説明

バーチャル顕微鏡システム

【課題】染色標本を撮像した染色標本画像とスペクトルの統計データとを短時間で取得できるバーチャル顕微鏡システムを提供する。
【解決手段】染色標本11の1バンド以上の染色標本画像を取得する画像取得部110と、染色標本画像の1以上の所定部分のスペクトルを取得するスペクトル取得部130と、画像取得部110が染色標本画像を取得する毎に、スペクトル取得部130により当該染色標本画像のスペクトルを取得し得るように、画像取得部110およびスペクトル取得部130に対して染色標本を経た光束の光路を設定する光路設定部150と、染色標本11のバーチャルスライドとスペクトルテーブルとを作成するように、染色標本11の2以上の観察視野において、画像取得部110による染色標本画像の取得と、スペクトル取得部130による当該染色標本画像のスペクトル取得とを繰り返すように制御する制御部210と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、染色標本を撮像した染色標本画像から染色標本のスペクトルを推定するバーチャル顕微鏡システムに関するものである。
【背景技術】
【0002】
被写体に固有の物理的性質を表す物理量の一つに、分光透過率スペクトルがある。分光透過率は、各波長における入射光に対する透過光の割合を表す物理量であり、照明光の変化に依存するRGB値等の色情報とは異なり、外因的影響によって値が変化しない物体固有の情報である。このため、分光透過率は、被写体自体の色を再現するための情報として様々な分野で利用されている。例えば、生体組織標本、特に病理標本を用いた病理診断の分野では、標本を撮像した画像の解析に分光特性値の一例として分光透過率が利用されている。以下、病理診断における分光透過率の利用例について、さらに詳細に説明する。
【0003】
病理診断における病理検査の一つとして、病変部位の組織を採取して顕微鏡で観察することにより、病気の診断または病変の拡大の程度を調べる組織診が知られている。この組織診は、生検(バイオプシー)とも呼ばれ、臓器摘出によって得たブロック標本や針生検によって得た病理標本を、厚さ数ミクロン程度に薄切りした後、様々な所見を得るために顕微鏡を用いて拡大観察することが広く行われている。なかでも、光学顕微鏡を用いた透過観察は、機材が比較的安価で取り扱いが容易である上、歴史的に古くから行われてきたこともあって、最も普及している観察方法の一つである。この場合、薄切りされた標本は、光を殆ど吸収および散乱せず無色透明に近いため、観察に先立って色素による染色を施すのが一般的である。
【0004】
染色手法としては、種々のものが提案されており、その総数は100種類以上にも達するが、特に病理標本に関しては、色素として青紫色のヘマトキシリンと赤色のエオジンの2つを用いるヘマトキシリン−エオジン染色(以下、「HE染色」と称す)が標準的に用いられている。
【0005】
ヘマトキシリンは、植物から採取された天然の物質であり、それ自身には染色性はない。しかし、その酸化物であるヘマチンは、好塩基性の色素であり、負に帯電した物質と結合する。細胞核に含まれるデオキシリボ核酸(DNA)は、構成要素として含むリン酸基によって負に帯電しているため、ヘマチンと結合して青紫色に染色される。なお、前述の通り、染色性を有するのはヘマトキシリンではなく、その酸化物であるヘマチンであるが、色素の名称としてはヘマトキシリンを用いるのが一般的であるため、以下それに従う。
【0006】
一方、エオジンは、好酸性の色素であり、正に帯電した物質と結合する。アミノ酸やタンパク質が正負どちらに帯電するかは、pH環境に影響を受け、酸性下では正に帯電する傾向が強くなる。このため、エオジン溶液に酢酸を加えて用いることがある。細胞質に含まれるタンパク質は、エオジンと結合して赤から薄赤に染色される。
【0007】
HE染色後の標本(染色標本)では、細胞核や骨組織等が青紫色に、細胞質や結合組織、赤血球等が赤色に染色され、容易に視認できるようになる。この結果、観察者は、細胞核等の組織を構成する要素の大きさや位置関係等を把握でき、標本の状態を形態学的に判断することが可能となる。
【0008】
染色された標本の観察は、観察者の目視によるものの他、この染色された標本をマルチバンド撮像して外部装置の表示画面に表示することによっても行われている。表示画面に表示する場合には、撮像したマルチバンド画像から標本各点の分光透過率を推定する処理や、推定した分光透過率をもとに標本を染色している色素の色素量を推定する処理等が行われ、表示用の標本のRGB画像である表示画像が合成される。
【0009】
標本のマルチバンド画像から標本各点の分光透過率を推定する手法としては、例えば、主成分分析による推定法や、ウィナー(Wiener)推定による推定法等が挙げられる。ウィナー推定は、ノイズの重畳された観測信号から原信号を推定する線形フィルタ手法の一つとして広く知られており、観測対象の統計的性質とノイズ(観測ノイズ)の特性とを考慮して誤差の最小化を行う手法である。カメラからの信号には、何らかのノイズが含まれるため、ウィナー推定は原信号を推定する手法として極めて有用である。
【0010】
以下、標本のマルチバンド画像から表示画像を合成したバーチャルスライドを作成する方法について説明する。ここで、バーチャルスライドとは、顕微鏡装置によってマルチバンド撮像した1枚以上の画像を繋ぎ合せて生成した画像であり、例えば高倍率の顕微鏡対物レンズを用いて染色標本を部分毎に撮像した複数の高解像画像を繋ぎ合せて生成した画像であって、染色標本の全域を映した広視野でかつ高精細のマルチバンド画像のことを言う。
【0011】
先ず、標本のマルチバンド画像を撮像する。例えば、16枚のバンドパスフィルタをフィルタホイールで回転させて切り替えながら、面順次方式でマルチバンド画像を撮像する。これにより、標本の各点において16バンドの画素値を有するマルチバンド画像が得られる。なお、色素は、本来、観察対象となる標本内に3次元的に分布しているが、通常の透過観察系ではそのまま3次元像として捉えることはできず、標本内を透過した照明光をカメラの撮像素子上に投影した2次元像として観察される。したがって、ここでいう各点は、投影された撮像素子の各画素に対応する標本上の点を意味している。
【0012】
ここで、撮像されたマルチバンド画像の任意の点(画素)xについて、バンドbにおける画素値g(x,b)と、対応する標本上の点の分光透過率t(x,λ)との間には、カメラの応答システムに基づく次式(1)の関係が成り立つ。
【0013】
【数1】

【0014】
式(1)において、λは波長、f(b,λ)はb番目のフィルタの分光透過率、s(λ)はカメラの分光感度特性、e(λ)は照明の分光放射特性、n(b)はバンドbにおける観測ノイズをそれぞれ表す。bはバンドを識別する通し番号であり、ここでは1≦b≦16を満たす整数値である。実際の計算では、式(1)を波長方向に離散化した次式(2)が用いられる。
G(x)=FSET(x)+N ・・・(2)
【0015】
式(2)において、波長方向のサンプル点数をD、バンド数をB(ここではB=16)とすれば、G(x)は、点xにおける画素値g(x,b)に対応するB行1列の行列である。同様に、T(x)は、t(x,λ)に対応するD行1列の行列、Fは、f(b,λ)に対応するB行D列の行列である。一方、Sは、D行D列の対角行列であり、対角要素がs(λ)に対応している。同様に、Eは、D行D列の対角行列であり、対角要素がe(λ)に対応している。Nは、n(b)に対応するB行1列の行列である。なお、式(2)では、行列を用いて複数のバンドに関する式を集約しているため、バンドを表す変数bが記述されていない。また、波長λに関する積分は、行列の積に置き換えられている。
【0016】
ここで、表記を簡単にするため、次式(3)で定義される行列Hを導入する。この行列Hはシステム行列とも呼ばれる。
H=FSE ・・・(3)
【0017】
よって、式(3)は、次式(4)に置き換えられる。
G(x)=HT(x)+N ・・・(4)
【0018】
次に、ウィナー推定を用いて、撮像したマルチバンド画像から標本各点における分光透過率を推定する。分光透過率の推定値(分光透過率データ)T^(x)は、次式(5)で計算することができる。なお、T^は、Tの上に推定値を表す記号「^(ハット)」が付いていることを示す。
【0019】
【数2】

【0020】
ここで、Wは次式(6)で表され、「ウィナー推定行列」あるいは「ウィナー推定に用いる推定オペレータ」と呼ばれる。
W=RSS(HRSS+RNN−1 ・・・(6)
ただし、():転置行列、()−1:逆行列
【0021】
式(6)において、Rssは、D行D列の行列であり、標本の分光透過率の自己相関行列を表す。また、RNNは、B行B列の行列であり、撮像に使用するカメラのノイズの自己相関行列を表す。
【0022】
ところで、標本の細胞核、細胞質、赤血球、腔等の各主要要素をそれぞれ好適に推定可能な推定オペレータWを算出するには、事前に、標本の細胞核、細胞質、赤血球、腔等の各主要要素を含むスペクトルが必要である。このため、ユーザは、事前に測定位置を移動させながら標本の各主要要素のスペクトルを分光計で測定しなければならず、手間がかかることが懸念される。
【0023】
この種の問題を解決するものとして、例えば特許文献1には、自動的に好適な推定オペレータWを算出する画像処理装置が開示されている。この画像処理装置では、自動的に測定位置を移動させながら標本の各主要要素のスペクトルを分光計で測定し、測定したスペクトルから推定オペレータWを算出する。そして、推定オペレータWを評価し、好適でなければ、再度、標本の各主要要素のスペクトルを測定する。これにより、自動的に好適な推定オペレータWを算出する。
【先行技術文献】
【特許文献】
【0024】
【特許文献1】特開2009−014354号公報
【発明の概要】
【発明が解決しようとする課題】
【0025】
上記の特許文献1に開示された画像処理装置によると、自動的に好適な推定オペレータWが算出されるので、ユーザに対する負担を軽減することができる。しかしながら、本発明者による検討によると、上記の画像処理装置では、事前に測定位置を移動させながら標本の複数の要素のスペクトルを分光計で測定しなければならないため、その処理に時間を要し、結果として標本のスペクトル推定に時間がかかることになる。
【0026】
したがって、かかる点に鑑みてなされた本発明の目的は、染色標本を撮像した染色標本画像とスペクトルの統計データとを短時間で取得できるバーチャル顕微鏡システムを提供することにある。
【課題を解決するための手段】
【0027】
上記目的を達成する第1の観点に係るバーチャル顕微鏡システムの発明は、染色標本を撮像してスペクトルを推定するバーチャル顕微鏡システムであって、
前記染色標本の1バンド以上の染色標本画像を取得する画像取得部と、
前記染色標本画像の1以上の所定部分のスペクトルを取得するスペクトル取得部と、
前記画像取得部が前記染色標本画像を取得する毎に、前記スペクトル取得部により当該染色標本画像のスペクトルを取得し得るように、前記画像取得部および前記スペクトル取得部に対して前記染色標本を経た光束の光路を設定する光路設定部と、
前記染色標本のバーチャルスライドとスペクトルテーブルとを作成するように、前記染色標本の2以上の観察視野において、前記画像取得部による前記染色標本画像の取得と、前記スペクトル取得部による当該染色標本画像のスペクトル取得とを繰り返すように制御する制御部と、
を備えることを特徴とするものである。
【0028】
第2の観点に係る発明は、第1の観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトルテーブルから推定オペレータを算出する推定オペレータ算出部と、
前記推定オペレータを用いて前記バーチャルスライドを構成する画素のスペクトルを推定するスペクトル推定部と、
をさらに備えることを特徴とするものである。
【0029】
第3の観点に係る発明は、第2の観点に係るバーチャル顕微鏡システムにおいて、
前記光路設定部は、前記染色標本を経た光束を前記画像取得部および前記スペクトル取得部に選択的に入射させるように前記光束の光路を切換える光路切換ミラーを備える、ことを特徴とするものである。
【0030】
第4の観点に係る発明は、第2の観点に係るバーチャル顕微鏡システムにおいて、
前記光路設定部は、前記染色標本を経た光束の光路上に、前記画像取得部および前記スペクトル取得部を選択的に位置させる配置切換機構を備える、ことを特徴とするものである。
【0031】
第5の観点に係る発明は、第2の観点に係るバーチャル顕微鏡システムにおいて、
前記光路設定部は、前記染色標本を経た光束を前記画像取得部および前記スペクトル取得部に同時に入射させるように前記光束の光路を分岐するビームスプリッタを備える、ことを特徴とするものである。
【0032】
第6の観点に係る発明は、第2〜5のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記画像取得部は、RGBカメラ、モノクロカメラ、2バンド以上のカメラ、カメラおよび光学フィルタで構成された多バンドカメラのいずれかである、ことを特徴とするものである。
【0033】
第7の観点に係る発明は、第2〜6のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトル取得部は、前記染色標本画像を拡大する光学倍率拡大部を備え、該光学倍率拡大部により拡大された前記染色標本画像から前記スペクトルを取得する、ことを特徴とするものである。
【0034】
第8の観点に係る発明は、第2〜7のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトル取得部による前記スペクトルの取得位置の画素値を前記画像取得部が取得した前記染色標本画像から取得するスペクトル取得位置画素値算出部をさらに備え、
前記スペクトルテーブルとして、少なくとも前記スペクトルと前記画素値とを含むスペクトルテーブルを作成する、ことを特徴とするものである。
【0035】
第9の観点に係る発明は、第8の観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトルテーブルから前記バーチャルスライドを構成する画素の画素値に応じたスペクトルを複数選択するスペクトル選択部をさらに備え、
前記推定オペレータ算出部は、前記スペクトル選択部で選択された複数のスペクトルから画素値毎の推定オペレータを算出し、
前記スペクトル推定部は、前記画素値毎の推定オペレータを用いて前記バーチャルスライドを構成する画素のスペクトルを推定する、
ことを特徴とするものである。
【0036】
第10の観点に係る発明は、第8の観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトルテーブルから前記バーチャルスライドを構成する画素の画素値に応じたスペクトルを選択するスペクトル選択部をさらに備え、
該スペクトル選択部で選択された前記スペクトルをスペクトル推定値とする、
ことを特徴とするものである。
【0037】
第11の観点に係る発明は、第8〜10のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトルテーブルに格納される画素値は、取得画素値、色空間に変換した画素値、画素値から算出した特徴量のいずれかである、ことを特徴とするものである。
【0038】
第12の観点に係る発明は、第8〜11のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトルテーブルは、少なくとも前記スペクトル、前記画素値および前記スペクトルを取得した画素位置情報を含むデータセットからなる、ことを特徴とするものである。
【0039】
第13の観点に係る発明は、第8〜12のいずれか一つの観点に係るバーチャル顕微鏡システムにおいて、
前記スペクトル取得位置画素値算出部は、前記スペクトルの取得範囲の中心画素の画素値、前記取得範囲の画素の画素値の統計値、前記取得範囲の画素値と前記スペクトル取得部の受光特性との畳み込みで算出される値のいずれかである、ことを特徴とするものである。
【発明の効果】
【0040】
本発明に係るバーチャル顕微鏡システムによれば、バーチャルスライドの作成とほぼ同時に、スペクトルの統計データを作成することができる。したがって、染色標本のスペクトルを高速に推定することが可能となる。
【図面の簡単な説明】
【0041】
【図1】本発明の第1実施の形態に係るバーチャル顕微鏡システムの原理を説明するための図である。
【図2】本発明の第1実施の形態に係るバーチャル顕微鏡システムの原理を説明するための図である。
【図3】図1に示したスペクトル取得部の変形例を示す図である。
【図4】図1に示した光路設定部の他の構成を示す図である。
【図5】第1実施の形態に係るバーチャル顕微鏡システムの構成を示す機能ブロック図である。
【図6】図5に示した画像取得部の要部の構成を示す模式図である。
【図7】図6に示したRGBカメラの分光感度特性を示す図である。
【図8】図6に示したフィルタ部を構成する二つの光学フィルタの分光透過率特性を示す図である。
【図9】図5に示した顕微鏡装置の具体的構成を示す図である。
【図10】図5に示したバーチャル顕微鏡システムによるバーチャルスライドおよびスペクトルテーブルの作成処理を示すフローチャートである。
【図11】図5に示したバーチャル顕微鏡システムによるスペクトルの推定処理を示すフローチャートである。
【図12】本発明の第2実施の形態に係るバーチャル顕微鏡システムの原理を説明するための図である。
【図13】第2実施の形態に係るバーチャル顕微鏡システムの構成を示す機能ブロック図である。
【図14】図13に示したバーチャル顕微鏡システムによるバーチャルスライドおよびスペクトルテーブルの作成処理を示すフローチャートである。
【図15】図14に示した処理によって作成されるスペクトルテーブルの一例を示す図である。
【図16】図13に示したバーチャル顕微鏡システムによるスペクトルの推定処理を示すフローチャートである。
【図17】複数の組織を有する対象標本を示す図である。
【図18】図1に示した光路設定部のさらに他の構成を示す図である。
【発明を実施するための形態】
【0042】
以下、本発明の好適実施の形態について、図を参照して詳細に説明する。なお、本発明は、以下の実施の形態によって限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
【0043】
(第1実施の形態)
図1および図2は、本発明の第1実施の形態に係るバーチャル顕微鏡システムの原理を説明するための図である。本実施の形態に係るバーチャル顕微鏡システムでは、顕微鏡装置のステージに載置された対象の染色標本(以下、「対象標本」と称す)11を、光源12により照明光学系13を経て照明し、その透過光を顕微鏡対物レンズを含む観察光学系14を経て光路設定部15に入射させる。光路設定部15は、例えば、入射光の光路に対して退避可能な反射ミラーからなる光路切換ミラー15aで構成され、光路切換ミラー15aを入射光路から退避させることにより、観察光学系14からの入射光の光路を画像取得部16に設定し、光路切換ミラー15aを入射光路に挿入することにより、観察光学系14からの入射光の光路をスペクトル取得部17に設定する。
【0044】
そして、光路切換ミラー15aを入射光路から退避させた状態で、画像取得部16により、図2(a)に示すように対象標本11の1バンド以上の対象標本画像21を取得し、その取得した対象標本画像21を、バーチャルスライド22の一部として、図示しない記憶部に格納する。その後、光路切換ミラー15aを入射光路に挿入させた状態で、スペクトル取得部17により、画像取得部16で取得される対象標本画像21の1以上の所定部分23(図1参照)のスペクトル24(図2(b)参照)を取得して、その取得した各所定部分23のスペクトル24を、図2に示すようにスペクトルテーブル25に登録する。図1は、対象標本画像21の2箇所の各所定部分23のスペクトル24を取得する例を示している。この対象標本画像21の取得と、そのスペクトル24の取得とを、対象標本11を移動させながら繰り返すことにより、m×n枚のバーチャルスライド22とスペクトルテーブル25とをほぼ同時に作成する。
【0045】
上記の説明では、対象標本画像21を取得した後、その所定部分23のスペクトル24を取得するようにしたが、その順番は逆でもよい。また、スペクトル取得部17は、対象標本画像21の2つの各所定部分23のスペクトル24に限らず、1つの所定部分23、あるいは図3に示すように、光路切換ミラー15aを経た観察光学系14からの入射光を拡大光学系27により拡大して、3つ以上の各所定部分23のスペクトル24をそれぞれ取得するように構成することもできる。
【0046】
さらに、光路設定部15は、図4に示すように、ハーフミラー等のビームスプリッタ15bを用い、これにより観察光学系14からの入射光の光路を分岐して、画像取得部16とスペクトル取得部17とのそれぞれに光路を設定することもできる。この場合は、画像取得部16による対象標本画像21の取得と、スペクトル取得部17による対象標本画像21のスペクトル24の取得とを同時に行うことができる。
【0047】
なお、図1および図3に示したように、退避可能な光路切換ミラー15aを用いて光路設定部15を構成した場合は、対象標本11の透過光の有効利用が図られ、図4の場合と比較して、照明光の光量を低下させることが可能となる。また、図4に示したように、ビームスプリッタ15bを用いて光路設定部15を構成した場合は、図1や図3の場合と比較して、より短時間でバーチャルスライド22とスペクトルテーブル25とを作成することが可能となる。
【0048】
図5は、上記の原理に基づく本実施の形態に係るバーチャル顕微鏡システムの構成を示す機能ブロック図である。このバーチャル顕微鏡システムは、顕微鏡装置100と、該顕微鏡装置100を制御して、バーチャルスライド作成およびスペクトル推定等を行うホストシステム200とからなる。顕微鏡装置100は、画像取得部110、スペクトル取得部130、光路設定部150およびステージ170を備える。
【0049】
画像取得部110(図1の画像取得部16に相当)は、対象標本の顕微鏡による1バンド以上の対象標本画像(ここでは、6バンド画像)を取得するもので、例えば、図6に要部の構成を模式的に示すように、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の撮像素子等を備えたRGBカメラ111、結像する光の波長帯域を所定範囲に制限するフィルタ部113を備える。
【0050】
RGBカメラ111は、例えば図7に示すようなR(赤),G(緑),B(青)の各バンドの分光感度特性を有するものとする。フィルタ部113は、回転式のフィルタ切り替え部115を備え、このフィルタ切り替え部115に、R,G,Bの各バンドの透過波長領域を2分するように、それぞれ異なる分光透過率特性を有する2枚の光学フィルタ117a,117bを保持する。図8(a)は、一方の光学フィルタ117aの分光透過率特性を示し、図8(b)は、他方の光学フィルタ117bの分光透過率特性を示す。
【0051】
そして、先ず、例えば光学フィルタ117aを、光源119(図1の光源12に相当)からRGBカメラ111に至る光路上に位置させて、光源119によりステージ170上に載置された対象標本11を照明し、その透過光を結像光学系121(図1の観察光学系14に相当)および光学フィルタ117aを経てRGBカメラ111に結像させて第1の撮像を行う。次いで、フィルタ切り替え部115を回転させて、光学フィルタ117bを光源119からRGBカメラ111に至る光路上に位置させて、同様にして第2の撮像を行う。
【0052】
これにより、第1の撮像および第2の撮像でそれぞれ異なる3バンドの画像を得て、合計で6バンドのマルチバンド画像を得る。なお、フィルタ部113に設ける光学フィルタの数は2枚に限らず、3枚以上の光学フィルタを用いて、さらに多くのバンドの画像を得ることも可能である。取得された対象標本11の対象標本画像は、ホストシステム200の後述する記憶部230にバーチャルスライドの一部として格納される。なお、画像取得部110は、RGBカメラ111によりRGB画像のみを取得するようにしてもよい。
【0053】
図5において、スペクトル取得部130(図1のスペクトル取得部17に相当)は、画像取得部110で取得される対象標本画像の1以上の所定部分のスペクトルを取得するもので、所定部分に対応する光ファイバやシリコンディテクタを用いた分光計を備える。したがって、所定部分が複数設定されている場合は、複数の分光計を備える。
【0054】
光路設定部150は、画像取得部110が対象標本画像を取得する毎に、スペクトル取得部130により当該対象標本画像の所定部分のスペクトルを取得し得るように、画像取得部110およびスペクトル取得部130に対して顕微鏡対物レンズによる光束の光路を設定するもので、図1または図4に示したように、光路切換ミラー15aやビームスプリッタ15bを用いて構成される。
【0055】
ステージ170は、対象標本を載置するとともに、顕微鏡対物レンズに対して対象標本の位置を位置決めするもので、例えば顕微鏡対物レンズの光軸に対して垂直な平面内で二次元方向に移動可能な電動ステージにより構成される。
【0056】
一方、ホストシステム200は、制御部210、記憶部230、演算部250、入力部270および表示部290を備える。
【0057】
入力部270は、例えば、キーボードやマウス、タッチパネル、各種スイッチ等の入力装置によって実現されるものであり、操作入力に応じた入力信号を制御部210に出力する。
【0058】
表示部290は、LCD(Liquid Crystal Display)やEL(Electro Luminescence)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ等の表示装置によって実現されるものであり、制御部210から入力される表示信号をもとに各種画面を表示する。
【0059】
演算部250は、推定オペレータ算出部255、スペクトル推定部257およびバーチャルスライド作成部259を有する。バーチャルスライド作成部259は、顕微鏡装置100が対象標本11を部分的にマルチバンド撮像することによって得られる複数の対象標本画像をそれぞれ処理して、バーチャルスライド画像を作成する。
【0060】
記憶部230は、更新記憶可能なフラッシュメモリ等のROMやRAMといった各種ICメモリ、内蔵あるいはデータ通信端子で接続されたハードディスク、CD−ROM等の情報記憶媒体およびその読取装置等によって実現されるものである。この記憶部230には、画像取得部110が取得した画像を処理する画像処理プログラム231、バーチャルスライドを作成するためのバーチャルスライド作成プログラム233、作成されたバーチャルスライド235、スペクトル取得部130で取得されたスペクトルテーブル237(図2のスペクトルテーブル25に相当)、プログラムの実行中に使用されるデータ、等が格納される。
【0061】
制御部210は、画像取得部110の動作を制御して対象標本の画像を取得する画像取得制御部211、スペクトル取得部130の動作を制御して対象標本のスペクトルを取得するスペクトル取得制御部213、光路設定部150の動作を制御して光路を切換える光路設定制御部215、ステージ170を制御して観察視野を移動するステージ制御部217を含む。そして、制御部210は、入力部270から入力される入力信号や画像取得部110から入力される対象標本画像、記憶部230に格納されているプログラムやデータ等に基づいてバーチャル顕微鏡システムを構成する各部への指示やデータの転送等を行い、全体の動作を統括的に制御する。この制御部210は、CPU等のハードウェアによって実現される。なお、光路設定部150が、図4に示したように、ビームスプリッタ15bを用いて構成される場合、光路設定制御部215は不要である。
【0062】
図5には、ホストシステム200の機能構成を示したが、実際のホストシステム200は、CPUやビデオボード、メインメモリ(RAM)等の主記憶装置、ハードディスクや各種記憶媒体等の外部記憶装置、通信装置、外部入力を接続するインターフェース装置等を備えた公知のハードウェア構成で実現でき、例えばワークステーションやパソコン等の汎用コンピュータを利用することができる。
【0063】
図9は、図5に示した顕微鏡装置100の具体的構成を示す図である。顕微鏡装置100は、対象標本11が載置されるステージ170と、側面視略コの字状を有し、ステージ170を支持するとともにレボルバ123を介して対物レンズ125(図1の観察光学系14に相当)を保持する顕微鏡本体127と、顕微鏡本体127の底部後方に配設された光源119と、顕微鏡本体127の上部に載置された鏡筒129とを備える。また、鏡筒129には、対象標本11の標本像を目視観察するための双眼部131と、対象標本11の標本像を撮像して対象標本画像を取得するためのTVカメラ133(図6のRGBカメラ111に相当)とが取り付けられている。ここで、図9に示す対物レンズ125の光軸方向をZ方向とし、Z方向と垂直な平面をXY平面として定義する。
【0064】
ステージ170は、XYZ方向に移動自在に構成されている。すなわち、ステージ170は、モータ135およびこのモータ135の駆動を制御するXY駆動制御部137によってXY平面内で移動自在である。XY駆動制御部137は、図示しないXY位置の原点センサによってステージ170のXY平面における所定の原点位置を検知し、この原点位置を基点としてモータ135の駆動量を制御することによって、対象標本11の観察視野を移動させる。
【0065】
また、ステージ170は、モータ139およびこのモータ139の駆動を制御するZ駆動制御部141によってZ方向に移動自在である。Z駆動制御部141は、図示しないZ位置の原点センサによってステージ170のZ方向における所定の原点位置を検知し、この原点位置を基点としてモータ139の駆動量を制御することによって、所定の高さ範囲内の任意のZ位置に対象標本11を焦準移動させる。
【0066】
レボルバ123は、顕微鏡本体127に対して回転自在に保持され、対物レンズ125を対象標本11の上方に配置される。対物レンズ125は、レボルバ123に対して倍率(観察倍率)の異なる他の対物レンズとともに交換自在に装着されており、レボルバ123の回転に応じて観察光の光路上に挿入されて対象標本11の観察に用いる対物レンズ125が択一的に切換えられるようになっている。
【0067】
顕微鏡本体127は、底部において対象標本11を透過照明するための照明光学系(図1の照明光学系13に相当)を内設している。この照明光学系は、光源119から射出された照明光を集光するコレクタレンズ143、照明系フィルタユニット145、視野絞り147、開口絞り149、照明光の光路を対物レンズ125の光軸に沿って偏向させる折曲げミラー151、コンデンサ光学素子ユニット153、トップレンズユニット155等が、照明光の光路に沿って適所に配置されて構成される。光源119から射出された照明光は、この照明光学系によって対象標本11に照射され、その透過光が観察光として対物レンズ125に入射する。
【0068】
また、顕微鏡本体127は、スペクトル取得部130を備えるとともに、このスペクトル取得部130と鏡筒129とに光路を設定するように、対物レンズ125と鏡筒129との間の光路に光路設定部150を備える。この光路設定部150は、図1または図4に示した光路切換ミラー15aやビームスプリッタ15bを用いて構成される。
【0069】
さらに、顕微鏡本体127は、光路設定部150と鏡筒129との間の光路にフィルタユニット157を内設している。フィルタユニット157は、図7に示したフィルタ部113に相当するもので、標本像として結像する光の波長帯域を所定範囲に制限するための2枚以上の光学フィルタ159を回転自在に保持し、この光学フィルタ159を、適宜、対物レンズ125の後段において観察光の光路上に挿入する。
【0070】
鏡筒129は、フィルタユニット157を経た観察光の光路を切換えて双眼部131またはTVカメラ133へと導くビームスプリッタ161を内設している。対象標本11の標本像は、ビームスプリッタ161によって双眼部131内に導入され、接眼レンズ163を介して検鏡者に目視観察される。あるいは、TVカメラ133によって撮像される。TVカメラ133は、標本像(詳細には、対物レンズ125の視野範囲の標本像)を結像するCCDやCMOS等の撮像素子を備えて構成され、標本像を撮像し、標本像の画像データ(対象標本画像)をホストシステム200に出力する。
【0071】
さらに、顕微鏡装置100は、顕微鏡コントローラ165、TVカメラコントローラ167、およびスペクトル取得コントローラ169を備える。顕微鏡コントローラ165は、ホストシステム200の制御のもと、顕微鏡装置100を構成する各部の動作を統括的に制御する。例えば、顕微鏡コントローラ165は、レボルバ123を回転させて観察光の光路上に配置する対物レンズ125を切換える処理や、切換えた対物レンズ125の倍率等に応じた光源119の調光制御や各種光学素子の切換え、あるいはXY駆動制御部137やZ駆動制御部141に対するステージ170の移動指示等、対象標本11の観察に伴う顕微鏡装置100の各部の調整を行うとともに、各部の状態を適宜ホストシステム200に通知する。
【0072】
TVカメラコントローラ167は、ホストシステム200の制御のもと、自動ゲイン制御のON/OFF切換、ゲインの設定、自動露出制御のON/OFF切換、露光時間の設定等を行ってTVカメラ133を駆動し、TVカメラ133の撮像動作を制御する。また、スペクトル取得コントローラ169は、ホストシステム200の制御のもと、スペクトル取得部130によるスペクトルの取得を制御して、取得されたスペクトルをホストシステム200に供給する。
【0073】
以下、本実施の形態に係るバーチャル顕微鏡システムの要部の動作について、図10および図11に示すフローチャートを参照しながら説明する。
【0074】
図10は、バーチャルスライドおよびスペクトルテーブルの作成処理を示すフローチャートである。先ず、制御部210は、ステージ制御部217によりステージ170の動作を制御して対象標本11の観察視野を移動する(ステップS101)。次に、制御部210は、光路設定制御部215により光路設定部150の動作を制御して画像取得部110に光路を設定する(ステップS103)。
【0075】
そして、制御部210は、画像取得制御部211により画像取得部110の動作を制御して対象標本11の対象標本画像を取得し(ステップS105)、その取得した対象標本画像をバーチャルスライド235の一部として記憶部230に格納する(ステップS107)。
【0076】
次に、制御部210は、光路設定制御部215により光路設定部150の動作を制御してスペクトル取得部130に光路を設定する(ステップS109)。そして、制御部210は、スペクトル取得制御部213によりスペクトル取得部130の動作を制御して対象標本11のスペクトルを取得し(ステップS111)、その取得した対象標本11のスペクトルを記憶部230のスペクトルテーブル237に格納する(ステップS113)。スペクトル取得部130において、対象標本画像の複数部分のスペクトルを取得する場合は、その全てのスペクトルを取得する(ステップS115)。
【0077】
その後、制御部210は、対象標本11の必要な視野を取得するまで、ステップS101からステップS115を繰り返して、対象標本11の全体あるいは一部分のバーチャルスライド235とスペクトルテーブル237とを作成する(ステップS117)。なお、光路設定部150が、図4に示したようにビームスプリッタ15bにより構成されている場合は、ステップS103およびS109は不要である。この場合は、画像取得部110による対象標本画像の取得処理と、スペクトル取得部130によるスペクトルの取得処理とを並行して、あるいは順次に実行する。
【0078】
このように、画像取得部110により対象標本画像を取得する毎に、スペクトル取得部130により当該対象標本画像のスペクトルを取得することで、バーチャルスライド235とスペクトルテーブル237とを高速に作成することができる。特に、光路設定部150が、図4に示したようにビームスプリッタ15bにより構成されている場合は、可動の光路切換ミラー15aを用いる場合のような、光路切換ミラー15aの切換時間が不要となるので、バーチャルスライド235とスペクトルテーブル237とをより高速に作成することができる。
【0079】
また、スペクトル取得部130が対象標本画像の複数部分のスペクトルを取得する場合は、より豊富なスペクトルテーブル237を作成することができる。しかも、スペクトルテーブル237に格納されているスペクトルは、対象標本11から取得したスペクトルであるから、対象標本11のスペクトルを推定する場合に用いる推定オペレータWを算出するために用いる統計データとして好適な統計データである。
【0080】
図11は、スペクトルの推定処理を示すフローチャートである。先ず、制御部210は、推定オペレータ算出部255により、スペクトルテーブル237に格納されている複数のスペクトルに基づいて、式(6)に示された推定オペレータWを算出する(ステップS201)。そのため、推定オペレータ算出部255は、先ず、スペクトルテーブル237に格納されている複数のスペクトルから平均ベクトルVを求める。続いて、平均ベクトルVに基づいて、次式(7)により自己相関行列Rssを算出する。ここで、添え字Tは行列式の転置を示す。
【0081】
【数3】

【0082】
その後、推定オペレータ算出部255は、自己相関行列Rssに基づいて、上述した式(6)より推定オペレータWを算出する。ここに、式(6)を再掲する。
W=RSS(HRSS+RNN−1 ・・・(6)
ただし、():転置行列、()−1:逆行列
【0083】
これにより、対象標本画像のスペクトルを推定するのに好適な推定オペレータWが得られる。得られた推定オペレータWは、記憶部230に格納される。なお、自己相関行列算出に用いるスペクトルは、スペクトルテーブル237に格納されるスペクトルを全て用いてもよいし、特異なデータを除く等、何らかの目的に沿って一部分を抽出して用いてもよい。また、データ量が不十分である場合は、他の標本のスペクトル、あるいは、汎用的なスペクトルを合わせても良い。また、自己相関行列の代わりに、共分散行列を用いてもよい。
【0084】
続いて、制御部210は、スペクトル推定部257により、バーチャルスライド235を構成する推定対象画素の画素値に基づいて、対象標本11のスペクトルを推定する(ステップS203)。すなわち、スペクトル推定部257において、上述した式(5)により、推定オペレータWを用いて、推定対象画素の画素値G(x)から対応する対象標本11の標本点における分光透過率の推定値T^(x)を推定する。ここに、式(5)を再掲する。
【数4】

【0085】
このようにして、分光透過率の推定値T^(x)を推定することにより、スペクトル推定誤差を低減することができる。この分光透過率の推定値T^(x)は、記憶部230に格納される。
【0086】
以上のように、本実施の形態に係るバーチャル顕微鏡システムによれば、バーチャルスライド235の作成とほぼ同時に、スペクトルテーブル237を作成することができる。したがって、高速にスペクトルを推定することができる。また、光路設定部150がビームスプリッタ15bで構成されている場合は、より高速にスペクトルを推定することができる。また、対象標本に好適な推定オペレータを算出できるので、スペクトル推定の推定誤差を低減することができる。また、スペクトル取得部130により対象標本画像の複数部分のスペクトルを取得する場合は、スペクトル推定の推定誤差をより低減することができる。
【0087】
(第2実施の形態)
図12(a)および(b)は、本発明の第2実施の形態に係るバーチャル顕微鏡システムの原理を説明するための図である。本実施の形態に係るバーチャル顕微鏡システムでは、図2(a)および(b)で説明した第1実施の形態における動作原理に加えて、対象標本画像から取得したスペクトル24をスペクトルテーブル25に登録する際に、そのスペクトル24を測定した部分23の画素の画素値と位置情報とを対象標本画像21から取得し、それらのデータをデータセット26としてスペクトルテーブル25に格納する。これにより、バーチャルスライドの作成とほぼ同時に、画素値が付されたスペクトルテーブルを作成する。その他は、図2(a)および(b)と同様である。
【0088】
図13は、上記の原理に基づく本実施の形態に係るバーチャル顕微鏡システムの構成を示す機能ブロック図である。このバーチャル顕微鏡システムは、ホストシステム200の演算部250の構成が、図5に示した構成と異なるものである。すなわち、演算部250は、図5に示した推定オペレータ算出部255、スペクトル推定部257、バーチャルスライド作成部259の他に、対象標本画像からスペクトル取得範囲の画素値を算出するスペクトル取得範囲画素値算出部251と、スペクトルテーブル237からスペクトルを選択するスペクトル選択部253とを備える。その他の構成は、図5と同様であるので、同一作用を成す構成要素には同一参照符号を付して説明を省略する。
【0089】
以下、本実施の形態に係るバーチャル顕微鏡システムの要部の動作について説明する。
【0090】
図14は、バーチャルスライドおよびスペクトルテーブルの作成処理を示すフローチャートである。先ず、制御部210は、図10に示した第1実施の形態の場合と同様のステップS101〜S111を実行する。続いて、制御部210は、スペクトル取得範囲画素値算出部251により、スペクトル取得範囲の画素値を対応する対象標本画像から算出する(ステップS112a)。ここで、画像取得部110とスペクトル取得部130とは、光路設定部150により光軸が位置合わせされているので、スペクトル取得範囲画素値算出部251は、スペクトルが取得された範囲の画素を取得できる。
【0091】
なお、一般に、スペクトル取得部130の空間分解能は、画像取得部110の空間分解能よりも低い。そのため、スペクトル取得範囲画素値算出部251は、式(8)により、スペクトルが取得された範囲の画素の画素値Gと、スペクトル取得部130の受光特性Aとを畳み込むことで、スペクトルが取得された範囲の画素の画素値から、スペクトルに対応する画素値を算出する。
【0092】
【数5】

【0093】
スペクトルに対応した画素値は、上記に限らず、スペクトルが取得された範囲の中心の画素の画素値、または、スペクトルが取得された範囲の画素の画素値の平均値、最頻値、中央値等の統計値でもよい。また、画素値は、取得画素値、L*a*b*空間等の色空間に変換した画素値、あるいは画素値から算出した特徴量でもよい。
【0094】
ステップS111で取得したスペクトルおよびステップS112aで算出した画素値は、スペクトルを取得した位置情報とともにデータセットとしてスペクトルテーブル237に格納する(ステップS112b)。以降、ステップS115〜S117は、第1実施の形態と同様である。
【0095】
これにより、例えば図15に示すように、画素値と、スペクトル値と、画素位置とがデータセットとして関連付けられたスペクトルテーブル237を得ることができる。したがって、対象標本のスペクトルを推定する推定オペレータWを算出する、より好適な統計データを得ることができる。
【0096】
図16は、スペクトルの推定処理を示すフローチャートである。先ず、制御部210は、スペクトル選択部253により、バーチャルスライド235を構成する推定対象画素の画素値に基づいて、スペクトルテーブル237からスペクトルを選択する(ステップS202a)。そのため、スペクトル選択部253では、先ず、推定対象画素の画素値と、スペクトルテーブル237上の各データセットにおける画素値の類似度dとを算出する。
【0097】
類似度dは、例えば、2つの画素値間のユークリッド距離等の統計値を用いる。この場合、L*a*b*空間に変換した2つの画素値間のユークリッド距離は、色差を意味する。また、類似度dは、バンド毎に算出し、全バンドが条件を満たす、あるいは、一部のバンドが条件を満たすこととしてもよい。また、比較するスペクトルテーブル237上のデータセットは、2つの画素値の差が任意の閾値内のデータセットに限定してもよい。こうすることで、高速に検索することができる。
【0098】
類似度dが2つの画素値間のユークリッド距離である場合、同値間でのユークリッド距離は0であるから、類似しているほど0に近い。そこで、類似度が小さい方から順に所定の数だけデータセットを選択する。この際の所定の数は、経験的に定めればよい。また、類似度が所定の閾値より小さいデータセットを選択してもよい。この際の所定の閾値は、経験的に定めればよい。こうすることで、推定対象画素の画素値と類似した統計データを選択できる。したがって、推定対象画素のスペクトルを推定する推定オペレータWを算出する統計データとして最適な統計データを選択できる。選択したデータセットおよび算出した類似度dは、記憶部230に記憶される。
【0099】
続いて、制御部210は、推定オペレータ算出部255により、選択されたデータセットに基づいて上述した式(6)から推定オペレータWを算出する(ステップS202b)。このため、推定オペレータ算出部255は、先ず、選択されたデータセットと類似度dとから、例えば、次式(9)より重み付き平均ベクトルV’を求める。
【0100】
【数6】

【0101】
続いて、推定オペレータ算出部255は、重み付き平均ベクトルV’をもとに次式(10)より自己相関行列Rssを算出する。ここで、添え字Tは行列式の転置を示す。
【0102】
【数7】

【0103】
その後、推定オペレータ算出部255は、自己相関行列Rssに基づいて、上述した式(6)により推定オペレータWを算出する。ここに、式(6)を再掲する。
W=RSS(HRSS+RNN−1 ・・・(6)
ただし、():転置行列、()−1:逆行列
【0104】
これにより、推定対象画素のスペクトルを推定する場合に最適な推定オペレータWが得られる。得られた推定オペレータWは、記憶部230に格納する。その後、図11に示した第1実施の形態の場合と同様に、ステップS203により、算出された推定オペレータを用いて推定対象画素のスペクトルを推定する。こうすることで、各画素でスペクトル推定の推定誤差を低減することができる。
【0105】
以上のように、本実施の形態に係るバーチャル顕微鏡システムによれば、バーチャルスライドを作成すると同時に、スペクトルと、そのスペクトルを取得した部分の画素値および位置情報とをデータセットとしたスペクトルテーブル237を得るので、第1実施の形態における効果に加えて、より正確にスペクトルを推定することができる。
【0106】
例えば、複数の組織を有する対象標本11から、図17に示すように、1回の撮像で図示のサイズの対象標本画像21(タイル)を取得してバーチャルスライド235を作成する場合、タイルが近ければ同じ組織あるいは近い特性の組織である可能性が高い。したがって、このような場合、スペクトルを推定するにあたって、同じ組織あるいは近い特性の組織で測定したスペクトルを教師データとするのがより好適である。本実施の形態によれば、上述したように、スペクトルと、そのスペクトルを取得した部分の画素値および位置情報とをデータセットとしたスペクトルテーブル237を得るので、スペクトルを推定するにあたって、その位置情報から近傍の位置の教師データを使用することができる。これにより、同じ組織あるいは近い特性の組織である可能性の高い教師データからスペクトルを推定できるので、スペクトルをより正確に推定することが可能となる。
【0107】
なお、本発明は、上記実施の形態に限定されるものではなく、幾多の変形または変更が可能である。例えば、図1、図3および図4に示した光路設定部15は、図18(a)および(b)に示すように、観察光学系14の光路に対して、画像取得部16とスペクトル取得部17との配置を機械的に切換える配置切換機構15cにより構成して、図18(a)の状態で観察光を画像取得部16に入射させ、図18(b)の状態で観察光をスペクトル取得部17に入射させるようにすることもできる。また、対象標本の観察視野は、ステージを移動させる場合に限らず、顕微鏡対物レンズを移動させたり、ステージと顕微鏡対物レンズとの双方を移動させたりして切換えるようにしてもよい。
【0108】
また、第2実施の形態においては、類似度dが最小のスペクトルをスペクトル推定値としてもよい。この場合、スペクトルを推定するよりもスペクトル推定誤差が大きくなるが、スペクトルを推定しないので高速に処理する。また、重み付き平均ベクトルV’の重みは、式(9)に限らず、適宜設定することが可能である。また、このような重み付けを行うことなく、また、他の標本のスペクトル、あるいは、汎用的なスペクトルを合わせて、推定オペレータを算出することも可能である。また、自己相関行列の代わりに、共分散行列を用いて、推定オペレータを算出することもできる。また、スペクトルを含むデータセットは、スペクトルとその取得位置の画素値とのデータセット、あるいは、スペクトルとその取得画素位置とのデータセットとすることもできる。
【符号の説明】
【0109】
11 染色標本(対象標本)
12 光源
13 照明光学系
14 観察光学系
15 光路設定部
15a 光路切換ミラー
15b ビームスプリッタ
15c 配置切換機構
16 画像取得部
17 スペクトル取得部
21 対象標本画像
22 バーチャルスライド
23 所定部分
24 スペクトル
25 スペクトルテーブル
27 拡大光学系
100 顕微鏡装置
110 画像取得部
130 スペクトル取得部
150 光路設定部
170 ステージ
200 ホストシステム
210 制御部
211 画像取得制御部
213 スペクトル取得制御部
215 光路設定制御部
217 ステージ制御部
230 記憶部
250 演算部
255 推定オペレータ算出部
257 スペクトル推定部
259 バーチャルスライド作成部
270 入力部
290 表示部

【特許請求の範囲】
【請求項1】
染色標本を撮像してスペクトルを推定するバーチャル顕微鏡システムであって、
前記染色標本の1バンド以上の染色標本画像を取得する画像取得部と、
前記染色標本画像の1以上の所定部分のスペクトルを取得するスペクトル取得部と、
前記画像取得部が前記染色標本画像を取得する毎に、前記スペクトル取得部により当該染色標本画像のスペクトルを取得し得るように、前記画像取得部および前記スペクトル取得部に対して前記染色標本を経た光束の光路を設定する光路設定部と、
前記染色標本のバーチャルスライドとスペクトルテーブルとを作成するように、前記染色標本の2以上の観察視野において、前記画像取得部による前記染色標本画像の取得と、前記スペクトル取得部による当該染色標本画像のスペクトル取得とを繰り返すように制御する制御部と、
を備えることを特徴とするバーチャル顕微鏡システム。
【請求項2】
前記スペクトルテーブルから推定オペレータを算出する推定オペレータ算出部と、
前記推定オペレータを用いて前記バーチャルスライドを構成する画素のスペクトルを推定するスペクトル推定部と、
をさらに備えることを特徴とする請求項1に記載のバーチャル顕微鏡システム。
【請求項3】
前記光路設定部は、前記染色標本を経た光束を前記画像取得部および前記スペクトル取得部に選択的に入射させるように前記光束の光路を切換える光路切換ミラーを備える、ことを特徴とする請求項1または2に記載のバーチャル顕微鏡システム。
【請求項4】
前記光路設定部は、前記染色標本を経た光束の光路上に、前記画像取得部および前記スペクトル取得部を選択的に位置させる配置切換機構を備える、ことを特徴とする請求項1または2に記載のバーチャル顕微鏡システム。
【請求項5】
前記光路設定部は、前記染色標本を経た光束を前記画像取得部および前記スペクトル取得部に同時に入射させるように前記光束の光路を分岐するビームスプリッタを備える、ことを特徴とする請求項1または2に記載のバーチャル顕微鏡システム。
【請求項6】
前記画像取得部は、RGBカメラ、モノクロカメラ、2バンド以上のカメラ、カメラおよび光学フィルタで構成された多バンドカメラのいずれかである、ことを特徴とする請求項1〜5のいずれか一項に記載のバーチャル顕微鏡システム。
【請求項7】
前記スペクトル取得部は、前記染色標本画像を拡大する光学倍率拡大部を備え、該光学倍率拡大部により拡大された前記染色標本画像から前記スペクトルを取得する、ことを特徴とする請求項1〜6のいずれか一項に記載のバーチャル顕微鏡システム。
【請求項8】
前記スペクトル取得部による前記スペクトルの取得位置の画素値を前記画像取得部が取得した前記染色標本画像から取得するスペクトル取得位置画素値算出部をさらに備え、
前記スペクトルテーブルとして、少なくとも前記スペクトルと前記画素値とを含むスペクトルテーブルを作成する、ことを特徴とする請求項1〜7のいずれか一項に記載のバーチャル顕微鏡システム。
【請求項9】
前記スペクトルテーブルから前記バーチャルスライドを構成する画素の画素値に応じたスペクトルを複数選択するスペクトル選択部をさらに備え、
前記推定オペレータ算出部は、前記スペクトル選択部で選択された複数のスペクトルから画素値毎の推定オペレータを算出し、
前記スペクトル推定部は、前記画素値毎の推定オペレータを用いて前記バーチャルスライドを構成する画素のスペクトルを推定する、
ことを特徴とする請求項8に記載のバーチャル顕微鏡システム。
【請求項10】
前記スペクトルテーブルから前記バーチャルスライドを構成する画素の画素値に応じたスペクトルを選択するスペクトル選択部をさらに備え、
該スペクトル選択部で選択された前記スペクトルをスペクトル推定値とする、
ことを特徴とする請求項8に記載のバーチャル顕微鏡システム。
【請求項11】
前記スペクトルテーブルに格納される画素値は、取得画素値、色空間に変換した画素値、画素値から算出した特徴量のいずれかである、ことを特徴とする請求項8〜10のいずれか一項に記載のバーチャル顕微鏡システム。
【請求項12】
前記スペクトルテーブルは、少なくとも前記スペクトル、前記画素値および前記スペクトルを取得した画素位置情報を含むデータセットからなる、ことを特徴とする請求項8〜11のいずれか一項に記載のバーチャル顕微鏡システム。
【請求項13】
前記スペクトル取得位置画素値算出部は、前記スペクトルの取得範囲の中心画素の画素値、前記取得範囲の画素の画素値の統計値、前記取得範囲の画素値と前記スペクトル取得部の受光特性との畳み込みで算出される値のいずれかである、ことを特徴とする請求項8〜12のいずれか一項に記載のバーチャル顕微鏡システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2011−99823(P2011−99823A)
【公開日】平成23年5月19日(2011.5.19)
【国際特許分類】
【出願番号】特願2009−256312(P2009−256312)
【出願日】平成21年11月9日(2009.11.9)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】