説明

パルス励磁及びサンプル検出フラックスゲート型磁力計

【課題】センサまたは磁気回路の出力部における信号の改善された検出手段に加え、磁力計のセンサまたは磁気回路の改善された励磁手段を有する、少なくとも1つのフラックスゲート型磁力計を備える磁界測定装置を提供する。
【解決手段】本発明の磁界測定装置は、少なくとも1つの磁気コアと複数の巻線とを備え、少なくとも1つの出力信号を送信することができる磁気センサと、前記磁気センサの入力部に少なくとも1つの励磁信号を励磁パルスとして知られる一連のパルスの形態で送信することができるパルス発生手段と、前記磁気センサの前記出力信号をサンプリングする手段と、を含む、フラックスゲート型磁力計を備える磁界測定装置であって、前記一連の励磁パルスのうちの少なくとも1つの励磁パルスの送信に続いて前記励磁パルスの継続期間に、前記サンプリング手段によって前記磁気センサの前記出力信号の少なくとも1つの収集を引き起こす手段を含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁力計または磁気センサの分野に関し、センサの改善されたパルス励磁手段とセンサの出力部におけるサンプル検出手段に加えてフラックスゲート型の磁束磁気センサを有する、電子/超小型電子磁界検出及び/又は測定装置を採用する。また、本発明は、このような装置によって改善された検出方法及び/又は測定方法に関する。
【0002】
本発明による装置及び方法によれば、特に信号対雑音比、消費電力及び帯域幅における改善が得られる。
【背景技術】
【0003】
“フラックスゲート”型磁力計は、磁界を測定するために使用され、その磁界は、弱いこともあり、場合によっては非常に弱いこともあり、磁力計の寸法によるが、例えば、1ナノテスラないしは数ピコテスラ程度の分解能を有する1マイクロテスラ程度である。磁力計は、超小型電子の分野で使用されることができ、集積回路内に組み込まれることもある。これらの磁力計は、薄膜形成技術を用いて製造される。
【0004】
“フラックスゲート”型磁力計を有する電子デバイスまたは超小型電子デバイスは、従来、センサ、そのセンサに周期的な励磁信号を送信することができる励磁手段または励磁回路、及び、そのセンサの出力部に検出手段または検出回路を備えている。一般に、このセンサは、磁気回路または磁気コアの他に、磁気回路の励磁に関与する一本または数本の巻線と、測定に関与する一本または数本の“受信”または“検出”巻線を有する。これらの部材は、共同して機能する。
【0005】
一般に、センサに送信される励磁信号は、正弦波または図1Aに示されるような三角波である。この励磁信号は、周期的に、正負が交互になる磁気誘導下でセンサの磁気回路を飽和させる。コアを形成する磁気材料の磁化曲線の非線形性のために、検出巻線の終端に誘導される信号は、励磁の周波数の奇数調波成分を原則的に含む(図1B、1C、1Dは、誘導電圧信号に加えて、コアの磁化曲線及びコアの磁気材料の誘導曲線を示す。)。外部磁場の存在下において、磁気材料のヒステリシス曲線(サイクル)は、もはや対照的ではなく、励磁の周波数の偶数調波が見られる。
【0006】
フラックスゲート型磁力計を備える従来技術による磁界測定装置の例は、図2に示される。この装置は、磁気コア12を有する磁気回路を備えるセンサ10を有する。コア12を励磁する手段は、磁気回路の入力部に提供され、図1Aに関して示された励磁信号のタイプの励磁信号を送信することができる電流発生器20を有し、その励磁信号の周波数fは、クロック回路またはクロック22によって与えられる。電流発生器20は、2つの励磁巻線13、14に接続される。磁気回路10は、偶数調波成分が互いに合わさり、奇数調波成分が互いから引かれるように、反対に巻線された2つの検出巻線15、16をさらに有する。センサの出力部における信号から、プリアンプと、2つの検出巻線15、16の出力部に位置するバンドパスフィルタ(図2においてブロック番号30で示される)と、そのバンドパスフィルタの後段に位置する同期検出回路32とによって“有用である”とされる信号を抽出する。この同期検出回路30は、2×f又はその程度である周波数の有用な信号の検出を行う。検出周波数として知られるこの周波数(2×f)は、クロック22の出力部に位置する位相変化部25の介在によって同期検出用回路32に与えられる。同期検出回路30の出力部には、ローパスフィルタ34も提供される。この装置は、必要であれば、スレーブ動作部を有する。この場合、同期検出回路の出力部の信号は、サーボループにおいてエラー信号として作用する。
【0007】
マイクロフラックスゲート型磁力計において、波形、振幅、周波数、及び、励磁信号と同期検出との間の位相は、互いに独立するパラメータであり、この装置の適合を単一の動作周波数に制限する。
【0008】
前述のような装置を用いると、通常、磁気回路10の飽和の位相と脱飽和の位相との間で有用な信号の中に大きなノイズが観測される。図3Aは、このようなタイプの装置において、センサの磁気回路が外部磁場に晒されることのない状態で、200kHz程度の周波数の励磁信号42に対応するセンサ10の出力部における信号40を示す。センサ10からの出力信号40は、磁気回路の飽和と脱飽和との間に大きなノイズ44を有することが観測される。一方で、図3Bは、磁気回路10が外部磁場に晒されることのない状態で、1MHz程度の周波数の励磁信号に対応する磁気回路10からの出力信号46を示す。この出力信号46も大きなノイズ50を有する。
【0009】
一方、図3Cは、1MHz程度の周波数の三角波の励磁信号60において、センサ20の出力部における信号62、66を示す。+15μTの外部磁界の存在下で、このような装置において、励磁信号60の1期間毎に2回の、磁気回路の各々の飽和部でポジティブオルタネーション63とそれに続くネガティブオルタネーション64を含む有用な信号62が見られる。−15μTの外部磁界の存在下で、ネガティブオルタネーションとそれに続くポジティブオルタネーションを含む有用な信号66は、励磁信号の1期間毎に2回見られる。励磁信号60と同期検出器手段との位相は、完全に適合されなければならないが、周波数、励磁の振幅及び温度に依存する位相差を有する。この位相問題は、有用な信号内の非常に低い周波数ノイズの減少とオフセットが理由である。
【0010】
同期検出フラックスゲート型磁力計において、検出する信号の発生は、磁気材料の磁化曲線の非線形性にある。この非線形性は、励磁信号60の偶数調波69の全てを示す。前述したような磁気検出器32を備える装置において、磁気回路10の出力部における信号70の第2階層(第2ランク)の調波のみが使われる。優位の階層(ランク)の調波は、ローパスフィルタ34によって除去される(図3D)。
【0011】
一般的な方式では、フラックスゲート型磁力計が、三角波信号または正弦波信号を送信する励磁手段及び/又は同期検出回路に結合されると、双安定の現象または不安定性が現れる。このデフォルトは、磁気センサの出力部における信号内に急上昇(ジャンプ)またはオフセットの形態をもたらす。
【0012】
仏国特許0110853の明細書には、オフセット現象を低減するための解決法、特に、磁気コア、巻線、交流源から活性巻線内の励磁周波数まで移動する手段、及び、受信巻線(レシーバ巻線)内の励磁周波数の2倍の周波数で誘導される電圧を測定する手段を備える磁力計を安定化する方法が記載されており、その巻線は、少なくとも1つの活性巻線(アクティブ巻線)及び受信巻線であり、その活性巻線は、その受信巻線を高感度化するコア内に励磁磁界を形成するために配置されている。この方法は、受信巻線を補足的な交番磁場に晒すことからなる少なくとも1つの段階を有する。
【0013】
一方、“マイクロフラックスゲート型センサのパルス励磁”(Pavel Ripkaら、2000年10月12日)という文書には、磁力計の磁気回路の入力部において20%程度の周期比率の正方信号を送信する電流発生器に加えて、フラックスゲート型磁力計を有する磁界測定装置の変形例が記載されている。磁気回路の出力部における信号の検出は、スタンフォードリサーチシステム社(Stanford Research Systems)製の“SR844ロックインアンプリファイヤー(SR844 lock in amplifier)”型の同期検出回路によって達成される。このような装置は、特に消費電力の点で改善された性能が得られるが、前述のようなオフセットシフトと非常に低い周波数のノイズを有する。
【0014】
この問題のために、信号対雑音比、消費電力及び帯域幅の点で改善された性能を有し、フラックスゲート型磁力計を有する新規な電子デバイス又は超小型電子デバイスの発見が求められる。
【発明の開示】
【発明が解決しようとする課題】
【0015】
本発明の目的は、センサまたは磁気回路の出力部における信号の改善された検出手段に加え、磁力計のセンサまたは磁気回路の改善された励磁手段を有する、少なくとも1つのフラックスゲート型磁力計を備える磁界測定装置を提供することである。
【課題を解決するための手段】
【0016】
本発明は、第1に、少なくとも1つの磁気コアと複数の巻線とを備え、少なくとも1つの出力信号を送信することができる磁気センサと、前記磁気センサの入力部に少なくとも1つの励磁信号を励磁パルスとして知られる一連のパルスの形態で送信することができるパルス発生手段と、前記磁気センサの前記出力信号をサンプリングする手段と、を含む、フラックスゲート型磁力計を備える磁界測定装置に関し、前記一連の励磁パルスのうちの少なくとも1つの所定の励磁パルスの送信に続いて前記所定の励磁パルスの継続期間に、前記サンプリング手段によって前記磁気センサの前記出力信号の少なくとも1つの収集を引き起こす手段、例えば、パルス発生手段をさらに含む磁界測定装置に関する。
【0017】
本発明による装置は、超小型電子デバイスでありえる。
【0018】
“サンプル”検出は、前記センサの出力信号のピークトゥピーク振幅を使用し、通常の同期検出と違って、この出力信号の全ての高調波を使用することを可能にする。
【0019】
ある特定の実施形態によれば、前記装置は、前記一連のパルスの前記パルスのそれぞれの期間に前記磁気回路の出力信号の少なくとも1つの収集を引き起こす手段を有してもよい。
【0020】
このような装置は、必要であれば、いくつかの多重磁気センサが結合されたパルス発生手段を有してもよく、前記センサの各々が、サンプル検出手段またはサンプリング検出手段と結合されている。
【0021】
このような装置は、従来技術、特に、前記磁気センサの出力部の同期検出手段を含む装置に比べて、改善された信号対雑音比及び消費電力を有する。
【0022】
本発明の装置によれば、不安定性または双安定の現象も、従来技術による装置と比較して減少される。
【0023】
このような装置を用いて、前記帯域幅は、前記励磁信号の周波数によっても調節されることができる。
【0024】
ある可能性によれば、前記励磁信号は、異符号の一連の励磁パルスを含んでもよく、それらから形成されていてもよい。これによれば、前記センサの出力部における信号のオフセット現象を制限することができる。
【0025】
前述の可能性に加えて、ある可能性によれば、前記励磁パルスは、それぞれ等しい継続期間及び/又は振幅を有していてもよい。
【0026】
前述の可能性に加えて、ある可能性によれば、前記パルスは、さらに長方形状を有していてもよい。
【0027】
前記励磁信号は、好ましくは短パルスからなる。
【0028】
前記サンプル化手段または前記サンプリング手段は、前記パルス発生手段によって発生された、2つの状態を有する少なくとも1つの制御信号によって制御されてもよい。
【0029】
第1実施形態によれば、前記サンプリング手段は、前記所定のパルスの送信に続いて、前記所定のパルスの継続期間より短い所定の期間中に、前記センサの出力信号の収集を実行するために提供され、前記パルスの継続期間より短い所定の期間は、前記パルスの開始後の所定の期間に位置する時刻であって、好ましくはゼロではない時刻と、前記所定のパルスの終了前の他の所定期間に位置する時刻であって、好ましくはゼロではない時刻との間にある。これにより、電磁的、容量性及び/又は誘導的な結合の現象が最小化され、または不存在である時刻における信号の収集を実行することができる。
【0030】
この第1実施形態によれば、前記サンプリング手段は、前記所定の期間中に前記磁気センサの出力信号の平均化または平滑化を実行するためにさらに提供されてもよい。
【0031】
“平滑化”として知られる信号は、前記出力信号の前記平均化または平滑化に続いて形成されてもよい。この第1実施形態によれば、前記サンプリング手段は、前記所定の期間の後であって前記一連のパルスの少なくとも1つの他のパルスまで、前記平滑化信号を記憶することがさらにできる。
【0032】
この第1実施形態によれば、前記サンプリング手段は、スイッチ、例えばアナログスイッチを形成する手段を有していてもよい。
【0033】
この第1実施形態によれば、前記サンプリング手段は、ローパスフィルタを形成する手段をさらに有していてもよい。
【0034】
ある実施形態によれば、前記サンプリング手段は、前記所定の励磁パルスの送信に続いて、前記所定の励磁パルスの開始後であって終了前に位置する所定の時刻に、前記センサの出力信号の少なくとも1つの収集を実行するために提供される。
【0035】
前記励磁巻線と検出巻線との接近は、有用な信号を含まない電磁結合を引き起こすかもしれない。
【0036】
前記所定の時刻は、前記励磁パルスの中央に位置してもよい。これにより、電磁的、容量性及び/又は誘導的な結合の現象が最小化され、または不存在である時刻における信号の収集を実行することができる。
【0037】
第2実施形態によれば、前記サンプリング手段は、前記所定の時刻に前記センサの前記出力信号の記憶を実行するために提供されてもよい。
【0038】
第2実施形態によれば、前記サンプリング手段は、少なくとも1つのサンプラーブロッカーを有していてもよい。
【0039】
ある変形例によれば、前記サンプリング手段は、パルスの送信に続いて、その時点で、又は、前記所定の時刻に、前記回路の出力信号のアナログデジタル変換を実行することがさらにできる。前記サンプリング手段は、アナログデジタル変換器を形成する手段を有していてもよい。
【0040】
前記測定装置のある実施形態によれば、前記装置は、スレーブ動作ができ、一本または数本のフィードバック巻線と、前記フィードバック巻線を対象とするフィードバック信号を生成する手段を備えるフィードバックループとを有していてもよい。
【0041】
フィードバック信号を生成する前記手段は、少なくとも1つの積分器を形成する手段を有していてもよい。
【0042】
フィードバック信号を生成する前記手段は、2つの励磁パルスの間に、前記フィードバック信号の前記振幅に関する情報を記憶する手段を有していてもよい。
【0043】
前記装置のある実施形態によれば、フィードバック信号を生成する前記手段は、フィードバック制御パルスとして知られる一連のパルスの形態で前記パルス発生手段によって発生された少なくとも1つのフィードバック制御信号によって制御されてもよい。
【0044】
この実施形態によれば、前記フィードバック制御信号の変化は、前記励磁信号の変化に依存してもよく、前記サンプリング制御信号自体の変化は、前記励磁信号の変化に依存している。
【0045】
ある可能性によれば、本発明による前記測定装置は、所定の速度に従う前記磁気センサが入れられる磁界の変化に続いて、前記所定の変化速度に応じて前記励磁信号の前記パルスの繰り返しの周波数を調節するための手段をさらに有していてもよい。
【0046】
また、本発明は、少なくとも1つの磁気コアを備え、少なくとも1つの出力信号を送信することができる磁気回路または磁気センサと、前記磁気回路または前記磁気センサの入力部に励磁信号を“励磁”パルスとして知られる一連のパルスの形態で送信することができるパルス発生手段を含む、前記磁気コアを励磁する手段と、前記磁気回路の前記出力信号をサンプリングする手段と、を含む、フラックスゲート型磁力計を備える装置を用いる磁界測定方法であって、前記センサの前記入力部に少なくとも1つの励磁パルスを送信する段階と、前記パルスの送信に続いて、前記パルスの継続時間に、前記サンプリング手段によって前記磁気センサの前記出力信号の少なくとも1つの収集を引き起こす段階と、からなる磁界測定方法に関する。
【0047】
ある特定の実施形態によれば、前記方法は、一連の“励磁”パルスの送信する段階と、前記“励磁”パルスのそれぞれに続いて、これらの“励磁”パルスのそれぞれの期間の間に、前記サンプリング手段によって前記センサまたは前記磁気回路の出力信号の少なくとも1つに収集を引き起こす段階と、を有してもよい。
【0048】
前記励磁信号は、異符号の一連の“励磁”パルスからなってもよい。
【0049】
前記“励磁”パルスは、それぞれ等しい継続期間及び/又は振幅を有してもよい。
【0050】
前記“励磁”パルスは、長方形状を有してもよい。
【0051】
前記サンプリング手段は、前記発生手段によって発生された、2つの状態を有する少なくとも1つのサンプリング制御信号によって制御されてもよい。
【0052】
前記方法の第1実施形態によれば、前記方法は、前記“励磁”パルスの送信に続いて、前記“励磁”パルスの継続期間より短い所定の期間中に、前記センサの前記出力信号の少なくとも1つの収集を実行する段階をさらに含み、前記“励磁”パルスの継続期間より短い所定の期間は、前記パルスの開始後の所定期間に位置する時刻と、前記“励磁”パルスの終了前の他の所定期間に位置する時刻との間にある。
【0053】
この第1実施形態によれば、前記方法は、前記所定の期間中に前記回路または前記磁気センサの出力信号の平均化または平滑化を実行する段階をさらに有してもよい。
【0054】
前記方法を具現する第2の可能性によれば、前記方法は、前記“励磁”パルスの送信に続いて、前記“励磁”パルスの開始後であって終了前に位置する所定の時刻、例えば、前記所定の励磁パルスの中央に位置する時刻に、前記センサの出力信号の少なくとも1つの収集を実行する段階を含んでもよい。
【0055】
前記第2の実施形態の可能性によれば、前記方法は、前記所定の時刻に前記回路の前記出力信号の記憶を実行する段階をさらに含んでもよい。
【0056】
前記第2の実施形態の可能性によれば、前記方法は、パルスの送信に続いて、前記所定の時刻に、前記回路の出力信号のアナログデジタル変換を実行する段階をさらに含んでもよい。
【0057】
ある実施形態の可能性によれば、前記装置は、一本または数本のフィードバック巻線と、前記フィードバック巻線を対象とするフィードバック信号を生成する手段を備えるフィードバックループとをさらに有し、前記フィードバック信号を生成する前記手段は、“フィードバック制御”パルスとして知られる一連のパルスの形態で前記パルス発生手段によって発生された少なくとも1つのフィードバック制御信号によって制御され、前記本方法の前記段階(a)で送信される前記励磁パルスは、前記パルス発生手段による“フィードバック制御”パルスの送信に続いて引き起こされる。
【0058】
前記段階(a)及び(b)は、前記“フィードバック制御”パルスの継続期間に行ってもよい。
【0059】
ある実施形態の可能性によれば、前記方法は、前記磁気センサが入れられる前記磁界の所定の速度変化に従う変化に続いて、前記所定の速度変化に応じて前記励磁信号の前記パルスの繰り返しの周波数の調節の段階をさらに含む。
【発明を実施するための最良の形態】
【0060】
本発明は、添付の図面を参照し、単に例示され、何ら限定されない以下の実施形態の説明を読むことによって完全に理解されるであろう。
【0061】
図1Aから1Dは、従来技術で採用されるフラックスゲート型磁力計を備える磁界測定装置の動作を表す種々の信号を示す。
【0062】
図2は、フラックスゲート型磁力計を備える、従来技術による磁界測定装置の例を示す。
【0063】
図3Aから3Dは、磁力計からの出力信号と、入力部で放出される、従来技術による磁界測定装置に統合されたフラックスゲート型磁力計の励磁信号とを示す。
【0064】
図4は、フラックスゲート型磁力計センサ、パルス励磁手段、及び、そのセンサの出力部にある改善されたサンプリング手段または検出手段を有する本発明による磁界測定装置を示す。
【0065】
図5Aは、フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する本発明による磁界測定装置の実施形態の第1例を示し、図5Bは、このような装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【0066】
図6Aは、フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する本発明による磁界測定装置の第2実施形態を示し、図6Bは、このような装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【0067】
図7Aは、フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する本発明による磁界測定装置の第3実施形態を示し、図7Bは、このような装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【0068】
図8は、本発明によるスレーブ動作磁界検出装置の例を示す。
【0069】
図9は、“パルス”制御信号によって制御される手段によって送られるフィードバック信号を備える、本発明によるスレーブ動作磁界検出装置の他の例を示す。図10は、この装置の例の動作のクロノグラムを示す。
【0070】
図11は、前記磁気センサが入れられる磁界の変化速度に応じて前記磁気回路に向けて送られるパルスの繰り返しの周波数を調節する手段を備える、本発明によるスレーブ動作磁界測定装置の他の例を示す。
【0071】
図12は、本発明によって採用される装置の例によって得られる測定信号を示す。
【0072】
種々の図面の同一、類似または等価な部材は、ある図から次の図へ移り易くするために同様の参照符号を付してある。
【0073】
図中で表される異なる部材は、図をより理解し易いものにするために一定の大きさに従って表される必要は無い。
【0074】
磁力計型センサ100を有する、本発明による電子検出及び/又は測定装置の例は、図4に示される。このセンサ100は、特に、フラックスゲート型、マイクロフラックスゲート型または集積フラックスゲート型センサでありえ、言い換えると、MEMS(マイクロエレクトロメカニクスシステム)またはチップのようなマイクロ電子デバイスに含まれたフラックスゲート型磁力計でありえる。この電子検出装置は、センサ100の入力部に励磁手段または励磁回路を有し、センサ100の出力部に検出手段または検出回路を有する。この磁気センサは、磁気コア102を備える磁気回路101から形成されている。この磁気回路101は、高透磁率を有してもよく、鉄/ニッケルに基づく磁気コアにおいては、例えば500から2000の透磁率を有する。この磁気コア102は、閉じられている(閉磁路を構成している)。本発明は、図4に示されている形状と異なる形状を有する磁気コアにも適用され、必要ならば、オープンコアを含む磁気回路に適用される。マイクロフラックスゲート型または集積フラックスゲート型の場合、この磁気回路は、例えば、1ないし数マイクロメートル程度の厚さを有する。
【0075】
1本又は数本の励磁巻線がこの磁気コア102を飽和させるために提供される。この装置は、例えば、連続して結合されると共にコア102の枝(ブランチ)付近に巻かれた第1励磁巻線104と第2励磁巻線106とを有する。励磁巻線104、106は、磁気コア102内に励磁磁界を形成するように配置されている。この装置は、それぞれ参照符号108及び110で示される第1及び第2検出巻線を有し、それらは、磁気回路のコア102付近にそれぞれ巻かれている。磁気コア102は、“磁化容易軸”として知られる軸に従って、または、“磁化困難軸”として知られる軸に沿って方向付けられている。
【0076】
本発明による磁力計の検出巻線及び励磁巻線の配置に加え、これらの数は、図4に示されているものに全く限定されない。この装置の変形例によれば、この磁気回路のコアは、数本の別個の枝及び/又はバラバラの枝から形成されることもでき、例えば、励磁巻線と検出巻線とをそれぞれ含む2本の枝から形成されることもできる。この変形例は、差動アセンブリに従って巻線が接続されることを可能にし、それによって、励磁巻線及び検出巻線の間で、電磁的、誘導的または静電的な結合を制限ないし除去できる。他の変形例によれば、この磁気回路は、巻線を備える枝から形成されることができ、前記巻線は、3つの一定のインピーダンスを有するホイートストンブリッジに巻かれ、磁気回路が飽和しないとき、前記インピーダンスの1つは、その巻線と同じ値を有する。
【0077】
パルス発生器またはパルス発生手段120は、磁気回路101の入力部に提供され、例えば、第1励磁巻線104の終端と第2励磁巻線106の終端とに接続される。このパルス発生器120は、必要であれば周期的に巻線104、106の入力部で放出される、“励磁”パルスとして知られる一連の短い電流のパルスの形態である励磁信号Sを送信するために提供される。励磁信号Sのパルスは、そのような方法でこのセンサ100の磁気回路101を飽和させるために選択される振幅を有する。“短パルス”とは、その期間、つまり幅Tが、その励磁信号の期間に比べて非常に短く、例えば、励磁信号の期間Tの50分の1ないしは50000分の1より小さいパルスを意味する。パルス発生器120は、幅Tの期間のパルスを生成するために使用され、その幅の期間は、センサの出力部において参照符号Sで示される信号がその検出手段によって引き出されることができるように十分に長い。
【0078】
この励磁信号Sのパルスは、例えば、少なくとも10ナノ秒より長い期間または幅を有し、及び/又は、30ナノ秒より短い期間または幅を有する。この励磁信号Sのパルスは、特にコアまたは磁気回路の厚さが1μmから数μm程度であり、その長さが100μmから数百μm程度であるセンサにおいては、好ましくは10から30ナノ秒の間で選択される期間または幅を有することができる。この時間間隔は、回路の時定数に応じて選択される。
【0079】
50kHz程度の励磁信号Sのパルスの周波数において、パルスの継続期間は、例えば、励磁信号の期間の100分の1より小さく、例えば、20ナノ秒程度である。それによって、消費電流は、パルスの振幅の100分の1程度でありえる。
【0080】
励磁信号Sのパルスは、長方形状または実質的に長方形状でありえる。“実質的に”長方形状とは、例えば、2ナノ秒程度、または、1ナノ秒から5ナノ秒の間の継続期間の最前部(フロント)を有するパルスを意味する。
【0081】
従来技術による装置で使用される三角波または正弦波信号と比較して、一連のパルスからなるこの励磁信号Sは、特に低減された消費電力を得ることを可能にする。前記手段120によって発生されたこの励磁信号Sの周期比率及び周波数は、調節されることができ、その周期比率は、例えば1から10000である。この励磁信号の周波数を調節する手段が提供されてもよい。
【0082】
この励磁信号Sの周波数は、例えば、100Hzから1MHzの間でありえ、このセンサ100が実行する検出のタイプによって選択される。
【0083】
例えば、100Hzから1kHzの間の低い励磁周波数は、例えば、3V程度の励磁電圧振幅下で少なくとも100μA未満である低い消費電力を要求するこのセンサの用途によって選択されることができるが、大きな帯域幅は必要とせず、例えば、励磁信号の周波数の10分の1程度、すなわち、10Hzから100Hzの間またはそれ未満である。
【0084】
50kHzから500kHzの間の励磁周波数は、例えば、5nT/Hz1/2より高くないノイズに加えて、少なくとも10kHzまたはその程度の帯域幅を必要とする用途で選択されることができる。
【0085】
ある可能性によれば、励磁信号Sは、正パルス125と負パルス126の交互の形態でありえ、または、異符号の少なくとも2つの連続パルスからなる。このように、励磁巻線と検出巻線との間のあらゆる寄生結合が互いに相殺するが故に、センサ100の出力部の信号Sの有用な成分は、センサ100の入力部で放出されるパルスの成分のサインインディペンデンスを有する。負パルス126と正パルス125は、それぞれ等しい幅T及び/又は振幅Aを有することができる。従って、その正パルス125及び負パルス126は、対称的である。対称的なパルスを備える励磁信号Sは、磁気センサの出力部で信号Sでのオフセットの減少または除去を可能にする。
【0086】
ある可能性によれば、励磁信号Sは、ハイパスフィルタに印加される正方形または長方形信号が使用されることができる。必要であれば、励磁信号Sは、CMOS(Complementary Metal Oxide Semiconductor)回路によって導入されることができる。
【0087】
サンプリング手段130は、サンプリング制御信号S、特に、サンプリング制御信号Sの変化、または、サンプリング手段130の入力部に送られるサンプリング制御信号Sの状態に応じて、特に、センサ100の出力部で信号Sの収集を実行するために提供される。制御信号Sの変化は、それ自体が励磁信号Sの変化に依存し、または、制御信号Sの状態は、それ自体が励磁信号Sの変化に依存する。
【0088】
この励磁パルスの期間中にセンサ100の出力信号Sの少なくとも1つの収集を引き起こすように、励磁信号Sのパルスの送信または生成に続いて、サンプリング制御信号Sまたはサンプリング制御信号Sの状態の少なくとも一方を修正するための手段が採用される。言い換えると、この測定装置は、励磁信号Sのパルスのそれぞれの期間中に位置する時刻にサンプリング手段130がセンサまたは磁気回路の出力部で信号Sの収集を実行するように提供される。特定の実施形態によれば、送信された励磁信号の各々に続いてこれらのパルスのそれぞれの期間中に、センサまたは磁気回路の出力部で信号の少なくとも1つの収集を引き起こすための手段が採用される。このサンプリング制御信号Sは、このパルス発生手段120によって形成され、送られることができる。サンプリング制御信号Sは、例えば、図4に示されるような2つの状態を有する信号でありえる。
【0089】
このサンプリング手段130は、測定された磁界を表す信号Sを出力部に生成する。このサンプリング手段の出力部における信号Sは、例えばアナログ電圧でありえ、または、必要であれば、デジタル電圧、例えば数値語でありえる。このサンプリング手段130は、例えば、サンプラーブロッカーを形成する手段を含むことができる。ある変形例によれば、このサンプリング手段130は、アナログデジタル変換器を形成する手段を含むことができる。
【0090】
サンプリング手段130の出力部で、ローパスフィルタ手段及び/又は低周波増幅手段を含むステージ140が提供されることもできる。このステージ140は、出力信号Sを送信する。
【0091】
このような装置を用いて、例えば、30μT程度で測定される磁界において30mVの高振幅センサの出力部に信号Sを獲得し、磁気センサの出力部とサンプリング手段130との間の増幅器、特に高周波増幅器を保護することを可能にする。サンプリング手段130の前段に高周波増幅器を設けるよりは、このサンプリング手段130の後段に低周波増幅器手段を採用することによって、特にこの測定装置の消費電力を減少させることができる。
【0092】
フラックスゲート型センサ210を備える、前述の本発明による電子検出及び/又は測定装置の変形例は、図5Aに示される。
【0093】
発生手段220は、センサまたは磁気回路210に励磁信号S10を送信する。この励磁信号S10は、前述の励磁信号Sと同じタイプでありえる。センサまたは磁気回路210の出力部において、励磁信号S10のパルスのそれぞれの間にセンサ210の出力部に信号S20の少なくとも1つの収集を実行するサンプリング手段230が提供される。この変形例によれば、このサンプリング手段230は、スイッチ、例えばアナログスイッチ232を形成する手段を備えており、その開閉は、励磁信号S10の発生手段220によっても生成されるサンプリング制御信号S31によって制御される。制御信号S31の変化は、励磁信号S10の変化に依存している。サンプリング手段230は、ローパスフィルタ234を形成する手段をさらに有する。ローパスフィルタ234を形成する手段は、キャパシタ236を形成する手段に結合された抵抗器235を形成する手段の形態でありえる。増幅器241は、このフィルタ234の出力部に備えられることができる。この増幅器241は、スイッチ232が開いた際にサンプリング手段230の出力部を一定信号に保つように、高い入力インピーダンス、例えば10MΩより大きい入力インピーダンスを有する。キャパシタ236の時定数と増幅器の入力抵抗、好ましくは、励磁パルスの最大の期間よりも大きく、例えば、5から10倍大きい。
【0094】
増幅器241は、例えばフォロアアセンブリに従って配置されている。このサンプリング手段230は、測定される磁界を表す信号を、例えばアナログ電圧の形態で送信する。
【0095】
図5Bにおいて、サンプリング制御信号S31を表す曲線が、例えば、2つの状態を有する信号の形態でそれぞれ示されており、その励磁信号S10は、センサ210の入力部で送信されるものである。励磁信号S10は、交互に異符号(例えば、正と負)の一連のパルス225、226からなる。スイッチ232を閉じ、このサンプリング手段230によってセンサの出力部における信号の収集を引き起こすために、期間tにおける励磁信号S中の第1パルス225の送信または生成に続いて、サンプリング制御信号S31は、状態が変化されるように修正または引き起こされ、所定の時間間隔θ、所定の時間、または、期間θの後に、第1状態から第2状態まで移動し、例えば、低い状態から高い状態(図5Bで“227a”で示される部分)まで移動する。この実施形態の変形例において、センサ210の出力部における信号S20の収集は、第1励磁パルスの期間、すなわち、この第1パルスの開始後に所定の期間θにおいて実行される。このように、励磁パルス225が送信され、または、開始される時刻、すなわち、信号S20中の寄生電磁結合またはノイズ現象が生じる可能性がある瞬間には検出を実行しない。
【0096】
この制御信号S31は、時刻tと時刻tの間の所定期間にスイッチを閉じた状態に維持するために、この期間(図5Bで“227b”で示される部分)にわたり第2状態に維持される。言い換えると、第1励磁パルス225の期間に実行されるセンサの出力部における信号の収集は、時刻tと時刻tの間で実行される。それから、第1励磁パルス225の終了の前の所定時間または期間θに、スイッチ232を開放するために、サンプリング制御信号S31は、状態を変化するように修正または引き起こされ、第2状態から第1状態、例えば、高い状態から低い状態(図5Bで“227c”で示される部分)に移動する。センサ210の出力部で誘導される電圧の平均化または平滑化も、パルス225の前記期間中、すなわち、時刻tと時刻tとの間に実行される。第1パルス225の期間は、時刻tで終了する。時刻tの前の期間θで提供される制御信号の状態の変化は、パルス225が終了する時刻、または、励磁パルス225の終端、言い換えると、信号S30内の寄生結合またはノイズ現象が生じる時刻において検出を実行しないことを可能にする。“平滑化”として知られる信号は、センサ210の出力信号S20を平滑化することによって形成される。
【0097】
それから、例えば負の符号である第2パルス226が放出される。制御信号S31は、第2パルスの開始後の所定期間θで状態を変化するために修正または引き起こされる(“227d”で示される部分)。それから、スイッチ232を開放するために、第2パルス226の終端の前の所定期間θにおいて、サンプリング制御信号S21は、状態を変化するために修正または引き起こされ、第2状態から第1状態、例えば、高い状態から低い状態に移動する。
【0098】
パルス225とパルス226との間で、この時点でスイッチは開放されており、サンプリング手段230の出力部において平滑化された信号が記憶される。サンプリング手段230は、第2励磁パルス226に至るまで前記平滑化された信号を記憶するために提供される。
【0099】
フラックスゲート型磁力計センサ210を備える本発明による電子検出及び/又は測定装置の第2の変形例は、図6Aに示されている。この変形例によれば、センサまたは磁気回路210の出力部において、サンプラーブロッカー330を備えるサンプリング手段が提供される。このサンプラーブロッカー330は、測定される磁界を表す信号を、例えば、電圧の形態で送信する。発生手段320は、励磁信号S10を磁気センサ210に送信する。励磁信号S10のパルスに続いて、センサ210の出力部において、サンプリング手段330は、パルスの期間中にセンサ210の出力部における信号S20の収集を実行するために採用される。この変形例によれば、サンプリング手段330は、励磁信号S10を発生する手段320によって発生されるサンプリング制御信号S32によって制御される。この制御信号S32の変化は、励磁信号S10の変化に依存する。
【0100】
図6Bにおいて、サンプラーブロッカー330の入力部と励磁信号S10で放出され、例えば、電流の形態でセンサ210の入力部において放出される、サンプリング制御信号S32を表す曲線が、例えば、2つの状態を有する信号の形態でそれぞれ示されている。励磁信号S10は、交互に正、負である一連のパルス225、226で形成される。時刻t’における励磁信号S10内の第1パルスの放出または生成に続いて、サンプリング制御信号S32は、状態を変化するために引き起こされ、パルス225の期間中に位置する時刻t’において、第1状態から第2状態、例えば、低い状態から高い状態に移動する。制御信号S32の状態の変化の時刻t’が励磁パルス225の中間に位置するように、この例では、パルス発生手段320が採用される。時刻t’における制御信号S22の状態の変化は、サンプラーブロッカー330によって、センサの出力部の信号の収集を引き起こす。時刻t’において、サンプラーブロッカー330は、センサの出力部において信号を記憶する。例えば、パルス225の中間に位置する時刻において信号S20の収集を実行することは、励磁信号の状態の転移または変化中に、電磁気結合現象のために、寄生ノイズを含まない信号を得ることを可能にするかもしれない。
【0101】
フラックス型磁力計センサ210を備える、本発明による電子検出及び/又は測定装置の第3変形例が図7Aに示されている。この変形例によれば、センサまたは磁気回路210の出力部において、アナログ/デジタル変換器430を有するサンプリング手段が提供される。この変換器430は、例えば、数値語の形態で、測定される磁場の代表である信号を送信する。
【0102】
図7Bには、例えば、変換器430の入力部で放出される信号と、センサ210の入力部で放出される励磁信号S10である、2つの状態を有する信号の形態のサンプリング制御信号S33を表す曲線がそれぞれ示されている。励磁信号S10は、交互に正と負である一連のパルス225、226から形成される。時刻t”において励磁信号S10の第1パルス225の送信または生成に続いて、図7Bで参照される時刻t”と時刻t”の間でパルス225の期間の間に位置する時刻t”において、サンプリング制御信号S33は、第1状態から第2状態、例えば、低い状態から高い状態に移動し、制御信号S33の状態の変化の時刻t”は、励磁パルス225の中間に位置されるように提供される。時刻t”において制御信号S33の状態の変化は、特に、変換器430によって、この信号の変換と同様に、センサ210の出力部における信号S20の収集を引き起こす。パルス225の中間部に位置する時刻において、信号S20の変換を実行することは、信号を得ることを可能にし、特に、励磁信号の状態の転移または変化中における結合のためにノイズ寄生現象の信号は、最小化される。
【0103】
図4に関連して前述された本発明による電子検出及び/又は測定装置の例の変形は、図8に示されている。この変形例において、測定装置は、スレーブ動作を有することができ、サーボループまたはフィードバックループを含む。測定された磁場を表す信号、例えば、増幅器140の出力信号Sまたはアナログ/デジタル変換器(図7Aで“430”で示される変換器のような)の出力部における数値語(示されていないが、可能性はある)は、サーボループのエラー信号の役割を果たす。このエラー信号は、積分器560を形成する手段の入力部に入力され、積分器としては、例えば、積分増幅器またはデジタル積分器である。積分器560の出力部において、1本または数本のフィードバック巻線に供給することを目的とする“フィードバック”信号として知られる信号Sが送られる。“フィードバック巻線”は、1つ又は数本の励磁巻線104、106、または、1つ又は数本の特定の補助的な巻線(示されていない)でありえる。フィードバック巻線へのフィードバック信号Sの入力は、センサ100が入れられた磁界に対抗するフィードバック磁界を形成することを可能にする。この例では、磁気センサ100は、平均値がゼロである磁界中で動作する。それによって、測定ダイナミックと測定装置の直線線は、改善される。
【0104】
“パルス型”として知られるフィードバックを有するスレーブ動作磁場測定装置の特定の実施形態は、図9に示されている。この例では、磁気センサ100にフィードバック信号を入力する手段は、一連のパルスからなるフィードバック制御信号Sによって制御される。従って、この装置は、フィードバック信号Sを送ることができ、フィードバック制御信号Sによって制御される制御手段670をさらに有する。このフィードバック制御信号Sは、例えば、パルス発生器120によって送られるロジック信号でありえる。この例では、フィードバックループは、増幅/フィルタリングステージ140の出力部に位置する少なくとも1つの積分器を形成する手段660を有する。2つの励磁パルス間のフィードバック信号の振幅に関連する情報を記憶する手段が提供されてもよい。ある実施形態によれば、これらの記憶手段は、積分器660に属している。フィードバック制御手段670は、入力部で積分器660の出力信号S61を受け、フィードバック制御信号Sの状態に応じて、出力信号S61の振幅に依存する振幅であるフィードバック信号Sを出したり、出さなかったりすることができる。
【0105】
パルスフィードバック装置の動作は、図10のクロノグラムに関連して与えられであろうし、フィードバック制御信号S、励磁信号S、及び、サンプリング制御信号Sを表す曲線が与えられる。信号S、S、Sは、パルス発生器によって形成され、それぞれ、第1の一連のパルス723、724、第2の一連のパルス725、726、及び、第3の一連のパルス728、729からなる。サンプリング制御信号Sの変化が励磁信号Sの変化に依存する一方で、励磁信号Sの変化は、フィードバック制御信号Sの変化に依存する。
【0106】
時刻tで、フィードバック制御信号Sは、状態を変える。その後、フィードバック信号S(この図には示されていない)は、時刻tの時点でセンサ100のフィードバック巻線に入力され、その振幅は、前述のサンプリング中に積分器660によって定義され、記憶される。
【0107】
それから、所定の期間θの後に、励磁パルス725は、時刻tで放出される。所定の期間θは、正確な値でフィードバック磁場の設定を可能にするために提供され、例えば、θ=5τでありえる(ここで、“τ”は、センサ100の磁気回路の時定数である)。
【0108】
それから、時刻tの後の所定の期間θにおいて、検出巻線108、110の出力信号Sは、サンプリング手段130によってサンプリングされ、手段140によって増幅され、積分器660の入力部に入力される。積分器660は、必要であれば、検出巻線108、110からの出力信号Sを相殺するためにフィードバック信号を収集する。フィードバック信号の新しい値は、以下のサンプルまで記憶される。
【0109】
それから、検出巻線の出力信号Sのサンプリングは、時刻tで遮断される。それから、励磁パルスは、時刻tの後の所定の期間θである時刻tで終了する。それから、フィードバック制御信号は、時刻tで終了する。時刻tで、かつ、以下のサンプルまで、そのフィードバックは停止される。
【0110】
幾つかのサンプルがサーボループの安定性を可能にした後、記憶されるフィードバック信号の値は、磁気センサが入れられ、測定される磁場の画像である。
【0111】
実施形態のこの例では、サンプリング制御信号Sのパルス728、729は、励磁信号Sのパルスのそれぞれの期間に位置し、この励磁パルス725、726は、フィードバック制御信号Sのパルス723、724の期間中にそれぞれ位置する。
【0112】
スレーブ動作を有する装置の前述の例の変形は、ここに、図11に関連して示されるであろう。この変形例において、この装置は、“自己適応(自己調整)”として知られる動作を有する。“自己適応”は、発生手段120によって放出された励磁パルスの繰り返しの周波数が、センサ100を囲んで測定される磁場の変化の割合及び速度に応じて、この装置内で自動方式で調整されることを意味する。従って、センサ100を囲って測定される磁場の変化の割合、または、変化速度に応じて、この実施形態で発生手段120によって送られる信号Sの励磁パルスの繰り返しの周波数を調節(変調)するための手段が採用される。これらの調節手段は、例えば、積分器660の出力部に接続される微分器を形成する手段682、微分器682を形成する手段の出力部に接続され、スレッショルドなしに整流器を形成する手段684、及び、前記整流器684を形成する手段の出力部に接続され、電圧制御発振器を形成する手段686を含んでもよく、ここで、発振器を形成する手段686は、パルス発生手段120に接続されている。
【0113】
このような装置は、例えば、周囲磁場が急速に変化した場合、励磁パルスの繰り返しの周波数が高い一方で、周囲磁場が一定の場合、または、ゆっくり変化した場合に、励磁パルスの繰り返しの周波数は低くなるように提供される。このようなモードの動作によって、消費電力を最適化することができる。
【0114】
自己適応型でスレーブ動作磁場測定装置を有するコンパス装置は、本発明に従って採用され、例えば、コンパス装置が固定型か移動型かによって磁場測定の周波数が変化するように提供されることができる。
【0115】
本発明に従って採用されるコンパス装置の動作は、センサ100が固定の場合、測定される磁場は、一定または実質的に一定であり、出力信号も一定である。それから、微分器682の出力部における信号はゼロであり、スレッショルドを有しない整流器684の出力部における信号はゼロであり、励磁パルスの繰り返しの周波数は最小限であり、例えば100Hz程度である。センサ100が移動した際、磁界は変化し、出力信号も変化する。それから、スレッショルドを有しない整流器684の出力部における信号が正であり、励磁パルスの繰り返しの周波数が高い、例えば、100kHz程度であるのに対し、微分器682の出力部の信号はゼロではない。従って、磁場の変化がない場合、帯域幅は低く、磁場の変化が急速的な場合、帯域幅は高い。このようなコンパス装置は、90度に位置する、センサ100のタイプの2つのセンサを備えていてもよく、これらの2つのセンサのそれぞれの出力信号Sに応じて北の方向が計算されるように採用される。
【0116】
図12は、前述の装置の手段によって得られ、パルス発生手段120から抽出(ステミング)される第1励磁パルス820aと第2励磁パルスに応じる“有用な信号”として知られる測定信号810a、810bを示し、本発明によって採用された“サンプル型”検出器が測定信号のピークトゥピーク振幅を使用することができるようにすることを示す。
【図面の簡単な説明】
【0117】
【図1A】従来技術で採用されるフラックスゲート型磁力計を備える磁界測定装置の動作を表す信号を示す。
【図1B】従来技術で採用されるフラックスゲート型磁力計を備える磁界測定装置の動作を表す信号を示す。
【図1C】従来技術で採用されるフラックスゲート型磁力計を備える磁界測定装置の動作を表す信号を示す。
【図1D】従来技術で採用されるフラックスゲート型磁力計を備える磁界測定装置の動作を表す信号を示す。
【図2】フラックスゲート型磁力計を備える、従来技術による磁界測定装置の例を示す。
【図3A】従来技術による磁界測定装置に統合されたフラックスゲート型磁力計の例示信号と磁力計からの出力信号とを示す。
【図3B】従来技術による磁界測定装置に統合されたフラックスゲート型磁力計の例示信号と磁力計からの出力信号とを示す。
【図3C】従来技術による磁界測定装置に統合されたフラックスゲート型磁力計の例示信号と磁力計からの出力信号とを示す。
【図3D】従来技術による磁界測定装置に統合されたフラックスゲート型磁力計の例示信号と磁力計からの出力信号とを示す。
【図4】フラックスゲート型磁力計センサ、パルス励磁手段、及び、そのセンサの出力部にある改善されたサンプリング手段または検出手段を有する、本発明による磁界測定装置を示す。
【図5A】フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する、本発明による磁界測定装置の実施形態の第1例を示す。
【図5B】図5Aの装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【図6A】フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する、本発明による磁界測定装置の第2実施形態を示す。
【図6B】図6Aの装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【図7A】フラックスゲート型磁力計センサ及びそのセンサの出力部にある改善されたサンプリング手段を有する、本発明による磁界測定装置の第3実施形態を示す。
【図7B】図7Aの装置で採用された、前記磁気センサからの励磁信号と前記サンプリング手段の制御を示す。
【図8】本発明によるスレーブ動作磁界検出装置の例を示す。
【図9】パルス制御信号によって制御される手段によって送られるフィードバック信号を備える、本発明によるスレーブ動作磁界検出装置の他の例を示す。
【図10】図9の装置の動作のクロノグラムを示す。
【図11】前記磁気センサが入れられる磁界の変化速度に応じて前記磁気回路に向けて送られるパルスの繰り返しの周波数を調節する手段を備える、本発明によるスレーブ動作磁界測定装置の他の例を示す。
【図12】本発明によって採用される装置によって得られる測定信号を示す。
【符号の説明】
【0118】
100 磁気センサ
101 磁気回路
102 磁気コア
104 第1励磁巻線
106 第2励磁巻線
108 第1検出巻線
110 第2検出巻線
120 パルス発生器
130 サンプリング手段
140 増幅/フィルタリングステージ
210 磁気センサ
220 パルス発生器
230 サンプリング手段
232 アナログスイッチ
234 ルーパスフィルタ
235 抵抗器
236 キャパシタ
241 増幅器

【特許請求の範囲】
【請求項1】
少なくとも1つの磁気コア(102)と複数の巻線(104、106、108、110)とを備え、少なくとも1つの出力信号(S、S20)を送信することができる磁気センサ(100、210)と、
前記磁気センサの入力部に少なくとも1つの励磁信号(S、S10)を励磁パルスとして知られる一連のパルス(125、126、225、226、725、726)の形態で送信することができるパルス発生手段(120、220)と、
前記磁気センサ(100、210)の前記出力信号(S、S20)をサンプリングする手段(130、230、330、430)と、を含む、フラックスゲート型磁力計を備える磁界測定装置であって、
前記一連の励磁パルスのうちの少なくとも1つの励磁パルスの送信に続いて前記励磁パルスの継続期間に、前記サンプリング手段(130、230、330、430)によって前記磁気センサ(100、210)の前記出力信号(S)の少なくとも1つの収集を引き起こす手段をさらに含む磁界測定装置。
【請求項2】
前記励磁信号(S、S10)は、異符号の一連の励磁パルス(125、126、225、226、725、726)からなる、請求項1に記載の磁界測定装置。
【請求項3】
前記励磁パルス(125、126、225、226、725、726)は、それぞれ等しい継続期間及び/又は振幅を有する、請求項1または2に記載の磁界測定装置。
【請求項4】
前記励磁パルス(125、126、225、226、725、726)は、長方形状を有する、請求項1から3の何れか一項に記載の磁界測定装置。
【請求項5】
前記サンプリング手段(130、230、330、430)は、前記パルス発生手段(120、220)によって発生された、2つの状態を有する少なくとも1つのサンプリング制御信号(S、S31、S32、S33)によって制御される、請求項1から4の何れか一項に記載の磁界測定装置。
【請求項6】
前記サンプリング手段(130、230、330、430)は、前記励磁パルスの送信に続いて、前記パルスの継続期間より短い所定の期間中に、前記センサ(100、210)の出力部における信号(S、S20)の少なくとも1つの収集を実行することができ、
前記パルスの継続期間より短い所定の期間は、前記パルスの開始後の第1所定期間(θ)に位置する時刻と、前記励磁パルスの終了前の第2所定期間(θ)に位置する時刻との間にある、請求項1から5の何れか一項に記載の磁界測定装置。
【請求項7】
前記サンプリング手段(230)は、前記所定の期間中に前記磁気センサ(100、210)の出力信号(S、S20)の平均化または平滑化を実行することがさらにできる、請求項6に記載の磁界測定装置。
【請求項8】
平滑化として知られる信号は、前記出力信号の平均化または平滑化に続いて形成され、
前記サンプリング手段(230)は、前記所定の期間の後であって前記一連の励磁パルスの少なくとも1つの他の励磁パルスまで、前記平滑化信号を記憶することがさらにできる、請求項7に記載の磁界測定装置。
【請求項9】
前記サンプリング手段(230)は、アナログスイッチを形成する手段(232)を有する、請求項6から8の何れか一項に記載の磁界測定装置。
【請求項10】
前記サンプリング手段(230)は、ローパスフィルタを形成する手段(234)を有する、請求項6から9の何れか一項に記載の磁界測定装置。
【請求項11】
前記サンプリング手段は、前記励磁パルスの送信に続いて、前記励磁パルスの開始後であって終了前に位置する所定の時刻に、前記センサ(100、210)の出力信号(S、S20)の少なくとも1つの収集を実行することができる、請求項1から5の何れか一項に記載の磁界測定装置。
【請求項12】
前記所定の時刻は、前記励磁パルスの中央に位置する、請求項11に記載の磁界測定装置。
【請求項13】
前記サンプリング手段は、前記所定の時刻に前記センサ(210)の前記出力信号(S20)の記憶を実行することができる、請求項11または12に記載の磁界測定装置。
【請求項14】
前記サンプリング手段(130、330)は、少なくとも1つのサンプラーブロッカーを有する、請求項11から13の何れか一項に記載の磁界測定装置。
【請求項15】
前記サンプリング手段(430)は、前記所定の時刻に、前記センサの出力信号(S)のアナログデジタル変換を実行することがさらにできる、請求項12または13に記載の磁界測定装置。
【請求項16】
前記装置は、スレーブ動作を採用することができ、一本または数本のフィードバック巻線と、前記フィードバック巻線を対象とするフィードバック信号(S、S)を生成する手段(560、660、670)を備えるフィードバックループとを有する、請求項1から15の何れか一項に記載の磁界測定装置。
【請求項17】
フィードバック信号(S、S)を生成する前記手段は、少なくとも1つの積分器を形成する手段(560、660)を有する、請求項16に記載の磁界測定装置。
【請求項18】
フィードバック信号(S、S)を生成する前記手段は、2つの励磁パルスの間に、前記フィードバック信号(S、S)の前記振幅に関する情報を記憶する手段(660)を有する、請求項16または17に記載の磁界測定装置。
【請求項19】
フィードバック信号(S、S)を生成する前記手段は、フィードバック制御パルス(125、126、225、226)として知られる一連のパルスの形態で前記パルス発生手段(120、220)によって発生された少なくとも1つのフィードバック制御信号(S)によって制御される、請求項15から18の何れか一項に記載の磁界測定装置。
【請求項20】
前記磁気センサ(100、210)は、磁界中に入れられ、
前記装置は、所定の速度に従う、前記磁気センサ(100、210)が入れられる前記磁界の変化に続いて、前記所定の変化速度に応じて前記励磁信号(S、S10)の前記パルスの繰り返しの周波数を調節するための手段をさらに有する、請求項1から19の何れか一項に記載の磁界測定装置。
【請求項21】
少なくとも1つの磁気コア(102)と複数の巻線(104、106、108、110)とを備え、少なくとも1つの出力信号(S、S20)を送信することができる磁気センサ(210)と、
前記磁気センサの入力部に少なくとも1つの励磁信号(S、S10)を励磁パルス(125、126、225、226、725、726)として知られる一連のパルスの形態で送信することができるパルス発生手段(120、220)を含む、前記磁気コアを励磁する手段と、
前記磁気センサ(110、210)の前記出力信号(S、S20)をサンプリングする手段(130、230、330、430)と、を含む、フラックスゲート型磁力計を備える装置を用いる磁界測定方法であって、
(a)前記磁気センサの前記入力部に少なくとも1つの励磁パルスを送信する段階と、
(b)前記励磁パルスの送信に続いて、前記励磁パルスの継続時間に、前記サンプリング手段によって前記磁気センサの前記出力信号(S、S20)の少なくとも1つの収集を引き起こす段階と、からなる磁界測定方法。
【請求項22】
前記励磁信号(S、S10)は、異符号の幾つかの一連の励磁パルス(125、126、225、226、725、726)からなる、請求項21に記載の磁界測定方法。
【請求項23】
前記パルス(125、126、225、226、725、726)は、それぞれ等しい継続期間及び/又は振幅を有する、請求項20または21に記載の磁界測定方法。
【請求項24】
前記パルス(125、126、225、226、725、726)は、長方形状を有する、請求項21から23の何れか一項に記載の磁界測定方法。
【請求項25】
前記サンプリング手段は、前記パルス発生手段(120、220、420)によって発生された、2つの状態を有する少なくとも1つの制御信号(S、S31、S32、S33)によって制御される、請求項21から24の何れか一項に記載の磁界測定方法。
【請求項26】
前記所定の励磁パルスの送信に続いて、前記パルスの継続期間より短い所定の期間中に、前記センサ(210)の前記出力信号(S、S20)の少なくとも1つの収集を実行する段階をさらに含み、
前記パルスの継続期間より短い所定の期間は、前記パルスの開始後の第1所定期間(θ)に位置する時刻と、前記励磁パルスの終了前の第2所定期間(θ)に位置する時刻との間にある、請求項21から25の何れか一項に記載の磁界測定方法。
【請求項27】
前記所定の期間中に前記磁気センサの出力信号(S、S20)の平均化または平滑化を実行する段階をさらに含む、請求項26に記載の磁界測定方法。
【請求項28】
平滑化として知られる信号は、前記出力信号の平均化または平滑化に続いて形成され、
前記サンプリング手段は、前記所定の期間の後であって前記一連のパルスの少なくとも1つの他のパルスまで、前記平滑化信号を記憶することがさらにできる、請求項27に記載の磁界測定方法。
【請求項29】
前記パルスの送信に続いて、前記所定の励磁パルスの開始後であって終了前に位置する所定の時刻に、前記センサ(210)の出力信号(S、S20)の少なくとも1つの収集を実行する段階を含む、請求項21から25の何れか一項に記載の磁界測定方法。
【請求項30】
前記所定の時刻は、前記所定の励磁パルスの中央に位置する、請求項29に記載の磁界測定方法。
【請求項31】
前記所定の時刻に前記センサの前記出力信号(S、S20)の記憶を実行する段階を含む、請求項29または30に記載の磁界測定装置。
【請求項32】
前記所定の時刻に、前記センサの出力信号(S)のアナログデジタル変換を実行する段階を含む、請求項29または30に記載の磁界測定装置。
【請求項33】
一本または数本のフィードバック巻線と、前記フィードバック巻線を対象とするフィードバック信号(S、S)を生成する手段を備えるフィードバックループとを有し、
前記フィードバック信号(S、S)を生成する前記手段は、フィードバック制御パルス(125、126、225、226)として知られる一連のパルスの形態で前記パルス発生手段(120、220)によって発生された少なくとも1つのフィードバック制御信号(S)によって制御され、
前記段階(a)で送信される前記励磁パルスは、前記パルス発生手段によるフィードバック制御パルスの送信に続いて引き起こされる、請求項21から32の何れか一項に記載の磁界測定方法。
【請求項34】
前記段階(a)及び(b)は、前記フィードバック制御パルスの継続期間に行う、請求項32に記載の磁界測定方法。
【請求項35】
前記磁気センサ(100、200)が入れられる前記磁界の所定の速度変化に従う変化に続いて、前記所定の速度変化に応じて前記励磁信号(S、S10)の前記パルスの繰り返しの周波数の調節の段階を含む、請求項21から34の何れか一項に記載の磁界測定方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図1D】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図3D】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2007−199069(P2007−199069A)
【公開日】平成19年8月9日(2007.8.9)
【国際特許分類】
【外国語出願】
【出願番号】特願2007−15221(P2007−15221)
【出願日】平成19年1月25日(2007.1.25)
【出願人】(590000514)コミツサリア タ レネルジー アトミーク (429)
【Fターム(参考)】