説明

ビーム測定装置およびその測定方法、ビーム輸送システム

【課題】運動量分散関数を簡易に測定できるとともに所定値に補正を行う。
【解決手段】本発明のビーム測定装置は、荷電粒子を加速する加速器1から取り出した荷電粒子ビームbを、照射対象に照射する照射装置まで、輸送するビーム輸送ライン2における荷電粒子ビームbの位置の差分を運動量差で表す運動量分散関数Dx、Dzの測定を行うビーム測定装置であって、ビーム輸送ライン2の荷電粒子ビームbの軌道に入出可能であり、荷電粒子ビームbの軌道に入った際に荷電粒子ビームbを通過させて荷電粒子ビームbのエネルギを変更する微小エネルギ吸収体11と、微小エネルギ吸収体11による荷電粒子ビームbのエネルギの変更に基づき、ビーム輸送ライン2における荷電粒子ビームbの運動量分散関数Dx、Dzの測定を行う運動量分散関数測定手段8B、Sとを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、加速器科学に係り、より詳細には荷電粒子ビームが進む基準軌道との位置の差分を、運動量差を用いて表す運動量分散関数を求めるビーム測定装置およびその測定方法、ビーム輸送システムに関する。
【背景技術】
【0002】
加速器で加速された荷電粒子ビームを輸送するビームライン上には、そのビームラインの軌道と直交する平面上においてX座標(水平方向)とZ座標(鉛直方向)を設けると、基準となる運動量を持つ粒子が進む軌道と、その基準運動量(P)と僅かに異なる運動量(ΔP)を持った荷電粒子が進む軌道との、水平方向の位置の差分が存在し、その差分を運動量差を用いて表すための運動量分散関数(Dx)が存在する。ΔXを軌道の位置の差分とすると、運動量分散関数Dxを用いて下記の(1)式で表される。
ΔX=Dx(ΔP/P) (1)
【0003】
なお、前記(1)式では、水平方向(X)を表したが、鉛直方向(Z)の運動量分散関数Dzも同様に表される。運動量分散関数Dzは、方向が異なるだけで、運動量分散関数Dxと同様であるので、以下、運動量分散関数Dxについての説明を行い、運動量分散関数Dzについての説明は省略する。
【0004】
ビーム輸送ラインを通る荷電粒子ビームはその軌道と直交する平面上において有限の運動量の拡がりを持ち、(1)式より、運動量分散関数(Dx)が大きい場所ほど運動量の異なる粒子は、互いに離れた軌道、すなわちΔX離れた軌道を通る。
そのため、多くの加速器利用による素粒子実験や粒子線治療などの場合、ビーム輸送ラインの最下流にあるターゲット(試料や腫瘍など)へ荷電粒子ビームを照射する際、(1)式より、離れた軌道(ΔX)を解消して照射精度を高めるため、ターゲットの位置での運動量分散関数(Dx)は0にされることが求められる。
【0005】
このことより、従来あるビーム輸送ライン上での運動量分散関数(Dx)を測定する方法として、ビーム輸送ラインの上流にある加速器側でビームの運動量を変更することにより、ビームモニタなどを用いてビーム輸送ライン上でのそのビーム軌道と直交する平面上におけるビームの重心変化を測定して運動量分散関数(Dx)を求める方法がある。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】T. Furukawa, et al., “Optical matching of a slowly extracted beam with transport line”, Nuclear Instruments and Methods in Physics Research A 560 (2006) 191-196
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来のビーム輸送ライン上での運動量分散関数(Dx)の測定方法では、加速器でビームの運動量を変更するため、一回の測定に手間と時間がかかり、1点の測定点では決めることが困難な運動量分散関数(Dx)に対して、その測定、調整等を行うにしては大変不便であった。
例えば、ビームの重心変化の測定で数10分、加速器でのビームの運動量の変更などの補正で数時間もかかる現状にある。そのため、粒子のエネルギ変更、粒子の核種変更、定期的検査などで、1日3回調整を行うとすると、時間がかかり過ぎ、実用に耐えないものとなっている。
【0008】
本発明は上記実状に鑑み、運動量分散関数を簡易に測定できるとともに所定値に補正を行えるビーム測定装置およびその測定方法、ビーム輸送システムの提供を目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成すべく、第1の本発明に関わるビーム測定装置は、荷電粒子を加速する加速器から取り出した荷電粒子ビームを、照射対象に照射する照射装置まで、輸送するビーム輸送ラインにおける荷電粒子ビームの位置の差分を運動量差で表す運動量分散関数の測定を行うビーム測定装置であって、前記ビーム輸送ラインの前記荷電粒子ビームの軌道に入出可能であり、前記荷電粒子ビームの軌道に入った際に当該荷電粒子ビームを通過させて当該荷電粒子ビームのエネルギを変更する微小エネルギ吸収体と、該微小エネルギ吸収体による当該荷電粒子ビームのエネルギの変更に基づき、前記ビーム輸送ラインにおける当該荷電粒子ビームの運動量分散関数の測定を行う運動量分散関数測定手段とを備えている。
【0010】
第2の本発明に関わるビーム輸送システムは、荷電粒子を加速する加速器と、該加速器から取り出した荷電粒子ビームを照射装置まで輸送するビーム輸送ラインと、第1の本発明のビーム測定装置とを備えている。
【0011】
第3の本発明に関わるビーム測定装置の測定方法は、荷電粒子を加速する加速器から取り出した荷電粒子ビームを、照射対象に照射する照射装置まで、輸送するビーム輸送ラインにおける荷電粒子ビームの位置の差分を運動量差で表す運動量分散関数の測定を行うビーム測定装置の測定方法であって、前記ビーム測定装置は、前記荷電粒子ビームの軌道に入出できる微小エネルギ吸収体と運動量分散関数測定手段とを備え、前記微小エネルギ吸収体は、前記ビーム輸送ラインの前記荷電粒子ビームの軌道に入れられた際に、当該荷電粒子ビームを通過させることで当該荷電粒子ビームのエネルギを変更し、前記運動量分散関数測定手段は、前記微小エネルギ吸収体による当該荷電粒子ビームのエネルギの変更に基づき、前記ビーム輸送ラインにおける当該荷電粒子ビームの運動量分散関数の測定を行っている。
【発明の効果】
【0012】
本発明によれば、運動量分散関数を簡易に測定できるとともに所定値に補正を行えるビーム測定装置およびその測定方法、ビーム輸送システムを実現できる。
【図面の簡単な説明】
【0013】
【図1】本発明に係る実施形態のビーム測定装置を適用した典型的な粒子線照射装置を上方から見た概念図である。
【図2】実施形態のビーム輸送ラインにおける微小エネルギ吸収材入れ替え装置の内部構造を示す荷電粒子ビームの進行方向に沿った縦断面図である。
【図3】実施形態のビーム輸送ラインにおける荷電粒子ビームの運動量分布の変化を示す図である。
【図4】(a)は実施形態の荷電粒子ビームの基準運動量が変化した場合の第2のビームモニタで観測されるビームプロファイルの変化を表す図であり、(b)は荷電粒子ビームの基準運動量からの位置の差分ΔXを示す図である。
【図5】実施形態の荷電粒子ビームの運動量の変化ΔP/Pに対する荷電粒子ビームの重心の水平方向座標の変化ΔXを示す図である。
【図6】実施形態のビーム測定装置によるビーム輸送ラインの運動量分散関数の自動測定および運動量分散関数を許容値内に自動補正する制御の一例を示すフロー図である。
【図7】変形形態1の微小エネルギ吸収材入れ替え装置を示す斜視図である。
【図8】変形形態2の微小エネルギ吸収材入れ替え装置を示す斜視図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明に係る実施形態のビーム測定装置を適用した粒子線照射装置Tの概念図である。
粒子線照射装置(ビーム輸送システム)Tは、ビーム測定装置を適用した典型的な粒子線照射装置である。粒子線照射装置Tは、水素、ヘリウム、炭素イオンの原子核などの荷電粒子の粒子線を照射対象(ターゲット)の試料、患部などに所定線量照射する。
ここで、ビーム測定装置とは、荷電粒子が進む軌道においてその軌道と直交する平面上における荷電粒子の通過位置の差分を、運動量差を用いて表すための運動量分散関数(Dx、Dz)を求め、運動量分散関数Dx(Dz)を許容値Δx(Δz)内に自動補正する装置である。
【0015】
粒子線照射装置Tは、荷電粒子を高エネルギまで加速し荷電粒子ビームとして周回させるシンクロトロン1と、シンクロトロン1から取り出した荷電粒子ビームbを輸送するビーム輸送ライン2とを具備している。
なお、図1では、ビーム輸送ライン2の上流加速器としてシンクロトロン1を例に図示しているが、その他の円形加速器や線形加速器などであってもよい。
【0016】
<シンクロトロン1>
シンクロトロン1は、環状に構成され、荷電粒子ビームに付与する加速高周波電場の周期を粒子回転周期に同期させることにより、炭素の原子核などの荷電粒子を高エネルギまで加速する。そのため、シンクロトロン1は「加速器」に相当する。
【0017】
シンクロトロン1は、図示しない主要構成機器として、シンクロトロン1内の荷電粒子ビームに与える高周波電場を発生させる高周波加速空洞と、内部を進む荷電粒子ビームを周回軌道に保つための偏向電磁石と、周回軌道上における荷電粒子ビームを収束・発散させる収束用・発散用四極電磁石と、シンクロトロン1内の荷電粒子ビームのビームプロファイル、線量を測定するビームモニタと、当該荷電粒子ビームのベータトロン振動の三次共鳴を励起し、位相空間上で安定周回領域と共鳴領域を分割・形成するセパラトリクス生成用六極電磁石と、クロマティシティを調整するためのクロマティシティ補正用六極電磁石と、シンクロトロン1内を周回する荷電粒子ビームをビーム輸送ライン2に取り出す際にRF(Radio Frequency)−KO(Knockout)電圧を当該荷電粒子ビームに印加するRF−KO電極と、荷電粒子ビームをビーム輸送ライン2に向けて出射するためのデフレクタ電極3とを備えている。
【0018】
<ビーム輸送ライン2>
ビーム輸送ライン2は、シンクロトロン1で所定の速度に加速され取り出された荷電粒子ビームbを照射装置(図示せず)に輸送するラインであり、配管2hの下流には、照射室において照射対象に取り出した粒子線を照射する照射装置が接続されている。
ビーム輸送ライン2は、シンクロトロン1近くの配管2hの上流側から、ビーム測定装置を構成する微小エネルギ吸収材入れ替え装置10、ビーム輸送ライン2における荷電粒子ビームbを収束させる第1の収束用四極電磁石5A、当該ラインにおける荷電粒子ビームbを発散させる第1の発散用四極電磁石6A、当該荷電粒子ビームbの軌道補正用の第1のステアリング電磁石7A、荷電粒子ビームbのビームプロファイル、線量を測定する第1のビームモニタ8A、および、荷電粒子ビームbを所定方向に偏向させる偏向電磁石9を備えている。
【0019】
さらに、ビーム輸送ライン2は、偏向電磁石9の下流に、偏向電磁石9から出た荷電粒子ビームbを収束させる第2の収束用四極電磁石5B、偏向電磁石9から出た荷電粒子ビームbを発散させる第2の発散用四極電磁石6B、偏向電磁石9から出た荷電粒子ビームbの軌道補正用の第2のステアリング電磁石7B、偏向電磁石9から出た荷電粒子ビームbのビームプロファイル、線量を測定する第2のビームモニタ(運動量分散関数測定手段、自動測定制御手段)8Bを備えている。
【0020】
さらに、ビーム輸送ライン2は、第2のビームモニタ8Bの下流に、荷電粒子ビームbを収束させる第3の収束用四極電磁石5C、荷電粒子ビームbを発散させる第3の発散用四極電磁石6C、荷電粒子ビームbの軌道補正用の第3のステアリング電磁石7C、荷電粒子ビームbのビームプロファイル、線量を測定する第3のビームモニタ8Cを備えている。
上述の粒子線照射装置Tの制御は、図示しない制御手段によって行われる。制御手段は、コンピュータ、各種電源回路などで構成される。
【0021】
粒子線照射装置Tに適用されたビーム測定装置は、測定に際して荷電粒子ビームbのエネルギを変更する微小エネルギ吸収材入れ替え装置10と、荷電粒子ビームbのビームプロファイル、線量を測定する第2のビームモニタ8Bと、運動量分散関数Dx(Dz)の自動測定および運動量分散関数Dx(Dz)を許容値Δx(Δz)内に自動補正する制御を行う制御装置(運動量分散関数測定手段、自動測定制御手段、自動補正制御手段)Sと、運動量分散関数Dx(Dz)を許容値Δx(Δz)内に補正する第1の収束用・発散用四極電磁石5A、6Aとを有している。
【0022】
ビーム測定装置の制御装置Sは、コンピュータ、インターフェース回路、その他の回路などからなり、第2のビームモニタ8Bへの測定制御信号が出力されるとともに第2のビームモニタ8Bから測定を行った測定信号が入力される。また、微小エネルギ吸収材入れ替え装置10に、微小エネルギ吸収材11を出し入れする信号が、制御装置Sから送信される。さらに、該制御装置Sから、自動補正に用いられる収束・発散用四極電磁石5A、6Aを制御する制御回路(補正用電磁石制御手段)に制御信号が出力される。
その他、ビーム測定装置の制御に必要な信号が、制御装置Sに入出力される。
【0023】
<荷電粒子ビームのシンクロトロン1からの取り出しおよび取り出した荷電粒子ビームbのビーム輸送ライン2での輸送>
図1に示すシンクロトロン1内の周回軌道を図に於いて反時計方向に周回している多数の荷電粒子は、進行方向に垂直かつ水平方向(図1の紙面に平行方向:X軸方向)又は鉛直方向(図1の紙面に垂直方向:Z軸方向)に振動しながら周回している。この振動をベータトロン振動といい、ベータトロン振動は、シンクロトロン1内の収束・発散用四極電磁石などにより制御することができる。
シンクロトロン1内の粒子は、高周波加速空洞によって加速され最大エネルギに達する。その後、荷電粒子ビームにRF−KO電極でRF−KO電圧による電場を印加することによりベータトロン振幅を増大させる。そして、シンクロトロン1内で周回している多数の荷電粒子の一部を、デフレクタ電極3を用いて、ビーム輸送ライン2へ向けて出射させる。
【0024】
シンクロトロン1から取り出された荷電粒子ビームbは、ビーム輸送ライン2を収束用四極電磁石(5A、5B、5C)、発散用四極電磁石(6A、6B、6C)で収束、発散が行われるとともに、偏向電磁石9で所定の方向に軌道が偏向され、ステアリング電磁石(7A、7B、7C)で軌道補正が行われる。そして、図示しない照射装置から照射対象(ターゲット)に対して、照射対象の所定位置に所定線量の荷電粒子ビームbの照射が行われる。
なお、ビーム輸送ライン2における荷電粒子ビームbのビームプロファイル、線量は、ビームモニタ(8A、8B、8C)でそれぞれ測定される。
【0025】
<微小エネルギ吸収材入れ替え装置10>
次に、ビーム輸送ライン2に設けられる微小エネルギ吸収材入れ替え装置10について説明する。
図2は、ビーム輸送ライン2における微小エネルギ吸収材入れ替え装置10の内部構造を示す荷電粒子ビームbの進行方向に沿った縦断面図である。
微小エネルギ吸収材入れ替え装置10は、荷電粒子ビームbの運動量を基準運動量Pから変化させ、(1)式で表される運動量分散関数Dx、Dzを求めるためのものである。
そのため、微小エネルギ吸収材入れ替え装置10は、荷電粒子ビームbを透過させて、荷電粒子ビームbの基準運動量Pからの運動量差ΔPを与えるための出し入れ可能な板状のプラスチック薄膜などの微小エネルギ吸収材11(11a、11b、11c、11d、11e)を有している。
【0026】
つまり、ビーム輸送ライン2の荷電粒子ビームbの運動量分散関数Dx、Dzの測定を、荷電粒子ビームbをビーム輸送ライン2に設けた微小エネルギ吸収材入れ替え装置10のビーム軌道上に突出している微小エネルギ吸収材11を通過させ、荷電粒子ビームbの運動量を変化(ΔP)させることにより、簡易に測定可能としている。
微小エネルギ吸収材11を有する微小エネルギ吸収材入れ替え装置10は、運動量分散関数Dx、Dzの測定に際して、ビーム輸送ライン2の荷電粒子ビームbのビームプロファイル、線量の測定を行うビームモニタ(8A、8B、8C)の何れかのビームモニタより上流、かつ、補正に用いる収束・発散用四極電磁石(5A、5B、5C、6A、6B、6C)の何れかの四極電磁石よりも上流に配置する必要がある。補正に用いる収束・発散用四極電磁石(5A、5B、5C、6A、6B、6C)は、何れでもよいが、通常は、例えば、収束・発散用四極電磁石の1組または収束・発散用四極電磁石の何れか一つが使用される。
【0027】
各微小エネルギ吸収材11は、実際の荷電粒子ビームbの照射装置から照射対象(ターゲット)への照射時には、図2に示す待機位置Paに位置する。そして、運動量分散関数Dx、Dzを測定する際に、図2中の実線で示す荷電粒子ビームbの軌道上の測定位置Pbに移動し、荷電粒子ビームbを透過させ、そのエネルギ(運動量)を変更する。
そのため、各微小エネルギ吸収材11は、待機位置Paと測定位置Pbとの間を、図示しない油圧シリンダ、モータなどの駆動装置、駆動機構を用いて移動自在に構成されている。
【0028】
各微小エネルギ吸収材11としては、例えば、プラスチック薄膜の場合だと、ポリエチレンやポリプロピレンなどを用いた、又は、主成分としたものが使用される。その他、薄膜ガラス(シリカエアロゲルなどを含む)やアクリル樹脂なども利用可能である。ただし、原理的には微小エネルギ吸収材11として利用可能な材質は多数あり、限定されるものではない。
各微小エネルギ吸収材11の厚さは、例えば、0.3mm厚など数百μm厚である。しかし、各微小エネルギ吸収材11の厚さ寸法は任意に選定できる。このように、各微小エネルギ吸収材11(11a、11b、11c、11d、11e)の厚さ、材料は任意に選択可能である。すなわち、各微小エネルギ吸収材11(11a、11b、11c、11d、11e)は、同じまたは異なる材料、および/または、同じまたは異なる厚さをとることが可能である。
【0029】
微小エネルギ吸収材11は、複数枚あるのが望ましいが1枚でもよく、任意である。また、複数枚ある場合、その材質、厚さはそれぞれ異なってもよいし、同じであってもよい。
例えば、ビーム輸送ライン2の荷電粒子ビームbの軌道に、微小エネルギ吸収材11aを図2に示すように1枚配置する、微小エネルギ吸収材11a、11bを2枚配置する、微小エネルギ吸収材11a、11b、11cを3枚配置する、微小エネルギ吸収材11a、11b、11c、11dを4枚配置する、微小エネルギ吸収材11a、11b、11c、11d、11eを5枚配置することで、微小エネルギ吸収材11が同じ材質、同じ厚さの場合、5通りの運動量の変化ΔPが可能である。
【0030】
なお、図2に示す微小エネルギ吸収材入れ替え装置10の微小エネルギ吸収材11(11a、11b、11c、11d、11e)は直線運動により、ビーム輸送ライン2の荷電粒子ビームbの軌道に入出させる構成を例示したが、各微小エネルギ吸収材11(11a、11b、11c、11d、11e)を独立に回転運動させ、ビーム輸送ライン2の荷電粒子ビームbの軌道に入出させてもよい。
【0031】
<荷電粒子ビームbの運動量変化ΔPとその密度変化>
図3はビーム輸送ライン2における荷電粒子ビームbの運動量分布の変化を示す図であり、横軸はΔP(運動量の変化)/P(基準運動量)をとり、縦軸は荷電粒子ビームbの密度をとっている。
図3において、荷電粒子ビームbを微小エネルギ吸収材11に透過させない場合、すなわち荷電粒子ビームbが基準運動量Pの場合を破線で示し、荷電粒子ビームbを微小エネルギ吸収材11に透過させる場合、すなわち荷電粒子ビームbの基準運動量Pを変化(ΔP)させた場合を実線で示している。
【0032】
例えば、図2の実線で示す荷電粒子ビームbの軌道に挿入された微小エネルギ吸収材11aを通過した荷電粒子ビームbはそのエネルギ(運動量)を僅かに失い、図3に示すように、荷電粒子ビームbの基準運動量PがΔP変化する。この運動量の変化ΔPにより、第2のビームモニタ8Bで観測される荷電粒子ビームbの重心も基準運動量Pから運動量がΔP変化したところに変化する(図3の破線のグラフから実線のグラフへの変化)。
図4(a)は荷電粒子ビームbの基準運動量PがΔP変化した場合の第2のビームモニタ8Bで観測される水平方向のビームプロファイルの変化を表す図であり、横軸は水平方向位置Xをとり、縦軸は荷電粒子ビームbの密度をとっている。なお、図4(a)中に書かれている前記のDxは水平方向の運動量分散関数である。図4(b)は、荷電粒子ビームbの基準運動量Pからの位置の差分ΔXを示す図であり、X座標は水平方向の座標であり、Z座標は鉛直方向の座標である。なお、図4(b)中の破線の矢印は基準運動量Pの荷電粒子ビームbの軌道(X=0)を示し、実線の矢印は基準運動量Pの軌道(X=0)からの差分ΔXをもつ荷電粒子ビームbの軌道を示している。
【0033】
図4(a)において、荷電粒子ビームbを微小エネルギ吸収材11aに透過させない場合、すなわち荷電粒子ビームbが基準運動量Pの場合を破線で示し、荷電粒子ビームbを微小エネルギ吸収材11aに透過させる場合、すなわち荷電粒子ビームbの基準運動量Pを変化(ΔP)させた場合を実線で示している。
図4(a)におけるX=0(図4(b)参照)からの位置の差分が、(1)式のΔX(図4(b)参照)に相当する。従って、ビーム輸送ライン2における所定位置のΔXはビームモニタ(8A、8B、8C)で測定できる。
一方、荷電粒子ビームbの基準運動量Pは、シンクロトロン1で任意に設定できるものである。
【0034】
荷電粒子ビームbを微小エネルギ吸収材11aに透過させた場合(図4(a)中の実線のグラフ)、微小エネルギ吸収材11aによる散乱を受けるため、荷電粒子ビームbを微小エネルギ吸収材11aに透過させない場合(図4(a)中の破線のグラフ)に比べ、荷電粒子ビームbの分布は僅かに広がる。
図4(a)から分かるように、基準運動量Pからの変化ΔPが0の場合または水平方向の運動量分散関数Dxが0の場合、基準運動量PでのX座標(水平方向位置)が荷電粒子ビームbの重心となる。
【0035】
したがって、運動量分散関数Dx(Dz)を、収束用四極電磁石(5A、5B、5C)、発散用四極電磁石(6A、6B、6C)を調整することで、0とできれば、荷電粒子ビームbに運動量の変化ΔPがあった場合も、荷電粒子ビームbの基準運動量PでのX(Z)座標位置が、荷電粒子ビームbの重心となり、ビーム輸送ライン2に接続される照射装置からの荷電粒子ビームbの照射対象(ターゲット)への照射が荷電粒子ビームbの運動量の変化ΔPや拡がりに拘らず、正確に行える。
【0036】
或いは、ビーム輸送ライン2における運動量分散関数Dx(Dz)の値を求めることで、荷電粒子ビームbの基準運動量Pに対する運動量の変化ΔPに対する荷電粒子ビームbの重心の水平方向のズレ(ΔXに相当)(鉛直方向のズレ(ΔZに相当))が求められるので、ビーム輸送ライン2に接続される照射装置からの荷電粒子ビームbの照射対象(ターゲット)への照射が、荷電粒子ビームbの基準運動量Pに対する運動量の変化ΔPや拡がりを把握することで、正確に行える。
【0037】
図5は、荷電粒子ビームbの運動量の変化ΔP/Pに対する荷電粒子ビームbの重心の水平方向座標Xの変化ΔXを示す図である。
図5の直線のグラフの傾きがDxであるので、図5の直線のグラフを求めることで、Dxの値を求めることができる。
すなわち、ビーム輸送ライン2における荷電粒子ビームbを異なる微小エネルギ吸収材11を透過させることで基準運動量Pを変化(ΔP)させ、図5における異なるプロット点が求められる。各プロット点にはビームモニタの測定誤差や複数回測定による統計誤差により誤差棒が付く。
そして、図5における誤差棒付きプロット点を内挿、外挿することで、図5の直線のグラフが求められ、この直線の傾きから、(1)式の運動量分散関数Dx(Dz)が求められる。
【0038】
<運動量分散関数Dx(Dz)の自動測定および運動量分散関数Dx(Dz)を許容値Δx(Δz)内に自動補正する制御>
次に、粒子線照射装置Tに搭載したビーム測定装置によるビーム輸送ライン2の運動量分散関数Dx(Dz)の自動測定および運動量分散関数Dx(Dz)を許容値Δx(Δz)内に自動補正する制御について説明する。
なお、ビーム輸送ライン2の水平方向の運動量分散関数Dxを許容値Δx内に補正するものとする制御について説明するが、鉛直方向(Z方向)の運動量分散関数Dzを許容値Δz内に補正する制御も同様で同時に行えるので、鉛直方向(Z方向)についての説明は省略する。なお、許容値Δxと許容値Δzは同じ値としてもよいし、異なる値としてもよい。
【0039】
図6は、ビーム測定装置によるビーム輸送ライン2の運動量分散関数Dxの自動測定および運動量分散関数Dxを許容値Δx内に自動補正する制御の一例を示すフロー図である。
図6に例示したフローチャートでは、図2に示す複数枚の板状の微小エネルギ吸収材11を仮定している。なお、微小エネルギ吸収材11(11a、11b、11c、11d、11e)は、同じ材質、同じ厚さとする。
自動補正時の|Dx|の目標値(許容値Δx)は、ビーム利用条件や測定に用いるビームモニタ(8A、8B、8C)の何れかのビームモニタの測定精度等によって決定される。ここでは、測定に第2のビームモニタ8Bを用いることとする。
【0040】
自動補正に用いられる四極電磁石は、ビーム輸送ライン2上にある収束・発散用四極電磁石(5A、5B、5C、6A、6B、6C)のうちの補正セクションの1台、ないしは、2台の四極電磁石である。本実施形態では、第1の収束・発散用四極電磁石5A、6Aにより自動補正が行われることとする。
ここで、本制御は、前記のビーム測定装置の制御装置Sによって、行われる。
運動量分散関数Dxの自動測定およびDxを許容値Δx内に自動補正する制御の前に、理論値に基づいて、収束・発散用四極電磁石(5A、5B、5C、6A、6B、6C)の大まかな設定が行われる。
【0041】
そして、図6のフローにより、自動補正に用いる収束・発散用四極電磁石5A、6Aそれぞれへの電流値が、運動量分散関数Dx(Dz)を所定値にするため自動調整される。
運動量分散関数Dx(Dz)の自動測定および運動量分散関数Dx(Dz)を許容値Δx(Δz)内に自動補正する制御は、以下のように行われる。
まず、ユーザによって、図示しないPC(Personal Computer)などの端末装置を用いて微小エネルギ吸収材11の使用枚数がNに入力される(図6のS101)。ここで、“N”は、微小エネルギ吸収材11が同じ材質、同じ厚さの場合、微小エネルギ吸収材11の枚数が入力される。例えば、図2の例では、“5”が入力される。
【0042】
枚数“N”は、微小エネルギ吸収材11が、例示した以外の同じ厚さ、異なる材質の場合、または異なる厚さ、同じ材質の場合、または異なる厚さ、異なる材質の場合、微小エネルギ吸収材11を組み合わせることにより、微小エネルギ吸収材11の異なる組み合わせが得られる。そのため、これらの場合、“N”はこの異なる微小エネルギ吸収材11の組み合わせの数としてもよい。或いは、測定点のバラツキを加味して、“N”を上記で決定した値以下の範囲で適宜選定するように構成することも可能である。
なお、“N”は、制御装置Sにおいて、初期設定してもよいし、必要な情報、例えば、各微小エネルギ吸収材11の材質、厚さなどを取得して自動設定することとしてもよい。
【0043】
続いて、測定に用いられる第2のビームモニタ8Bの電源がオンされ、第2のビームモニタ8Bによる線量の測定準備がなされる(S102)。そして、シンクロトロン1のデフレクタ電極3などが制御され、ビーム輸送ライン2に荷電粒子ビームbが取り出される(S103)。
そして、ビーム測定装置の制御装置Sにおいて、カウント変数nに0が設定され(S104)、ビーム測定装置の制御装置Sは、n>Nか否か判定する(S105)。
【0044】
S105において、n>Nでないと判定された場合(S105でNo)、つまり、図5に示す所定数のプロット点が集まってない場合には、図2に示すように、微小エネルギ吸収材11のn枚目が荷電粒子ビームbの軌道に挿入される。図2の例では、微小エネルギ吸収材11の1枚目の微小エネルギ吸収材11aが荷電粒子ビームbの軌道に挿入された状態を示している。例えば、n=3枚目の場合には、微小エネルギ吸収材11a、11bに加えて、3枚目の微小エネルギ吸収材11cが荷電粒子ビームbの軌道に挿入される(S106)。なお、“N”が微小エネルギ吸収材11の組み合わせで決定された場合、組み合わせ“n”番目の微小エネルギ吸収材11の組み合わせが荷電粒子ビームbの軌道に挿入される。
【0045】
続いて、第2のビームモニタ8Bで荷電粒子ビームbのビームプロファイルの測定がなされ(S107)、ビーム輸送ライン2の荷電粒子ビームbの重心計算(重心の位置を求める計算)が行われる(S108)。荷電粒子ビームbの重心計算は、第2のビームモニタ8Bで行ってもよいし、ビーム測定装置の制御装置Sで行うこととしてもよい。
続いて、ビーム測定装置の制御装置Sで、n=n+1の演算がなされ(S109)、S105に移行する。
【0046】
一方、図6のS105において、n>Nであると判定された場合(S105でYes)、つまり、図5に示す所定数のプロット点が集まった場合には、ビーム測定装置の制御装置Sで運動量分散関数Dxを求める演算が行われる。すなわち、微小エネルギ吸収材11を用いて、ビーム輸送ライン2の運動量を変化させて求めた所定数のプロット点(図5参照)から、ΔXの直線の(1)式を求め、該直線の傾き(Dx)を求める演算を行う(S110)。
続いて、ビーム測定装置の制御装置Sにおいて、第1の収束・発散用四極電磁石5A、6Aの自動補正が行われるか否か判定される(S111)。なお、自動補正が行われるか否かはユーザが測定前に端末装置で入力し設定するように構成してもよいし、予めシステムに設定されるように構成してもよい。
【0047】
S111において、第1の収束・発散用四極電磁石5A、6Aの自動補正が行われないと判定された場合(S111でNo)、ビーム輸送ライン2の荷電粒子ビームbの軌道に入れた微小エネルギ吸収材入れ替え装置10の微小エネルギ吸収材11、第2のビームモニタ8Bなどを引き抜くように制御する(S112)。そして、ビーム輸送ライン2への荷電粒子ビームbの出射をオフし(S113)、終了する。
一方、図6のS111において、第1の収束・発散用四極電磁石5A、6Aの自動補正が行われると判定された場合(S111でYes)、ビーム測定装置の制御装置Sにおいて、|Dx|<Δx(許容値)であるか否か判定がなされる(S114)。
【0048】
S114で、|Dx|<Δxでないと判定された場合(S114でNo)、|Dx|<Δxとなるように、比例制御や積分制御との組み合わせなどのフィードバック演算が行われる(S115)。なお、フィードバック演算のやり方は任意であることは勿論である。
そして、S115のフィードバック演算の結果により、第1の収束・発散用四極電磁石5A、6Aの電流値が変更され(S116)、S104に移行する。
【0049】
S114において、|Dx|<Δxであると判定された場合(S114でYes)、ビーム輸送ライン2の荷電粒子ビームbの軌道に入れた微小エネルギ吸収材入れ替え装置10の微小エネルギ吸収材11、第2のビームモニタ8Bなどを引き抜くように制御する(S117)。そして、ビーム輸送ライン2への荷電粒子ビームbの出射をオフし(S118)、終了する。
以上が、図6に示すビーム測定装置によるビーム輸送ライン2の運動量分散関数Dxの自動測定および運動量分散関数Dxを許容値(Δx)内に自動補正する制御のフローである。
【0050】
なお、上記例では、水平方向の運動量分散関数Dxを許容値内に自動補正する制御を説明したが、鉛直方向(Z方向)の運動量分散関数Dzを許容値内に自動補正する制御を同時に行ってもよく、或いは、水平方向(X方向)の運動量分散関数Dxを許容値内に自動補正する制御または鉛直方向(Z方向)の運動量分散関数Dzを許容値内に自動補正する制御の何れかを行うように制御してもよい。
また、上記例では、|Dx|<Δx(許容値)とする場合を例示したが、|Dx|≦Δx(許容値)(|Dz|≦Δz(許容値))または|Dx|=所定値(|Dz|=所定値)または|Dx|=0(|Dz|=0)とするように制御してもよい。|Dx|=0(|Dz|=0)の場合、(1)式から分かるように、運動量差(ΔP)の値に係わらず、ΔXが0であるので、より望ましい。
【0051】
上記構成によれば、従来の方法では手間がかかり大変不便であったビーム輸送ライン2での運動量分散関数Dx(Dz)の測定において、ビーム輸送ライン2上に設けた出し入れ可能な複数枚の微小エネルギ吸収材11を用いて、通過する荷電粒子ビームbの運動量を変化させ、ビームモニタ8Bなどを用いてビーム輸送ライン2上での荷電粒子ビームbの重心の変化を測定し、簡易に素早く運動量分散関数Dx(Dz)を測定可能としている。
【0052】
本構成では、運動量分散関数Dx(Dz)の測定時以外は微小エネルギ吸収材11をビーム輸送ライン2外に引き抜くことで、運動量分散関数Dx(Dz)の測定状態と通常出射状態とを素早く切り換えることも可能である。そのため、微小エネルギ吸収材11を用いることで、従来の方法による運動量の変更と同様の効果を容易かつ簡単に得られる。
また、1点の測定点(運動量差)では決めることが困難な運動量分散関数Dx(Dz)であるが、複数枚の微小エネルギ吸収材11を用いることで、上流のシンクロトロン1(加速器)から荷電粒子ビームbを出射しながら、ビーム輸送ライン2のビームモニタ8Bによる重心計算(重心の位置を求める計算)によって多数点の測定を行うこともでき、測定の高速化が可能となる。
【0053】
さらに、測定作業のルーチン化が非常に簡単であるため、ビームモニタ8Bによる重心計算と併せたそれらのコンピュータ制御による自動化も容易に行えるという利点があり、非常に高速化したビーム輸送ライン2上の運動量分散関数Dx(Dz)の測定を行うことが可能となる。
加えて、その測定結果から、荷電粒子ビームbを照射する照射対称(ターゲット)位置での運動量分散関数Dx(Dz)を所定値未満または以下、或いは、所定値または0にするというような補正を自動で行える制御機能と、収束・発散用四極電磁石5A、6A、5B、6B、5C、6Cの何れかの自動補正セクションとを、ビーム輸送ライン2に付加することも可能となる。
【0054】
<変形形態1の微小エネルギ吸収材入れ替え装置20>
次に、変形形態1の微小エネルギ吸収材入れ替え装置20について、図7を用いて説明する。図7は、変形形態1の微小エネルギ吸収材入れ替え装置20を示す斜視図である。
変形形態1の微小エネルギ吸収材入れ替え装置20は、前記実施形態の微小エネルギ吸収材11を、回転する微小エネルギ吸収回転体21としたものである。
【0055】
変形形態1の微小エネルギ吸収材入れ替え装置20は、厚さおよび/または材質がそれぞれ異なる第1微小エネルギ吸収回転面体21Aおよび第2微小エネルギ吸収回転面体21Bおよび第3微小エネルギ吸収回転面体21Cと、荷電粒子ビームbをそのまま通過させる空隙21pを形成する切り欠き部21Sとを有した微小エネルギ吸収回転体21を備え、回転自在に支持されている。
微小エネルギ吸収回転体21は、図示しないステッピングモータ等の回転駆動機構で所定角度回転(図7の矢印α1)されることで、第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cまたは切り欠き部21Sの空隙21pの何れかが、それぞれビーム輸送ライン2を通る荷電粒子ビームbに略垂直に対向するように、すなわち荷電粒子ビームbの軌道上に配置される。
【0056】
例えば、図7は、微小エネルギ吸収回転体21が回転されることで、ビーム輸送ライン2を通る荷電粒子ビームbに、微小エネルギ吸収回転体21の切り欠き部21Sの空隙21pが配置され、荷電粒子ビームbが微小エネルギ吸収回転体21の切り欠き部21Sの空隙21pを通過する状態を図示している。
図7では、微小エネルギ吸収回転体21の第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cそれぞれは、前記の微小エネルギ吸収材11と同様な材料で形成され、それぞれ厚みが変えられ、ビーム輸送ライン2を通る荷電粒子ビームbがそれぞれを通過することでエネルギ(運動量)が変わる場合を例示している。
【0057】
なお、前記したように、微小エネルギ吸収回転体21の第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cは同じ厚さとし、それぞれ異なる材料で構成してもよい。また、微小エネルギ吸収回転体21の第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cは、それぞれ異なる厚さとし、異なる材料で構成してもよい。
【0058】
変形形態1の微小エネルギ吸収材入れ替え装置20によれば、第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cと切り欠き部21Sの空隙21pとを有する微小エネルギ吸収回転体21を回転させ、ビーム輸送ライン2の荷電粒子ビームbを通過させ、そのエネルギ(運動量)を変えるので、荷電粒子ビームbのエネルギ(運動量)の変更が容易かつ円滑に行える。また、微小エネルギ吸収材入れ替え装置20の保守も容易である。
【0059】
なお、微小エネルギ吸収回転体21は、第1・第2・第3微小エネルギ吸収回転面体21A、21B、21Cと切り欠き部21Sの空隙21pとを有し、それぞれをビーム輸送ライン2の荷電粒子ビームbが通過することで、エネルギ(運動量)を3段階に変える場合を例示したが、微小エネルギ吸収回転体21を第1微小エネルギ吸収回転面体21Aと切り欠き部21Sとで構成して、ビーム輸送ライン2の荷電粒子ビームbのエネルギ(運動量)を1段階に変えるように構成してもよいし、或いは、微小エネルギ吸収回転体21を第1・第2微小エネルギ吸収回転面体21A、21Bと切り欠き部21Sとで構成し、ビーム輸送ライン2の荷電粒子ビームbのエネルギ(運動量)を2段階に変えるように構成してもよいし、或いは、微小エネルギ吸収回転体21でビーム輸送ライン2の荷電粒子ビームbのエネルギ(運動量)を4、5、6、…段階に変えるように構成してもよい。
このように、微小エネルギ吸収回転体21でビーム輸送ライン2の荷電粒子ビームbのエネルギ(運動量)を変える段階数は、任意に選択できるのは勿論である。
【0060】
<変形形態2の微小エネルギ吸収材入れ替え装置30>
次に、変形形態2の微小エネルギ吸収材入れ替え装置30について、図8を用いて説明する。図8は、変形形態2の微小エネルギ吸収材入れ替え装置30を示す斜視図である。
変形形態2の微小エネルギ吸収材入れ替え装置30は、上記の変形形態1の微小エネルギ吸収材入れ替え装置20の微小エネルギ吸収回転体21を、複数並設した微小エネルギ吸収回転体31、32、……で構成し、ビーム輸送ライン2の荷電粒子ビームbのエネルギ(運動量)の変更数を増加させる構成である。
【0061】
変形形態2の微小エネルギ吸収材入れ替え装置30は、厚さおよび/または材質がそれぞれ同じまたは異なる第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cと荷電粒子ビームbをそのまま通過させる空隙31pを形成する切り欠き部31Sとを有した微小エネルギ吸収回転体31と、厚さおよび/または材質がそれぞれ同じまたは異なる第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cと荷電粒子ビームbをそのまま通過させる空隙32pを形成する切り欠き部32Sとを有した微小エネルギ吸収回転体32と、厚さおよび/または材質がそれぞれ同じまたは異なる第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cと荷電粒子ビームbをそのまま通過させる空隙33pを形成する切り欠き部33Sとを有した微小エネルギ吸収回転体33とを備え、それぞれ回転自在に支持されている。
【0062】
例えば、微小エネルギ吸収回転体31の第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cは、前記実施形態の微小エネルギ吸収材11と同様な材料で形成され、それぞれ厚みが変えられ、ビーム輸送ライン2を通る荷電粒子ビームbがそれぞれを通過することでエネルギ(運動量)が変わるように構成されている。
同様に、微小エネルギ吸収回転体32の第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cは、前記実施形態の微小エネルギ吸収材11と同様な材料で形成され、それぞれ厚みが変えられ、ビーム輸送ライン2を通る荷電粒子ビームbがそれぞれを通過することでエネルギ(運動量)が変わるように構成されている。
【0063】
同様に、微小エネルギ吸収回転体33の第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cは、前記実施形態の微小エネルギ吸収材11と同様な材料で形成され、それぞれ厚みが変えられ、ビーム輸送ライン2を通る荷電粒子ビームbがそれぞれを通過することでエネルギ(運動量)が変わるように構成されている。
【0064】
或いは、微小エネルギ吸収回転体31の第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cは、それぞれ異なる材料または同じ厚さで構成してもよい。また、微小エネルギ吸収回転体32の第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cは、それぞれ異なる材料または同じ厚さで構成してもよい。また、微小エネルギ吸収回転体33の第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cは、それぞれ異なる材料または同じ厚さで構成してもよい。
【0065】
微小エネルギ吸収回転体31は、図示しないステッピングモータ等の回転駆動機構で所定角度(図8の矢印α2)回転されることで、第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cおよび切り欠き部31Sの空隙31pが、それぞれビーム輸送ライン2を通る荷電粒子ビームbに略垂直に対向するように、すなわち荷電粒子ビームbの軌道上に配置される。
【0066】
同様に、微小エネルギ吸収回転体32は、図示しないステッピングモータ等の回転駆動機構で所定角度(図8の矢印α3)回転されることで、第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cおよび切り欠き部32Sの空隙32pが、それぞれビーム輸送ライン2を通る荷電粒子ビームbに略垂直に対向するように、すなわち荷電粒子ビームbの軌道上に配置される。
【0067】
同様に、微小エネルギ吸収回転体33は、図示しないステッピングモータ等の回転駆動機構で所定角度(図8の矢印α4)回転されることで、第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cおよび切り欠き部33Sの空隙33pが、それぞれビーム輸送ライン2を通る荷電粒子ビームbに略垂直に対向するように、すなわち荷電粒子ビームbの軌道上に配置される。
【0068】
同様に、これら以外に他の微小エネルギ吸収回転体が設けられた場合にも、ステッピングモータ等で所定角度回転されることで、第1・第2・第3微小エネルギ吸収回転面体および切り欠き部の空隙が、それぞれビーム輸送ライン2を通る荷電粒子ビームbに略垂直に対向するように、すなわち荷電粒子ビームbの軌道上に配置される。
【0069】
本構成により、ビーム輸送ライン2を通る荷電粒子ビームbに対して、微小エネルギ吸収回転体31の第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cおよび切り欠き部31Sの空隙31pの何れか、および、微小エネルギ吸収回転体32の第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cおよび切り欠き部32Sの空隙32pの何れか、および、微小エネルギ吸収回転体33の第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cおよび切り欠き部33Sの空隙33pの何れかを、略垂直に対向、すなわち荷電粒子ビームbの軌道上に配置させる。
【0070】
これにより、荷電粒子ビームbを、微小エネルギ吸収回転体31の第1・第2・第3微小エネルギ吸収回転面体31A、31B、31Cおよび切り欠き部31Sの空隙31pの何れか、および、微小エネルギ吸収回転体32の第1・第2・第3微小エネルギ吸収回転面体32A、32B、32Cおよび切り欠き部32Sの空隙32pの何れか、および、微小エネルギ吸収回転体33の第1・第2・第3微小エネルギ吸収回転面体33A、33B、33Cおよび切り欠き部33Sの空隙33pの何れか組み合わせを通過させ、該組み合わせの数で荷電粒子ビームbのエネルギ(運動量)の変更することができる。
【0071】
なお、図8においては、ビーム輸送ライン2を通る荷電粒子ビームbに、微小エネルギ吸収回転体31の切り欠き部31Sの空隙31pおよび微小エネルギ吸収回転体32の切り欠き部32Sの空隙32pおよび微小エネルギ吸収回転体33の切り欠き部33Sの空隙33pが配置され、荷電粒子ビームbが、微小エネルギ吸収回転体31、32、33の切り欠き部31Sの空隙31、切り欠き部32Sの空隙32p、切り欠き部33Sの空隙33pを通過する状態を図示している。
【0072】
変形形態2の微小エネルギ吸収材入れ替え装置30によれば、第1・第2・第3微小エネルギ吸収回転体31、32、33の何れかを組み合わせ、ビーム輸送ライン2の荷電粒子ビームbを通過させ、そのエネルギ(運動量)を変えるので、荷電粒子ビームbのエネルギ(運動量)の変更が数多くでき、かつ、選択する幅が広がる。また、荷電粒子ビームbのエネルギ(運動量)の変更が容易かつ円滑に行える。
【0073】
なお、各微小エネルギ吸収回転体31、32、33は、第1・第2・第3微小エネルギ吸収回転面体と切り欠き部とを有し、それぞれをビーム輸送ライン2の荷電粒子ビームbが通過することで、エネルギ(運動量)をそれぞれ3段階に変える場合を例示したが、各微小エネルギ吸収回転体31、32、33のそれぞれの通過する荷電粒子ビームbのエネルギ(運動量)を変化させる数は、自然数(正の整数)に適宜選択できる。
【0074】
例えば、微小エネルギ吸収回転体31は2段階に変更し、微小エネルギ吸収回転体32は6段階に変更し、微小エネルギ吸収回転体33は5段階に変更するように構成してもよい。
このように、微小エネルギ吸収回転体の微小エネルギ吸収回転面体の段階数はそれぞれで適宜任意に選択できる。
【0075】
さらに、微小エネルギ吸収材入れ替え装置30に設ける微小エネルギ吸収回転体の数も任意に選択できる。例えば、微小エネルギ吸収材入れ替え装置30に設ける微小エネルギ吸収回転体を2つにしてもよいし、6つにしてもよいし、7つ、…にしてもよい。
なお、前記実施形態、変形形態では、様々な構成を説明したが、適宜組み合わせて構成することも可能である。
【0076】
以上、本発明の様々な実施形態を述べたが、その説明は限定的というよりは典型的であることを意図したものである。そして、本発明の範囲内でより多くの形態と実施が可能であることは、当業者にとって明らかである。従って、本発明は、添付の特許請求の範囲内で様々な修正と変更が可能である。
【符号の説明】
【0077】
1 シンクロトロン(加速器)
2 ビーム輸送ライン
5A 第1の収束用四極電磁石(補正用電磁石)
6A 第1の発散用四極電磁石(補正用電磁石)
8B 第2のビームモニタ(ビームモニタ、運動量分散関数測定手段)
11 微小エネルギ吸収材(微小エネルギ吸収体)
11a、11b、11c、11d、11e 微小エネルギ吸収材(複数の微小エネルギ吸収体)
21 微小エネルギ吸収回転体(微小エネルギ吸収体)
21A 第1微小エネルギ吸収回転面体(ビーム透過領域)
21B 第2微小エネルギ吸収回転面体(ビーム透過領域)
21C 第3微小エネルギ吸収回転面体(ビーム透過領域)
21p 空隙
21S 切り欠き部
31、32、33 微小エネルギ吸収回転体(微小エネルギ吸収体、単微小エネルギ吸収体)
31A、32A、33A 第1微小エネルギ吸収回転面体(ビーム透過領域)
31B、32B、33B 第2微小エネルギ吸収回転面体(ビーム透過領域)
31C、32C、33C 第3微小エネルギ吸収回転面体(ビーム透過領域)
31p、32p、33p 空隙
31S、32S、33S 切り欠き部
b 荷電粒子ビーム
Dx、Dz 運動量分散関数
S 制御装置(運動量分散関数測定手段、自動測定制御手段、自動補正制御手段)
T 粒子線照射装置(ビーム輸送システム)

【特許請求の範囲】
【請求項1】
荷電粒子を加速する加速器から取り出した荷電粒子ビームを、照射対象に照射する照射装置まで、輸送するビーム輸送ラインにおける荷電粒子ビームの位置の差分を運動量差で表す運動量分散関数の測定を行うビーム測定装置であって、
前記ビーム輸送ラインの前記荷電粒子ビームの軌道に入出可能であり、前記荷電粒子ビームの軌道に入った際に当該荷電粒子ビームを通過させて当該荷電粒子ビームのエネルギを変更する微小エネルギ吸収体と、
該微小エネルギ吸収体による当該荷電粒子ビームのエネルギの変更に基づき、前記ビーム輸送ラインにおける当該荷電粒子ビームの運動量分散関数の測定を行う運動量分散関数測定手段とを
備えることを特徴とするビーム測定装置。
【請求項2】
前記微小エネルギ吸収体は、複数で構成され、
複数の前記微小エネルギ吸収体の何れかが単体または組み合わされ重なって前記荷電粒子ビームの軌道上に配置される
ことを特徴とする請求項1に記載のビーム測定装置。
【請求項3】
前記微小エネルギ吸収体は、前記荷電粒子ビームが通過する異なる厚さおよび/または異なる材質をもつビーム透過領域と、前記荷電粒子ビームが通過する空隙が形成される切り欠き部とを有し、回転自在に設けられ、
前記微小エネルギ吸収体が回転され、前記微小エネルギ吸収体の前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかが、前記荷電粒子ビームの軌道上に配置される
ことを特徴とする請求項1に記載のビーム測定装置。
【請求項4】
前記微小エネルギ吸収体は、前記荷電粒子ビームが通過する同じまたは異なる厚さおよび/または同じまたは異なる材質をもつビーム透過領域と、前記荷電粒子ビームが通過する空隙が形成される切り欠き部とを有する単微小エネルギ吸収体が、複数で構成され、前記複数の単微小エネルギ吸収体がそれぞれ回転自在に設けられ、
前記各単微小エネルギ吸収体がそれぞれ回転され、前記各単微小エネルギ吸収体の前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかが、前記荷電粒子ビームの軌道上に配置される
ことを特徴とする請求項1に記載のビーム測定装置。
【請求項5】
前記運動量分散関数測定手段は、前記微小エネルギ吸収体を通過した前記荷電粒子ビームのビームプロファイルを測定するビームモニタを有し、
前記運動量分散関数測定手段は、前記微小エネルギ吸収体の前記荷電粒子ビームの軌道への入出による当該荷電粒子ビームのエネルギを変更後、前記ビームモニタで測定した当該エネルギが変更された荷電粒子ビームのビームプロファイルに基づく当該荷電粒子ビームの荷電粒子の重心位置の計算を行うことで、前記運動量分散関数を自動測定する自動測定制御手段を備える
ことを特徴とする請求項1から請求項4の何れか一項に記載のビーム測定装置。
【請求項6】
測定した前記運動量分散関数の測定値に基づき、前記運動量分散関数の値が目標値になるように補正する自動補正制御手段と、
前記ビーム輸送ラインにおける前記微小エネルギ吸収体の下流に設けられ前記荷電粒子ビームに磁場を付与する補正用電磁石と、
前記自動補正制御手段の補正に従って前記補正用電磁石に印加する電流を変更する補正用電磁石制御手段とを備える
ことを特徴とする請求項1から請求項5の何れか一項に記載のビーム測定装置。
【請求項7】
前記目標値は、0である
ことを特徴とする請求項6に記載のビーム測定装置。
【請求項8】
荷電粒子を加速する加速器と、該加速器から取り出した荷電粒子ビームを照射装置まで輸送するビーム輸送ラインと、請求項1から請求項7の何れか一項に記載のビーム測定装置とを備えたビーム輸送システム。
【請求項9】
荷電粒子を加速する加速器から取り出した荷電粒子ビームを、照射対象に照射する照射装置まで、輸送するビーム輸送ラインにおける荷電粒子ビームの位置の差分を運動量差で表す運動量分散関数の測定を行うビーム測定装置の測定方法であって、
前記ビーム測定装置は、前記荷電粒子ビームの軌道に入出できる微小エネルギ吸収体と運動量分散関数測定手段とを備え、
前記微小エネルギ吸収体は、前記ビーム輸送ラインの前記荷電粒子ビームの軌道に入れられた際に、当該荷電粒子ビームを通過させることで当該荷電粒子ビームのエネルギを変更し、
前記運動量分散関数測定手段は、前記微小エネルギ吸収体による当該荷電粒子ビームのエネルギの変更に基づき、前記ビーム輸送ラインにおける当該荷電粒子ビームの運動量分散関数の測定を行う
ことを特徴とするビーム測定装置の測定方法。
【請求項10】
前記微小エネルギ吸収体は、複数で構成され、
複数の前記微小エネルギ吸収体の何れかが単体または組み合わされ重なって前記荷電粒子ビームの軌道上に配置され、
当該荷電粒子ビームが前記単体または重なった微小エネルギ吸収体を通過する
ことを特徴とする請求項9に記載のビーム測定装置の測定方法。
【請求項11】
前記微小エネルギ吸収体は、異なる厚さおよび/または異なる材質をもつビーム透過領域と、空隙が形成される切り欠き部とを有し、回転自在に設けられ、
前記微小エネルギ吸収体が回転され、前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかが前記荷電粒子ビームの軌道上に入れられ、
前記荷電粒子ビームが、前記微小エネルギ吸収体の前記軌道上に入れられた前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかを通過する
ことを特徴とする請求項9に記載のビーム測定装置の測定方法。
【請求項12】
前記微小エネルギ吸収体は、同じまたは異なる厚さおよび/または同じまたは異なる材質をもつビーム透過領域と、空隙が形成される切り欠き部とを有する単微小エネルギ吸収体が、複数で構成され、前記複数の単微小エネルギ吸収体がそれぞれ回転自在に設けられ、
前記各単微小エネルギ吸収体がそれぞれ回転され、前記各単微小エネルギ吸収体の前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかが前記荷電粒子ビームの軌道に入れられ、
前記荷電粒子ビームが、前記軌道に入れられた前記各単微小エネルギ吸収体の前記ビーム透過領域または前記切り欠き部の空隙のうちの何れかを、通過する
ことを特徴とする請求項9に記載のビーム測定装置の測定方法。
【請求項13】
前記運動量分散関数測定手段は、前記微小エネルギ吸収体を通過した前記荷電粒子ビームのビームプロファイルを測定するビームモニタを有し、
前記運動量分散関数測定手段は、自動測定制御手段を有し、
前記微小エネルギ吸収体の前記荷電粒子ビームの軌道への入出によって当該荷電粒子ビームのエネルギが変更され、
前記自動測定制御手段は、前記ビームモニタで測定した当該エネルギが変更された荷電粒子ビームのビームプロファイルに基づく当該荷電粒子ビームの荷電粒子の重心位置の計算を行うことで、前記運動量分散関数を自動測定する
ことを特徴とする請求項9から請求項12の何れか一項に記載のビーム測定装置の測定方法。
【請求項14】
前記ビーム測定装置は、自動補正制御手段と、前記ビーム輸送ラインにおける前記微小エネルギ吸収体の下流に設けられ前記荷電粒子ビームに磁場を付与する補正用電磁石と、補正用電磁石制御手段とを備え、
前記自動補正制御手段は、測定した前記運動量分散関数の測定値に基づき、前記運動量分散関数の値が目標値になるように補正し、
前記補正用電磁石制御手段は、前記自動補正制御手段の補正に従って前記補正用電磁石に印加する電流を変更する
ことを特徴とする請求項9から請求項13の何れか一項に記載のビーム測定装置の測定方法。
【請求項15】
前記目標値は、0である
ことを特徴とする請求項14に記載のビーム測定装置の測定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2012−83145(P2012−83145A)
【公開日】平成24年4月26日(2012.4.26)
【国際特許分類】
【出願番号】特願2010−228045(P2010−228045)
【出願日】平成22年10月8日(2010.10.8)
【出願人】(301032942)独立行政法人放射線医学総合研究所 (149)
【Fターム(参考)】