原因となるアルミナ粒子の基板への突き刺さりを低減できるハードディスク基板用研磨液組成物、ハードディスク基板の製造方法、及び被研磨基板の研磨方法を提供する。
【課題を解決するための手段】
【0007】
本発明のハードディスク基板用研磨液組成物は、アルミナ粒子、シリカ粒子、及び水を含み、前記アルミナ粒子の二次粒子のレーザー光回折法により測定される体積中位粒径が0.1〜0.8μmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される体積中位粒径が40〜150nmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される粒径の個数基準の標準偏差が11〜35nmであるハードディスク基板用研磨液組成物である。また、本発明のハードディスク基板の製造方法は、本発明のハードディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含む垂直磁気記録方式用ハードディスク基板の製造方法である。また、本発明の被研磨基板の研磨方法は、本発明のハードディスク基板用研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板が垂直磁気記録方式用ハードディスク基板の製造に用いる基板であり、前記研磨する工程が粗研磨工程である研磨方法である。
【発明の効果】
【0008】
本発明のハードディスク基板用研磨液組成物によれば、生産性を損なうことなく、アルミナ粒子の基板への突き刺さりが低減された高記録密度に適したハードディスク基板、特に垂直磁気記録方式用ハードディスク基板を製造できるという効果が好ましくは奏される。
【発明を実施するための最良の形態】
【0009】
本発明において、アルミナ粒子の「突き刺さり」とは、アルミナ粒子が基板に押し込まれて残留している状態を指す。この突き刺さりは、後述の実施例のように、シリカ粒子を砥粒として含有する研磨液組成物で、基板表面をわずかに研磨して基板に付着した砥粒を除去した後、その基板表面を暗視野顕微鏡観察又は原子間力顕微鏡(AFM)若しくは走査型電子顕微鏡(SEM)観察によって調べることができる。この基板への突き刺さりが低減されることによりSNRの低下を抑制でき、基板の表面特性の向上が可能となる。
【0010】
本発明は、研磨液組成物の砥粒として、特定の二次粒子径を示すアルミナ粒子とブロードな粒径分布及び特定の一次粒子径を示すシリカ粒子とを組み合わせて使用することにより、研磨後に、アルミナ粒子の基板への突き刺さりが顕著に低減され得るという知見に基づく。このアルミナ粒子の突き刺さりが低減されるメカニズムは明らではないが、ブロードな粒径分布、即ち、粒径の標準偏差が大きいシリカ粒子を用いることにより、シリカ粒子の充填率が増加し、被研磨基板と砥粒との摩擦が高まり、その結果突き刺さったアルミナ粒子が引き抜かれ、アルミナ粒子の基板への突き刺さりが低減されるものと推測される。また、上記の砥粒の組み合わせによれば、さらに好ましくは、研磨後の基板のうねりの低減も可能であるという知見に基づく。
【0011】
本発明において、基板の「うねり」とは、粗さよりも波長の長い基板表面の凹凸であり、本明細書においては、波長0.5〜5mmのうねりのことを指す。この基板のうねりが低減されることにより、磁気ヘッドの浮上量が低減でき、磁気ディスク基板の記録密度向上が可能となる。
【0012】
即ち、本発明は、1つの態様として、アルミナ粒子、シリカ粒子、及び水を含み、前記アルミナ粒子の二次粒子のレーザー光回折法により測定される体積中位粒径が0.1〜0.8μmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される体積中位粒径が40〜150nmであり、前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される粒径の個数基準の標準偏差が11〜35nmであるハードディスク基板用研磨液組成物に関する。本発明のハードディスク基板用研磨液組成物(以下、本発明の研磨液組成物ともいう)を用いることにより、生産性を損なうことなく、アルミナ粒子の基板への突き刺さりが低減された、高記録密度に適したハードディスク基板、特に垂直磁気記録方式用ハードディスク基板が好ましくは提供される。本発明の研磨液組成物によれば、さらに好ましくは、基板のうねりも低減されたハードディスク基板が提供される。
【0013】
[アルミナ粒子]
本発明の研磨液組成物は、砥粒としてアルミナ粒子を含有する。本発明に用いられるアルミナ粒子としては、突き刺さり低減、うねり低減、表面粗さ低減、研磨速度向上及び表面欠陥防止の観点から、アルミナとしての純度が95%以上のアルミナが好ましく、より好ましくは97%以上、さらに好ましくは99%以上のアルミナである。また、研磨速度向上の観点からは、α−アルミナが好ましく、基板の表面性状及びうねり低減の観点からは、中間アルミナ及びアモルファスアルミナが好ましい。中間アルミナとは、α−アルミナ以外の結晶性アルミナ粒子の総称であり、具体的にはγ−アルミナ、δ−アルミナ、θ−アルミナ、η−アルミナ、κ−アルミナ、及びこれらの混合物等が挙げられる。その中間アルミナの中でも、研磨速度向上及びうねり低減の観点から、γ−アルミナ、δ−アルミナ、θ−アルミナ及びこれらの混合物が好ましく、より好ましくはγ−アルミナ及びθ−アルミナである。研磨速度向上及びうねり低減の観点からは、α−アルミナと、中間アルミナ及び/又はアモルファスアルミナとを混合して使用することが好ましく、α−アルミナと中間アルミナとを混合して使用することがより好ましく、α−アルミナとθ−アルミナとを混合して使用することがさらにより好ましい。また、アルミナ粒子中のα−アルミナの含有量は、研磨速度向上及びうねり低減の観点から、20〜100重量%が好ましく、20〜80重量%がより好ましく、20〜75重量%がさらに好ましい。本発明において、アルミナ粒子中のα−アルミナの含有量は、WA−1000(昭和電工(株)製 アルミナ粒子)の104面のピーク面積を100%として、X線回折におけるα−アルミナの対応ピーク面積を相対比較することにより求める。
【0014】
本発明に用いられるアルミナ粒子の二次粒子の体積中位粒径は、レーザー光回折法による測定で得られるものであって、突き刺さり、うねり、及び表面粗さの低減の観点から、0.8μm以下であり、0.6μm以下が好ましく、0.5μm以下がより好ましく、0.4μm以下がさらに好ましい。また、前記体積中位粒径は、研磨速度向上の観点から、0.1μm以上であり、0.15μm以上が好ましく、0.2μm以上がより好ましく、0.25μm以上がさらに好ましい。よって、前記体積中位粒径は、0.1〜0.8μmであり、好ましくは0.15〜0.6μm、より好ましくは0.2〜0.5μm、さらに好ましくは0.25〜0.4μmである。中でも、レーザー光回折法により測定したα−アルミナの二次粒子の体積中位粒径は、突き刺さり低減、うねり低減及び表面粗さ低減の観点、並びに研磨速度向上の観点から、好ましくは0.1〜0.8μm、より好ましくは0.15〜0.6μm、さらに好ましくは0.2〜0.5μm、さらに好ましくは0.25〜0.4μmである。
【0015】
アルミナ粒子の一次粒子の体積中位粒径は、突き刺さり低減及び表面汚れ低減の観点から、0.005〜0.5μmが好ましく、0.01〜0.4μmがより好ましく、0.03〜0.3μmがさらに好ましく、0.05〜0.2μmがさらにより好ましい。中でも、α−アルミナの一次粒子の体積中位粒径、研磨速度向上、突き刺さり低減及び表面汚れ低減の観点から、0.05〜0.5μmが好ましく、0.05〜0.4μmがより好ましく、0.05〜0.3μmがさらに好ましく、0.07〜0.2μmがさらにより好ましい。アルミナ粒子の一次粒子の体積中位粒径は、走査型電子顕微鏡(好適には3000〜30000倍)又は透過型電子顕微鏡(好適には10000〜300000倍)の写真を画像解析することにより求めることができる。具体的には、拡大写真等を用い、個々の一次粒子の最大長を少なくとも200個の粒子について測定し、該長さを直径とする球の体積を算出し、小粒径側からの累積体積頻度が50%となる粒径(D50)を一次粒子の体積中位粒径とする。
【0016】
研磨液組成物中におけるアルミナ粒子の含有量は、研磨速度向上及び突き刺さり低減の観点から、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.5重量%以上、さらにより好ましくは1重量%以上である。また、該含有量は、表面品質向上及び経済性の観点から、好ましくは30重量%以下、より好ましくは20重量%以下、さらに好ましくは15重量%以下、さらにより好ましくは10重量%以下である。即ち、研磨液組成物中におけるアルミナ粒子の含有量は好ましくは0.05〜30重量%、より好ましくは0.1〜20重量%、さらに好ましくは0.5〜15重量%、さらにより好ましくは1〜10重量%である。
【0017】
アルミナ粒子中における粒径が1μm以上の粗大粒子の含有量は、突き刺さり低減の観点から、好ましくは0.2重量%以下であり、より好ましくは0.15重量%以下、さらに好ましくは0.1重量%以下、よりさらに好ましくは0.05重量%以下である。また、アルミナ粒子中における粒径が3μm以上の粗大粒子の含有量は、同様の観点から、0.05重量%以下が好ましく、より好ましくは0.04重量%以下、さらに好ましくは0.03重量%以下、さらにより好ましくは0.02重量%以下、さらにより好ましくは0.01重量%以下である。なお、前記「粒径が1μm以上の粗大粒子」又は「粒径が3μm以上の粗大粒子」は、一次粒子のみならず、一次粒子が凝集した二次粒子をも含むものとする。研磨液組成物中の前記粗大粒子の含有量の測定には、個数カウント方式(Sizing Particle Optical Sensing法)が使用される。具体的には、米国パーティクルサイジングシステムズ(Particle Sizing Systems)社製「アキュサイザー(Accusizer)780」によって、アルミナ粒子の粒径を測定することにより、該含有量を求めることができる。アルミナ粒子中における粒径が1μm以上の粗大粒子の含有量を制御する方法としては、特に限定はなく、研磨液組成物の製造の際あるいは製造後に、一般的な分散方法あるいは粒子除去方法を用いることができる。
【0018】
[シリカ粒子]
本発明の研磨液組成物は、砥粒として、前記アルミナ粒子とともに、シリカ粒子を含有する。シリカ粒子としては、コロイダルシリカ、ヒュームドシリカ、表面修飾したシリカ等が挙げられ、中でも、より高度な平滑性を必要とする高記録密度メモリー磁気ディスク用基板の最終仕上げ研磨用途に適しているという観点から、コロイダルシリカが好ましい。なお、コロイダルシリカ粒子は、例えば、ケイ酸水溶液から生成させる製法により得ることができる。
【0019】
本発明に用いるシリカ粒子の一次粒子の体積中位粒径(体積基準における平均粒径(D50)ともいう。)は、突き刺さり低減、研磨速度向上及びうねり低減の観点から、40〜150nmであり、45〜100nmであることが好ましく、50〜80nmであることがより好ましい。また、シリカ粒子の個数基準における粒径の標準偏差は、突き刺さり低減、研磨速度向上及びうねり低減の観点から、11〜35nmであり、15〜30nmであることが好ましく、18〜25nmであることがより好ましい。
【0020】
シリカ粒子の一次粒子の体積中位粒径及び個数基準の粒径の標準偏差は、以下の方法により求めることができる。即ち、シリカ粒子を日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)で観察した写真をパソコンにスキャナで画像データとして取込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1000個以上のシリカ粒子データについて1個1個のシリカ粒子の円相当径を求め、それを直径とし、表計算ソフト「EXCEL」(マイクロソフト社製)にて、個数基準の粒径の標準偏差(標本標準偏差)を得る。また、前記表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカの粒径分布データに基づき、全粒子中における、ある粒径の粒子の割合(体積基準%)を小粒径側からの累積頻度として表し、累積体積頻度(%)を得る。得られたシリカの粒径及び累積体積頻度データに基づき、粒径に対して累積体積頻度をプロットすることにより、粒径対累積体積頻度グラフが得られる。前記グラフにおいて、小粒径側からの累積体積頻度が50%となる粒径をシリカの体積中位粒径とする。
【0021】
前記シリカ粒子は、突き刺さり低減、研磨速度向上及び基板うねり低減の観点から、粒径20〜120nmのシリカ粒子をシリカ粒子全量に対して40体積%以上含有することが好ましく、より好ましくは60体積%以上、さらに好ましくは80体積%以上、さらにより好ましくは90体積%以上である。
【0022】
また、前記シリカ粒子は、突き刺さり低減、研磨速度向上及び基板うねり低減の観点から、粒径20〜40nm、粒径60〜80nm、粒径100〜120nmのうち、粒径60〜80nmの体積%が最も大きいことが好ましく、粒径20〜40nmのシリカ粒子をシリカ粒子全量に対して1〜40体積%、粒径60〜80nmのシリカ粒子をシリカ粒子全量に対して5〜90体積%、及び粒径100〜120nmのシリカ粒子をシリカ粒子全量に対して0〜40体積%含有することが好ましい。
【0023】
上記と同様の観点から、粒径20〜40nmのシリカ粒子の含有量としては、シリカ粒子全量に対して1〜30体積%がより好ましく、1〜25体積%がさらに好ましい。粒径60〜80nmのシリカ粒子の含有量としては、シリカ粒子全量に対して10〜70体積%がより好ましく、20〜60体積%がさらに好ましい。粒径100〜120nmのシリカ粒子の含有量としては、シリカ粒子全量に対して0〜30体積%がより好ましく、0〜20体積%がさらに好ましい。
【0024】
前記シリカ粒子の粒径分布は、前述の粒径分布データに基づき、全シリカ粒子中の粒径20〜120nm、粒径20〜40nm、粒径60〜80nm、及び粒径100〜120nmのシリカ粒子の割合(体積基準%)を計算する。
【0025】
シリカ粒子の粒径分布を調整する方法としては、特に限定されないが、例えば、シリカ粒子がコロイダルシリカの場合、その製造段階における粒子の発生及び成長過程で新たな核となる粒子を加えることにより最終製品に粒径分布を持たせる方法、異なる粒径分布を有する2つ以上のシリカ粒子を混合する方法等で達成することが可能であるが、調整の簡便さから、異なる粒径分布を有する2種以上のシリカ粒子を混合して調整することが好ましい。
【0026】
研磨液組成物中におけるシリカ粒子の含有量は、アルミナ粒子の突き刺さりの低減、研磨速度向上及びうねり低減の観点から、好ましくは0.1重量%以上、より好ましくは0.5重量%以上、さらに好ましくは1.0重量%以上、さらにより好ましくは1.5重量%以上である。また、シリカ粒子の含有量は、表面品質向上及び経済性の観点から、好ましくは30重量%以下、より好ましくは25重量%以下、さらに好ましくは20重量%以下、さらにより好ましくは15重量%以下である。即ち、研磨液組成物中におけるシリカ粒子の含有量は好ましくは0.1〜30重量%、より好ましくは0.5〜25重量%、さらに好ましくは1〜20重量%、さらにより好ましくは1.5〜15重量%である。
【0027】
研磨液組成物中におけるアルミナ粒子とシリカ粒子の重量比(アルミナ重量/シリカ重量)は、アルミナ粒子の突き刺さり低減、研磨速度向上及びうねり低減の観点から、60/40〜10/90の範囲であることが好ましく、50/50〜15/85の範囲であることがより好ましく、40/60〜20/80の範囲であることがさらに好ましい。
【0028】
[酸及び/又はその塩]
本発明の研磨液組成物は、研磨速度の向上及びうねり低減の観点から、酸及び/又はその塩を含有することが好ましい。本発明に用いられる酸としては、研磨速度の向上、突き刺さり低減、及びうねり低減の観点から、そのpK1が好ましくは7以下、より好ましくは5以下、さらに好ましくは3以下、さらにより好ましくは2以下の酸である。ここで、pK1とは、第1酸解離定数(25℃)の逆数の対数値である。各化合物のpK1は、例えば化学便覧改訂4版(基礎編)II、p316〜325(日本化学会編)等に記載されている。
【0029】
本発明に用いられる酸及び/又はその塩の具体例を以下に示す。無機酸としては硝酸、塩酸、過塩素酸、アミド硫酸等の一価の鉱酸と、硫酸、亜硫酸、リン酸、ピロリン酸、ポリリン酸、ホスホン酸、ホスフィン酸等の多価鉱酸及びそれらの塩が挙げられる。また、有機酸としてはギ酸、酢酸、グリコール酸、乳酸、プロパン酸、ヒドロキシプロパン酸、酪酸、安息香酸、グリシン等のモノカルボン酸、シュウ酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、イタコン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、フタル酸、ニトロトリ酢酸、エチレンジアミン四酢酸等の多価カルボン酸、メタンスルホン酸、パラトルエンスルホン酸等のアルキルスルホン酸、エチルリン酸、ブチルリン酸等のアルキルリン酸、ホスホノヒドロキシ酢酸、ヒドロキシエチリデンジホスホン酸、ホスホノブタントリカルボン酸、エチレンジアミンテトラメチレンホスホン酸等の有機ホスホン酸及びそれらの塩等が挙げられる。これらの内、研磨速度の向上、突き刺さり低減、及びうねり低減の観点から、多価酸及びそれらの塩が好ましく、より好ましくは多価鉱酸、多価カルボン酸、有機ホスホン酸及びそれらの塩、さらに好ましくは多価鉱酸、多価カルボン酸及びそれらの塩である。ここで多価酸とは分子内に2つ以上の、水素イオンを発生させ得る水素を持つ酸をいう。また、被研磨物の表面汚れ防止の観点からは、硝酸、硫酸、アルキルスルホン酸、多価カルボン酸及びそれらの塩が好ましい。
【0030】
前記酸は単独で用いても良いが、2種以上を混合して使用することが好ましい。特に、Ni−Pメッキ基板のような金属表面を研磨する場合で、研磨中に被研磨物の金属イオンが溶出して研磨液組成物のpHが上昇し、高い研磨速度が得られないとき、pH変化を小さくするためにpK1が2.5未満の酸とpK1が2.5以上の酸とを組み合わせて使用することが好ましく、pK1が1.5以下の酸とpK1が2.5以上の酸とを組み合わせて使用することがより好ましい。このような2種以上の酸を含有する場合、研磨速度向上及びうねり低減、かつ入手性を考慮すると、pK1が2.5未満の酸としては、硝酸、硫酸、リン酸、ポリリン酸等の鉱酸や有機ホスホン酸を用いることが好ましい。一方、pK1が2.5以上の酸としては、同様な観点から、酢酸、コハク酸、リンゴ酸、酒石酸、マレイン酸、クエン酸、イタコン酸等の有機カルボン酸が好ましく、中でも、コハク酸、リンゴ酸、酒石酸、マレイン酸、クエン酸、イタコン酸が好ましく、クエン酸がより好ましい。また、研磨速度向上及びうねり低減の観点から、pK1が2.5以上の有機カルボン酸を使用する場合は、オキシカルボン酸と2価以上の多価カルボン酸とを組み合わせて使用することがより好ましい。例えば、オキシカルボン酸としては、クエン酸、リンゴ酸、酒石酸等が挙げられ、多価カルボン酸としては、コハク酸、マレイン酸、イタコン酸等が挙げられる。従って、これらをそれぞれ1種以上組み合わせて使用することが好ましく、中でも、クエン酸と多価カルボン酸を組み合わせることが好ましい。
【0031】
これらの酸の塩としては、特に限定はなく、具体的には、金属、アンモニウム、アルキルアンモニウム、有機アミン等との塩が挙げられる。上記金属の具体例としては、周期律表(長周期型)1A、1B、2A、2B、3A、3B、4A、6A、7A又は8族に属する金属が挙げられる。これらの中でも、研磨速度向上、ロールオフ低減の観点から1A族に属する金属又はアンモニウムとの塩が好ましい。
【0032】
研磨液組成物中における酸及び/又はその塩の含有量は、研磨速度向上及びうねり低減の観点から、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、さらに好ましくは0.3重量%以上、さらにより好ましくは0.5重量%以上である。また、酸及び/又はその塩の含有量は、表面品質及び経済性の観点から、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは10重量%以下、さらにより好ましくは5重量%以下である。即ち、研磨液組成物中における酸の含有量は、好ましくは0.05〜20重量%、より好ましくは0.1〜15重量%、さらに好ましくは0.3〜10重量%、さらにより好ましくは0.5〜5重量%である。また、研磨速度向上の観点から、pK1が2.5未満の酸とpK1が2.5以上の酸との重量比〔(pK1が2.5未満の酸)/(pK1が2.5以上の酸)〕は、9/1〜1/9が好ましく、7/1〜1/7がより好ましく、5/1〜1/5がさらに好ましい。
【0033】
[酸化剤]
本発明の研磨液組成物は、研磨速度の向上、突き刺さり低減、及びうねり低減の観点から、酸化剤を含有することが好ましい。本発明に用いられる酸化剤としては、例えば、過酸化物、金属のペルオキソ酸若しくはその塩、又は酸素酸若しくはその塩等が挙げられる。酸化剤はその構造から無機系酸化剤と有機系酸化剤に大別される。無機系酸化剤としては、過酸化水素; 過酸化ナトリウム、過酸化カリウム、過酸化カルシウム、過酸化バリウム、過酸化マグネシウムのようなアルカリ金属又はアルカリ土類金属の過酸化物; ペルオキソ炭酸ナトリウム、ペルオキソ炭酸カリウム等のペルオキソ炭酸塩; ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸ナトリウム、ペルオキソ二硫酸カリウム、ペルオキソ一硫酸等のペルオキソ硫酸又はその塩; ペルオキソリン酸ナトリウム、ペルオキソリン酸カリウム、ペルオキソリン酸アンモニウム等のペルオキソリン酸又はその塩; ペルオキソホウ酸ナトリウム、ペルオキソホウ酸カリウム等のペルオキソホウ酸塩; ペルオキソクロム酸ナトリウム、ペルオキソクロム酸カリウム等のペルオキソクロム酸塩; 過マンガン酸ナトリウム、過マンガン酸カリウム等の過マンガン酸塩; 過塩素酸ナトリウム、過塩素酸カリウム、次亜塩素酸ナトリウム、過沃素酸ナトリウム、過沃素酸カリウム、沃素酸ナトリウム、沃素酸カリウム等の含ハロゲン酸素酸塩; 及び塩化鉄(III)、硫酸鉄(III)、硝酸アルミニウム等の無機酸金属塩等が挙げられる。有機系酸化剤としては、過酢酸、過蟻酸、過安息香酸等の過カルボン酸類; t−ブチルパーオキサイト、クメンパーオキサイト等のパーオキサイト; 及びクエン酸鉄(III)等の有機酸鉄(III)塩等が挙げられる。これらの内、研磨速度の向上、入手性、及び水への溶解度等の取り扱い性の観点から、無機系酸化剤が好ましい。中でも、過酸化水素、ペルオキソホウ酸ナトリウム、沃素酸ナトリウム及び沃素酸カリウムが好ましい。また、これらの酸化剤は一種でもよいが、二種以上を混合して用いても良い。
【0034】
酸化剤の研磨液組成物中の含有量は、研磨速度の向上、突き刺さり低減及び表面汚れ低減の観点から、0.1重量%以上が好ましく、0.3重量%以上がより好ましく、0.5重量%以上がさらに好ましく、0.8重量%以上がさらにより好ましい。また、ロールオフ低減及び表面品質の観点から、10重量%以下が好ましく、5重量%以下がより好ましく、3重量%以下がさらに好ましく、1.5重量%以下がさらにより好ましい。即ち、研磨液組成物中の酸化剤の含有量は、0.1〜10重量%が好ましく、0.3〜5重量%がより好ましく、0.5〜3重量%がさらに好ましく、0.8〜1.5重量%がさらにより好ましい。
【0035】
[水]
本発明の研磨液組成物中の水は、媒体として使用されるものであり、蒸留水、イオン交換水又は超純水等が使用され得る。研磨液組成中の水の含有量は、研磨液組成物の取り扱い性(粘度)の観点から、55重量%以上が好ましく、75%重量%以上がより好ましく、85重量%以上がさらに好ましく、90重量%以上がさらにより好ましい。また、研磨速度の向上、突き刺さり低減、及びうねり低減の観点から、99.8重量%以下が好ましく、99.3重量%以下がより好ましく、98.8重量%以下がさらに好ましい。即ち、研磨液組成物中の水の含有量は55〜99.8重量%が好ましく、75〜99.8重量%がより好ましく、85〜99.3重量%がさらに好ましく、90〜98.8重量%がさらにより好ましい。
【0036】
[研磨液組成物のpH]
本発明の研磨液組成物のpHは、被研磨物の種類や要求品質等に応じて適宜決定することが好ましい。例えば、研磨液組成物のpHは、研磨速度向上及びうねり低減の観点と、加工機械の腐食防止性及び作業者の安全性の観点とから7未満が好ましく、0.1〜6がより好ましく、さらに好ましくは0.5〜5であり、さらにより好ましくは1〜5、さらにより好ましくは1〜4、さらにより好ましくは1〜3.5である。該pHは、必要により、硝酸、硫酸等の無機酸、オキシカルボン酸、多価カルボン酸、アミノポリカルボン酸、アミノ酸等の有機酸、及びそれらの金属塩やアンモニウム塩、アンモニア、水酸化ナトリウム、水酸化カリウム、アミン等の塩基性物質を適宜、所望量で配合することで調整することができる。
【0037】
[共重合体]
本発明の研磨液組成物は、ロールオフ低減の観点から、式(I)で表される構成単位と20℃の水100gに対する溶解度が2g以下の疎水性モノマーに由来する構成単位とを有する共重合体及び/又はその塩を含むことが好ましい。前記共重合体において、下記式(I)で表される構成単位は、親水性構成単位としての役割を果たし、前記疎水性モノマーに由来する構成単位は、疎水性構成単位としての役割を果たす。前記共重合体において、下記式(I)で表される構成単位と前記疎水性モノマーに由来する構成単位との付加は、ランダム、ブロック又はグラフトのいずれであってもよく、これらの組合せであってもよい。
【0038】
【化1】

【0039】
前記式(I)において、R1は、水素原子又はメチル基であり、中でも、構成単位及び共重合体の安定性をさらに向上できるため、メチル基が好ましい。R2は、水素原子又は炭素数1〜4であり、好ましくは炭素数1〜3のアルキル基であり、さらに好ましくはメチル基である。また、前記式(I)において、AOは、オキシエチレン基を含む炭素数2〜8、好ましくは炭素数2〜3のオキシアルキレン基である。(AO)nにおけるオキシエチレン基の占める割合は、80モル%以上であり、好ましくは90モル%以上、より好ましくは100モル%である。前記式(I)におけるAOの全平均付加モル数であるnは、ロールオフの抑制及び研磨液組成物の泡立ち性の抑制、並びに、共重合体の分散性向上の観点から、9〜250の数が好ましく、より好ましくは23〜200の数、さらに好ましくは60〜170の数、特に好ましくは90〜150の数である。また、前記式(I)におけるpは、0又は1である。ロールオフの抑制及び研磨液組成物の泡立ち性の抑制、並びに、共重合体の分散性向上の観点からは、pは、1が好ましい。
【0040】
前記疎水性モノマーは、20℃の水100gに対する溶解度が2g以下、すなわち水難溶性を示す。前記疎水性モノマーの20℃の水100gに対する溶解度は、ロールオフ抑制及び研磨液組成物の泡立ち抑制の観点から、0〜1gが好ましく、0〜0.1gがより好ましい。前記疎水性モノマーとしては、例えば、アルキルアクリレート系モノマー、アルキルメタクリレート系モノマー、ポリエチレングリコールアクリレート系モノマーを除くポリアルキレングリコールアクリレート系モノマー、ポリエチレングリコールメタクリレート系モノマーを除くポリアルキレングリコールメタクリレート系モノマー、スチレン系モノマー、アルキルアクリルアミド系モノマー、アルキルメタクリルアミド系モノマー等が好適に挙げられる。
【0041】
前記疎水性モノマーに由来する構成単位は、ロールオフ低減の観点から、下記式(II)〜(IV)で表される構成単位からなる群から選択される少なくとも1つの構成単位であることが好ましく、下記式(II)で表される構成単位であることがより好ましい。また、化合物の安定性の観点からは、下記式(IV)で表される構成単位であることが好ましい。
【0042】
【化2】

【0043】
前記式(II)において、R3は、水素原子又はメチル基であることが好ましく、構成単位及び共重合体の安定性のさらなる向上の観点からはメチル基が好ましい。Xは、酸素原子又はNH基であることが好ましく、ロールオフのさらなる抑制の観点からは酸素原子が好ましい。R4は、ロールオフ抑制の観点から、例えば炭素数1〜30、好ましくは炭素数4〜30、より好ましくは炭素数4〜22のアルキル基、又は好ましくは炭素数6〜30、より好ましくは炭素数6〜22のアリール基であり、ロールオフをさらに抑制し、研磨液組成物の泡立ちをさらに抑制する観点からは炭素数4〜22のアルキル基が好ましく、より好ましくは炭素数8〜18のアルキル基、さらに好ましくは炭素数12〜18のアルキル基である。また、R4は、直鎖、分岐鎖及び環状のいずれであってもよく、飽和及び不飽和のいずれであってもよく、炭素原子及び水素原子以外の元素を含んでもよい。前記元素としては、窒素原子、酸素原子及び硫黄原子等が挙げられる。
【0044】
前記式(III)において、R5は、水素原子又はメチル基であることが好ましく、R6は、水素原子又は炭素数1〜3のアルキル基であることが好ましく、構成単位及び共重合体の安定性のさらなる向上の観点からはR5及びR6の双方がメチル基であることが好ましい。AOは、炭素数2〜4のオキシアルキレン基であることが好ましく、より好ましくは炭素数3〜4のオキシアルキレン基、さらに好ましくはオキシプロピレン基である。(AO)mにおけるオキシプロピレン基及びオキシブチレン基の占める割合は、好ましくは80モル%以上であり、より好ましくは90モル%以上、さらに好ましくは100モル%である。前記式(III)のAOの全平均付加モル数であるmは、ロールオフ抑制及び共重合体分散性向上の観点から、好ましくは3〜150の数であり、ロールオフをさらに抑制できるため、4以上がより好ましく、さらに好ましくは6以上、さらにより好ましくは9以上、特に好ましくは13以上であり、研磨液組成物における共重合体の分散性をさらに向上できるため、100以下が好ましく、より好ましくは75以下、さらに好ましくは50以下、特に好ましくは20以下である。したがって、mは、好ましくは4〜100の数、より好ましくは6〜75の数、さらに好ましくは9〜50の数、特に好ましくは13〜20の数である。
【0045】
前記式(IV)において、R7は、水素原子又はメチル基であることが好ましく、水素原子がより好ましい。R8は、水素原子又は炭素数1〜30のアルキル基であることが好ましく、ロールオフ抑制及び共重合体分散性向上の観点から、好ましくは水素原子である。前記式(IV)で表される構成単位を形成するためのモノマーの具体例としては、スチレン(St)、α−メチルスチレン、ビニルトルエン等のスチレン類が挙げられ、スチレンが好ましい。
【0046】
前記共重合体における式(I)で表される構成単位(親水性構成単位)と前記疎水性モノマーに由来する構成単位(疎水性構成単位)との重量比(親水性構成単位の重量/疎水性構成単位の重量)は、ロールオフ低減及び分散性向上の観点から、25/75〜97.5/2.5が好ましく、より好ましくは40/60〜92.5/7.5、さらに好ましくは65/35〜85/15である。なお、前記共重合体における各構成単位の重量比は、共重合体を1重量%含む重水素置換ジメチルスルホキシド溶液を、プロトン核磁気共鳴スペクトルを用いて測定することにより算出できる。
【0047】
前記共重合体及び/又はその塩の重量平均分子量は、ロールオフ低減及び分散性向上の観点から、5000〜50万が好ましく、より好ましくは2万〜50万、さらに好ましくは2万〜45万、さらにより好ましくは6万〜45万、さらにより好ましくは6万〜40万、さらにより好ましくは9万〜40万である。なお、前記重量平均分子量は、以下の条件のゲルパーミエーションクロマトグラフィー(GPC)法で測定できる。
【0048】
前記共重合体は、前記式(I)で表される構成単位を形成するためのモノマー及び前記疎水性モノマーに加えて、その他のモノマーを含んでもよい。
【0049】
研磨液組成物中の前記共重合体及び/又はその塩の含有量は、研磨液組成物の泡立ちをさらに抑制できるため、3重量%以下が好ましく、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。また、ロールオフをさらに抑制できるため、前記共重合体の含有量は0.001重量%以上が好ましく、より好ましくは0.003重量%以上、さらに好ましくは0.005重量%以上である。したがって、前記共重合体の含有量は、0.001〜3重量%が好ましく、より好ましくは0.003〜2重量%、さらに好ましくは0.005〜1重量%である。
【0050】
[その他の成分]
また、本発明の研磨液組成物には、さらなる研磨速度の向上、突き刺さり低減、うねりの低減、及びその他の目的に応じて他の成分を配合することができる。他の成分としては、例えば、コロイダル酸化チタン等の金属酸化物砥粒、無機塩、増粘剤、防錆剤、塩基性物質等が挙げられる。無機塩の例としては、硝酸アンモニウム、硫酸アンモニウム、硫酸カリウム、硫酸ニッケル、硝酸アルミニウム、硫酸アルミニウム、スルファミン酸アンモニウム等が挙げられる。無機塩は、研磨速度の向上、ロールオフの改良、研磨液組成物のケーキング防止等の目的で使用され得る。前記他の成分は単独で用いても良いし、2種類以上混合して用いても良い。研磨液組成物中における前記他の成分の含有量は、経済性の観点から、好ましくは0.05〜20重量%、より好ましくは0.05〜10重量%、さらに好ましくは0.05〜5重量%である。
【0051】
さらに、本発明の研磨液組成物には、他の成分として必要に応じて殺菌剤や抗菌剤等を配合することができる。研磨液組成物中におけるこれらの殺菌剤及び抗菌剤等の含有量は、機能を発揮する観点、並びに研磨性能への影響及び経済性の観点から、好ましくは0.0001〜0.1重量%、より好ましくは0.001〜0.05重量%、さらに好ましくは0.002〜0.02重量%である。
【0052】
[被研磨基板(研磨対象)]
本発明の研磨液組成物を用いて研磨を行う被研磨基板(研磨対象)としては、通常、ハードディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられる。前記被研磨基板の具体例としては、アルミニウム合金にNi−P合金をメッキした基板が代表的であるが、アルミニウム合金の代わりにガラスやグラッシュカーボンを使用し、これにNi−Pメッキを施した基板、あるいはNi−Pメッキの代わりに、各種金属化合物をメッキや蒸着により被覆した基板を挙げることができる。研磨後の基板におけるアルミナ突き刺さり低減の効果は、Ni−Pメッキが施された基板の場合に顕著であり、垂直磁気記録方式用ハードディスク基板の製造に使用される被研磨基板の場合により顕著である。
【0053】
[研磨液組成物の調製方法]
本発明の研磨液組成物の調製方法は、何ら制限されず、例えば、アルミナ粒子、シリカ粒子、酸又はその塩、及び酸化剤を適当な水系媒体に混合することによって調製できる。前記アルミナ粒子及びシリカ粒子の分散は、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の撹拌機等を用いて行うことができる。本発明の研磨液組成物中における各成分の含有量や濃度は、上述した範囲であるが、その他の態様として、本発明の研磨液組成物を濃縮物として調製してもよい。
【0054】
[ハードディスク基板の製造方法]
本発明は、その他の態様として、ハードディスク基板の製造方法に関する。本発明のハードディスク基板の製造方法(以下、本発明の製造方法ともいう)は、本発明の研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨する工程(以下、「本発明の研磨液組成物を用いた研磨工程」と称することがある。)を有する。本発明の研磨液組成物を用いた研磨工程においては、研磨パッドで被研磨基板を挟み込み、本発明の研磨液組成物を研磨面に供給し、圧力を加えながら研磨パッドや被研磨基板を動かすことなどにより、被研磨基板の研磨が行われうる。本発明の研磨液組成物は、そのまま使用してもよいし、濃縮物であれば希釈して使用すればよい。前記濃縮物を希釈する場合、その希釈倍率は、特に制限されず、前記濃縮液における各成分の濃度(砥粒の含有量等)や研磨条件等に応じて適宜決定できる。被研磨基板としては、上述のものを使用できる。
【0055】
本発明の研磨液組成物を用いた研磨工程における研磨荷重は、突き刺さり低減、うねり低減、及びロールオフ低減の観点から、好ましくは50kPa以下、より好ましくは25kPa以下、さらに好ましくは15kPa以下である。また、前記研磨荷重は、生産性(研磨速度)の観点から、好ましくは3kPa以上、より好ましくは5kPa以上、さらに好ましくは7kPa以上である。したがって、前記研磨荷重は、3〜50kPaが好ましく、より好ましくは5〜25kPa、さらに好ましくは7〜15kPaである。なお、前記研磨荷重とは、研磨時に被研磨基板の研磨面に加えられる定盤の圧力を意味する。前記研磨荷重の調整は、定盤や基板等への空気圧や重りの負荷によって行うことができる。
【0056】
本発明の研磨液組成物を用いた研磨工程における本発明の研磨液組成物の供給速度は、低コストの面から、被研磨基板1cm2あたり0.25mL/分以下が好ましく、より好ましくは0.2mL/分以下であり、さらに好ましくは0.16mL/分以下である。また、前記供給速度は、研磨速度をさらに向上できることから、被研磨基板1cmあたり0.01mL/分以上が好ましく、より好ましくは0.025mL/分以上、さらに好ましくは0.05mL/分以上である。したがって、前記供給速度は、被研磨基板1cmあたり0.01〜0.25mL/分が好ましく、より好ましくは0.025〜0.2mL/分、さらに好ましくは0.05〜0.16mL/分である。本発明の研磨液組成物を用いた研磨工程におけるその他の研磨条件(研磨機の種類、研磨温度等)については特に限定はない。
【0057】
本発明の研磨液組成物を用いた研磨工程における研磨によれば、好ましくは、研磨速度を低下させることなく研磨後の基板における砥粒の突き刺さり及びうねりが低減される。したがって、本発明の製造方法によれば、高記録密度化に適したハードディスク基板を好ましくは提供できる。また、本発明の製造方法における「本発明の研磨液組成物を用いた研磨工程」は、ポリッシング工程として特に効果があるが、これ以外の研磨工程、例えば、ラッピング工程等にも同様に適用することができる。本発明の製造方法を用いて得られたハードディスク基板は、好ましくは、アルミナの突き刺さりが顕著に低減されて表面品位が向上していることから、例えば、高記録密度化に適したものであり、とりわけ、垂直磁気記録方式用ハードディスク基板の製造に適している。したがって、本発明の製造方法は、その他の態様として、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を含む垂直磁気記録方式用ハードディスク基板の製造方法である。
【0058】
本発明の製造方法は、さらにその他の実施形態として、2段階以上の研磨工程を有する多段研磨方式であることが好ましく、最終工程である仕上げ研磨工程よりも前の工程、即ち粗研磨工程で、前述の「本発明の研磨液組成物を用いた研磨工程」を行なうことが好ましい。仕上げ研磨工程で使用する研磨液組成物においては、ハードディスク基板の表面品質の観点、例えば、うねりの低減、表面粗さの低減、スクラッチ等の表面欠陥の低減の観点から、砥粒の一次粒子の平均粒径(例えば、体積中位径)は0.1μm以下であることが好ましく、0.08μm以下であることがより好ましく、0.05μm以下であることがさらに好ましく、0.03μm以下であることがさらにより好ましい。また、研磨速度向上の観点から、該平均粒径が0.005μm以上であることが好ましく、0.01μm以上であることがより好ましい。
【0059】
仕上げ研磨工程で使用される研磨液組成物中の研磨粒子としては、フュームドシリカ砥粒、コロイダルシリカ砥粒等が挙げられ、表面粗さの低減、及びスクラッチ等表面欠陥の低減の観点から、コロイダルシリカ砥粒が好ましい。コロイダルシリカ砥粒の一次粒子の平均粒径(例えば、体積中位径)としては、0.005〜0.08μmが好ましく、0.005〜0.05μmがより好ましく、0.01〜0.03μmがさらに好ましい。
【0060】
仕上げ研磨工程において、一次粒子の平均粒径が0.005〜0.1μmの研磨粒子を使用する場合、表面粗さの低減、アルミナ粒子の突き刺さりの低減の観点、及び生産性(研磨時間)の観点から、研磨量は、0.05〜0.5μmが好ましく、0.1〜0.4μmがより好ましく、0.2〜0.4μmがさらに好ましい。仕上げ研磨を行なう際の他の条件(研磨機の種類、研磨温度、研磨速度、研磨液の供給量等)については特に限定はなく、研磨荷重としては、前記の「本発明の研磨液組成物を用いた研磨工程」において例示される研磨荷重と同様であればよい。なお、研磨量は、後述の実施例のようにして求めることができる。
【0061】
[研磨方法]
本発明は、その他の態様として、上述した研磨液組成物を研磨パッドに接触させながら被研磨基板を研磨することを含む被研磨基板の研磨方法に関する。本発明の研磨方法を使用することにより、基板へのアルミナの突き刺さりが顕著に低減された基板を得ることができる。本発明の研磨方法における前記被研磨基板としては、上述のとおり、ハードディスク基板や磁気記録用媒体の基板の製造に使用されるものが挙げられ、なかでも、垂直磁気記録方式用ハードディスク基板の製造に用いる基板が好ましい。したがって、本発明の研磨方法は、その他の態様として、本発明の研磨液組成物を用いて被研磨基板を研磨する工程を含み、前記被研磨基板が垂直磁気記録方式用ハードディスク基板の製造に用いる基板であり、前記研磨する工程が粗研磨工程である、被研磨基板の研磨方法である。なお、具体的な研磨の方法及び条件は、上述のとおりとすることができる。
【実施例】
【0062】
1.研磨液組成物の調製
α−アルミナ(二次粒子の体積中位粒径:0.3μm又は0.6μm)、θ−アルミナ(二次粒子の体積中位粒径:0.16μm)、コロイダルシリカ、マレイン酸、クエン酸、硫酸(98%品)、過酸化水素(35重量%品、旭電化社製)及び水を用い、表1に示す組成で実施例1〜33及び比較例1〜14の研磨液組成物を調製した。なお、実施例21〜26の研磨液組成物には、下記表4に示すモノマーを原料として合成した共重合体を添加した。下記表4における溶解度は、20℃の水100gに対する溶解度(g)である。
【0063】
アルミナ粒子の粒径の測定、及びαアルミナ含有量の測定は、以下のようにして行った。
[アルミナ粒子の二次粒子の粒径の測定]
以下の測定条件で二次粒子の粒径(D10、D50及びD90)を測定した。なお、D10、D50及びD90とは、小粒径側からの積算粒径分布(体積基準)がそれぞれ10%、50%及び90%となる粒径であり、このうち、D50を体積中位粒径とする。
測定機器 :堀場製作所製 レーザー回折/散乱式粒度分布測定装置LA920
循環強度 :4
超音波強度:4
[アルミナ粒子中のα−アルミナの含有量]
研磨液組成物20gを105℃で5時間乾燥させて粉末とした。そして、得られた粉末について、X線回折装置(理学電機製、型番:RINT2500VPC)にて管電圧40kW、管電流120mAの条件で104面のピーク面積を測定し、同様に測定した昭和電工製アルミナ粒子WA−1000のピーク面積から下記式のとおりに算出することによって求めた。
α−アルミナ含有量(重量%)=(試験試料ピーク面積)÷(WA−1000のピーク面積)×100
【0064】
また、シリカ粒子は、下記表2に示したシリカ粒子A〜Rを用いて下記表3に示したように1又は複数種類を選択して使用した。シリカ粒子の粒径分布、体積中位粒径、及び粒径の標準偏差の測定は、次のように行った。まず、スラリー状のシリカ粒子を試料として用い、日本電子製透過型電子顕微鏡(TEM)(商品名「JEM−2000FX」、80kV、1〜5万倍)により前記試料を観察し、TEM像を写真撮影した。当該写真をスキャナで画像データとしてパソコンに取り込み、解析ソフト「WinROOF」(販売元:三谷商事)を用いて1個1個のシリカ粒子の円相当径を求め、それを直径とし、1000個以上のシリカ粒子データを解析した後、それをもとに表計算ソフト「EXCEL」(マイクロソフト社製)にて、シリカ粒子の個数基準の平均粒径及び標準偏差を得た。また、表計算ソフト「EXCEL」にて、粒子直径から粒子体積に換算して得られるシリカ粒子の粒径分布データに基づき、全粒子中における、ある粒径の粒子の割合(体積基準%)を小粒径側からの累積頻度として表し、累積体積頻度(%)を得た。得られたシリカ粒子の粒径及び累積体積頻度データに基づき、粒径に対して累積体積頻度をプロットし、粒径対累積体積頻度グラフを作成し、小粒径側からの累積体積頻度が50%となる粒径を体積中位粒径(平均粒径)とした。さらに、前記粒径分布データ(体積基準%)から、全シリカ粒子中における、20nm〜120nm、20nm〜40nm、60〜80nm、及び100〜120nmの範囲の粒径のシリカ粒子の体積割合(%)を求めた。
【0065】
[共重合体の合成]
実施例21〜26で使用した共重合体の合成を、実施例24で用いた共重合体(SMA/PEGMA(20:80))を例にとり説明する。なお、他の共重合体は、下記表4に示すモノマーを原料として使用した以外は実施例24の共重合体と同様にして合成した。実施例24の共重合体は、上記式(I)で表される構成単位を形成するためのモノマーとしてメトキシポリエチレングリコール(23モル)メタクリレート(PEGMA(EO23))を用い、上記式(II)で表される構成単位を形成するためのモノマーとしてステアリルメタクリレート(SMA)を用いて合成した。具体的には、(PEGMA(EO23))80g、SMA20g、重合溶媒であるメチルエチルケトン100g及び重合開始剤(商品名V−65、和光純薬(株)製)1.0gを、撹拌機、還流冷却器、温度計及び窒素導入管が配置された反応器に入れて、65℃で6時間重合反応を行った後、乾燥させて共重合体を得た。得られた共重合体の重量平均分子量は、12.5万であった。また、共重合体における(PEGMA(EO23))の割合は80重量%であり、SMAの割合は20重量%であった。なお、共重合体の重量平均分子量、及び、共重合体における各構成単位の割合は、以下のようにして測定した。
[重量平均分子量の測定方法]
共重合体をクロロホルムに溶解し、GPC(ゲルパーミエーションクロマトグラフィー、展開溶媒:60mmol/L H3PO4、50mmol/L LiBr/DMF)を用いて、標準ポリスチレン換算により重量平均分子量を測定した。
[共重合体における各構成単位の割合の測定方法]
共重合体を重水素置換ジメチルスルホキシドに溶解し(共重合体の濃度:1重量%)、プロトン核磁気共鳴スペクトルを用いて測定した。
【0066】
【表1】

【0067】
【表2】

【0068】
【表3】

【0069】
【表4】

【0070】
2.基板の研磨
調製した実施例1〜33及び比較例1〜14の研磨液組成物を用いて、下記の研磨条件で前記基板を研磨した。
[被研磨基板]
被研磨基板は、Ni−Pメッキされたアルミニウム合金基板を用いた。なお、この被研磨基板は、厚み1.27mm、直径95mm、「Zygo社製 NewView5032」を用いた測定におけるうねり(波長:0.5〜5mm)の振幅が1.6nmであった。
[研磨条件]
研磨試験機 :両面研磨機(9B型両面研磨機、スピードファム(株)製)
研磨パッド :厚み1.04mm、平均開孔径43μm(FILWEL製)
定盤回転数 :45rpm
研磨荷重 :9.8kPa(設定値)
研磨液供給量 :100mL/min(0.076mL/(cm2・min))
研磨量(片面) :130mg
投入した基板の枚数:10枚
【0071】
3.評価方法
[研磨速度の評価]
実施例1〜33及び比較例1〜14で得られた研磨液組成物を用いたときの研磨速度は、以下の方法で評価した。まず、研磨前後の各基板の重さを計り(Sartorius社製「BP−210S」)を用いて測定し、各基板の重量変化を求め、10枚の平均値を重量減少量とし、それを研磨時間で割った値を重量減少速度とした。この重量減少速度を下記の式に導入し、研磨速度(μm/min)に変換した。その結果を下記表5〜8に示す。
研磨速度(μm/min)=重量減少速度(g/min)/基板片面面積(mm2)/
Ni−Pメッキ密度(g/cm3)×106
(基板片面面積:6597mm2、Ni−Pメッキ密度:7.9g/cm3として算出)
【0072】
[うねりの評価]
研磨後の10枚の基板から任意に2枚を選択し、選択した各基板の両面を180°おきに2点(計8点)について、下記の条件で測定した。その8点の測定値の平均値を基板のうねりとして算出した。その結果を下記表5〜8に示す。
機器 :Zygo NewView5032
レンズ :2.5倍 Michelson
ズーム比 :0.5
リムーブ :Cylinder
フィルター :FFT Fixed Band Pass(0.5〜5mm)
エリア :4.33mm×5.77mm
【0073】
[アルミナ粒子の突き刺さりの評価]
研磨後の基板を、以下の仕上げ用研磨液組成物を用いて研磨量が0.035μm±0.005μmとなるように研磨した後の基板表面を観察することにより、アルミナ粒子の突き刺さりを評価した。その結果を下記表5〜8に示す。仕上げ用研磨液組成物の組成、研磨条件、研磨量の測定方法、突き刺さりの観察方法及び評価基準を以下に示す。
<仕上げ用研磨液組成物>
コロイダルシリカスラリー(デュポン社製、一次粒子の平均粒径0.02μm)をシリカ粒子濃度として7重量%、HEDP(1−ヒドロキシエチリデン−1,1−ジホスホン酸、ソルーシアジャパン製)を有効分として2重量%、過酸化水素(旭電化製)を有効分として0.6重量%、及びイオン交換水を残分として含有する研磨液組成物を用いた。
<研磨条件>
研磨試験機 :スピードファム(株)製、両面9B研磨機
研磨パッド :フジボウ(株)製、ウレタン製仕上げ研磨用パッド
定盤回転数 :32.5r/min
研磨液組成物供給量 :100mL/min
研磨時間 :0.5〜1.5min(研磨量(片面)が0.035μm±0.005μmとなるように調整)
研磨荷重 :4.1kPa
投入した基板の枚数 :10枚
<研磨量の測定方法>
研磨前後の各基板の重さを計り(Sartorius社製、「BP−210S」)を用いて測定し、下記式に導入することにより、研磨量を求めた。
重量減少量(g)={研磨前の重量(g)−研磨後の重量(g)}
研磨量(μm)=重量減少量(g)/基板片面面積(mm2)/2/Ni−Pメッキ密度
(g/cm3)×106
(基板片面面積は、6597mm2、Ni−Pメッキ密度8.4g/cm3として算出)
<突き刺さりの観察方法>
オリンパス光学製顕微鏡(本体BX60M、デジタルカメラDP70、対物レンズ100倍、中間レンズ2.5倍)を使用し、暗視野観察(視野100×75μm)により突き刺さったアルミナ粒子を輝点として検出し、その数を測定した。上記観察は、研磨後の10枚の基板から任意に2枚を選択し、基板の両面について中心から30mmの位置を90°ごとの各4点、計16点観察した。そして、観察された輝点数の平均値を砥粒の突き刺さり数とした。表5〜8の突き刺さりの値は、比較例14の突き刺さり数の平均値を100としたときの相対値を表す。
【0074】
[ロールオフの評価]
上記表4の共重合体を使用した実施例21〜26の研磨液組成物を用いて研磨した後の基板について、下記の条件で、1.0−3.0Peakロールオフを測定した。得られた結果を下記表8に示す。比較の基準として、実施例18の研磨液組成物を用いた。下記表8では「参考例18」としてその結果を示す。なお、前記測定は、投入した基板10枚のうち1枚を選択し、その1枚の基板において3点(任意)行い、その3点の平均値を測定結果とした。1.0−3.0Peakロールオフの値は、その値が小さければ小さいほど、基板の端部が盛り上がっていることを示し、ロールオフが抑制されたといえる。
<1.0−3.0Valleyロールオフ>
図1に示すように、基板最端部から1.0mm及び3.0mmの基板表面をそれぞれA点及びB点とし、このA点とB点とを結ぶ直線を基準線とする。この基準線から直角に基板表面までの距離を測定し、最も長いものを1.0−3.0Peakロールオフ(nm)とした。
<測定条件>
測定機器 :商品名New View 5032(Zygo社製)
レンズ :2.5倍
ズーム :0.5倍
解析ソフト:商品名Zygo Metro Pro(Zygo社製)
【0075】
【表5】

【0076】
【表6】

【0077】
【表7】

【0078】
【表8】

【0079】
上記表5〜8に示される通り、実施例1〜33の研磨液組成物を用いた場合、比較例1〜14の研磨液組成物に比べ、基板への砥粒の突き刺さりが顕著に低減されることが分かる。また、上記表8に示される通り、所定の共重合体を添加した実施例21〜26の研磨液組成物においては、突き刺さり、研磨速度、うねりを悪化させることなく、ロールオフを低減できることがわかる。
【産業上の利用可能性】
【0080】
本発明を用いることにより、例えば、高記録密度化に適したハードディスク基板を提供することができる。
【図面の簡単な説明】
【0081】
【図1】本発明の実施例における(1.0−3.0Peakロールオフ)の測定を行った箇所を示す断面図である。

【特許請求の範囲】
【請求項1】
アルミナ粒子、シリカ粒子、及び水を含むハードディスク基板用研磨液組成物であって、
前記アルミナ粒子の二次粒子のレーザー光回折法により測定される体積中位粒径が、0.1〜0.8μmであり、
前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される体積中位粒径が、40〜150nmであり、
前記シリカ粒子の一次粒子の透過型電子顕微鏡観察により測定される粒径の個数基準の標準偏差が、11〜35nmである、ハードディスク基板用研磨液組成物。
【請求項2】
アルミナ粒子がαアルミナを含有する、請求項1記載のハードディスク基板用研磨液組成物。
【請求項3】
シリカ粒子がコロイダルシリカである、請求項1又は2に記載のハードディスク基板用研磨液組成物。
【請求項4】
前記シリカ粒子が、粒径20〜120nmのシリカ粒子をシリカ粒子全量に対して40体積%以上、粒径20〜40nmのシリカ粒子をシリカ粒子全量に対して1〜40体積%、粒径60〜80nmのシリカ粒子をシリカ粒子全量に対して5〜90体積%、及び粒径100〜120nmのシリカ粒子をシリカ粒子全量に対して0〜40体積%含有する、請求項1から3のいずれかに記載のハードディスク基板用研磨液組成物。
【請求項5】
前記アルミナ粒子と前記シリカ粒子の重量比(アルミナ粒子重量/シリカ粒子重量)が、60/40〜10/90の範囲である、請求項1から4のいずれかに記載のハードディスク基板用研磨液組成物。
【請求項6】
異なる粒径分布を有する2種以上のシリカ粒子を混合して得られる、請求項1から5のいずれかに記載のハードディスク基板用研磨液組成物。
【請求項7】
アルミナ粒子が、さらに中間アルミナを含有する、請求項1から6のいずれかに記載のハードディスク基板用研磨液組成物。
【請求項8】
さらに、下記式(I)で表される構成単位と20℃の水100gに対する溶解度が2g以下の疎水性モノマーに由来する構成単位とを有する共重合体及び/又はその塩を含有する、請求項1から7のいずれかに記載のハードディスク基板用研磨液組成物。
【化1】

[前記式(I)において、R1は水素原子又はメチル基であり、R2は水素原子又は炭素数1〜4のアルキル基であり、AOは炭素数2〜8のオキシアルキレン基であり、pは0又は1であり、nはAOの全平均付加モル数であって9〜250の数であり、(AO)nにおけるオキシエチレン基の占める割合は80モル%以上である。]
【請求項9】
請求項1から8のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む、垂直磁気記録方式用ハードディスク基板の製造方法。
【請求項10】
請求項1から8のいずれかに記載の研磨液組成物を用いて被研磨基板を研磨する工程を含む被研磨基板の研磨方法であって、前記被研磨基板が垂直磁気記録方式用ハードディスク基板の製造に用いる基板であり、前記研磨する工程が粗研磨工程である、研磨方法。

【図1】
image rotate


【公開番号】特開2009−176397(P2009−176397A)
【公開日】平成21年8月6日(2009.8.6)
【国際特許分類】
【出願番号】特願2008−143257(P2008−143257)
【出願日】平成20年5月30日(2008.5.30)
【出願人】(000000918)花王株式会社 (8,290)
【Fターム(参考)】