説明

Fターム[2G088FF12]の内容

放射線の測定 (34,480) | 測定量 (4,792) | 放射線ビーム (177) | ビーム径、ビーム形状 (31)

Fターム[2G088FF12]に分類される特許

1 - 20 / 31


【課題】四極電磁石の調整時間短縮を図ることのできる調整方法を提供する。
【解決手段】ビームライン上にビーム整形板2およびビームモニタ4を設置する。イオンビームを照射し、ビーム整形孔に通過させ、格子状に整形する。四極電磁石が励磁されていない場合、ビームモニタ4により、格子状配列形状のビーム形状が計測される。X方向においてイオンビームが集束するように、磁石3Aを励磁する。励磁電流が増すごとに、格子状配列のX方向間隔は狭くなり、X方向配列の5つの格子点は一つの略長円となり、Y方向に1つの点列(1×5)が形成される。点列形成を確認すると、X方向長さを計測する。励磁電流が増すごとに、X方向長さは短くなる。励磁電流を漸増し、各点(5点)の平均が基準サイズ以下になると、適切にビーム集束されたと判断し、端末7を介して、X方向集束調整完了指令を行ない、そのときの励磁電流値を記憶する。 (もっと読む)


【課題】本発明によれば非破壊モニタの小型化により放射線照射装置の低コスト化を可能とする。
【解決手段】高電圧印加電極402、404に電圧を印加する高電圧電源305と、高電圧印加電極402と電荷収集電極401との間に第一の電離層を形成する電離箱301と、高電圧印加電極404と電荷収集電極403との間に第二の電離層を形成する電離箱302と、電荷収集電極401、403に到達した電離電子の電荷を積算する信号処理装置304と、を備える放射線計測装置101において、前記第一の電離層と前記第二の電離層とは少なくとも一部の領域で重なり、信号処理装置304の接続先を前記電荷収集電極401と403との間で切り替えるスイッチ701と、高電圧電源305の接続先を高電圧印加電極402と404との間で切り替えるスイッチ702と、を有することを特徴とする。 (もっと読む)


【課題】スポットスキャニング方式の荷電粒子ビーム照射システムにおいて、精度のよいPET画像を取得する。
【解決手段】PET制御部49は、照射装置制御部48から出射停止信号を受信し、予め設定した一定の時間経過した後、PET計測を開始する(S109)。スポット番号jのスポット照射が完了すると、照射位置がスポット番号j+1のスポット位置に変更される(S111→103)。次のスポット照射をするため、照射装置制御部48は出射開始信号を送信し、PET制御部49は出射開始信号を受信するとPET計測を停止する(S105)。つまり、PET計測は出射停止中に行われる。このPET計測で得られたPET信号は、スポット番号j+1のスポット照射直前のPETデータとして、PET制御部49内のメモリに記録される。PET画像取得機能49aは記録したPETデータから陽電子放出核の分布(PET画像)を取得する。 (もっと読む)


【課題】運動量分散関数を簡易に測定できるとともに所定値に補正を行う。
【解決手段】本発明のビーム測定装置は、荷電粒子を加速する加速器1から取り出した荷電粒子ビームbを、照射対象に照射する照射装置まで、輸送するビーム輸送ライン2における荷電粒子ビームbの位置の差分を運動量差で表す運動量分散関数Dx、Dzの測定を行うビーム測定装置であって、ビーム輸送ライン2の荷電粒子ビームbの軌道に入出可能であり、荷電粒子ビームbの軌道に入った際に荷電粒子ビームbを通過させて荷電粒子ビームbのエネルギを変更する微小エネルギ吸収体11と、微小エネルギ吸収体11による荷電粒子ビームbのエネルギの変更に基づき、ビーム輸送ライン2における荷電粒子ビームbの運動量分散関数Dx、Dzの測定を行う運動量分散関数測定手段8B、Sとを備える。 (もっと読む)


【課題】ハイパワーの電子線の照射中に、照射対象物の照射領域の大きさを検出できる電子線照射装置、電子線照射領域検出方法、電子線照射方法を提供する。
【解決手段】
真空排気された真空槽11内で照射対象物60に電子銃30から電子線を照射して照射対象物60を加熱する際に、照射対象物60の表面の電子線を照射されてX線を放出する領域を照射領域とすると、照射領域から放出されたX線が入射する位置にX線検出装置20を配置して照射領域の大きさを検出し、検出した照射領域の大きさに基づいて電子線のビーム径を制御する。 (もっと読む)


【課題】アルミニウム(III)含有の熱蛍光板状体、及びこの熱蛍光板状体を利用することによって、放射線の3次元線量分布を取得することが可能である熱蛍光積層体を簡易に製造する。
【解決手段】まず、四ホウ酸リチウム、酸化マンガン(IV)、及び酸化アルミニウムの各成分を混合して第1混合体を形成する。次に、この第1混合体を熱処理することによって第1焼結体を形成し、この第1焼結体を粉砕して粉砕体にする。次に、第1混合体の各成分と同一の成分を粉砕体に最混入させずに、この粉砕体を平板状に圧迫成型することによって板状体を形成する。次に、この板状体を熱処理することによって、第2焼結体としての熱蛍光板状体を形成する。 (もっと読む)


【課題】蛍光層の劣化を防止すると共に、放電を防止しイオンビームの視認性を向上することが可能な蛍光体及び蛍光体を備えた真空箱を提供すること。
【解決手段】導電性物質を含む蛍光層12とし、この蛍光層12を導電性材料から成るベース板11の表面に成膜する。これにより、イオンビームが照射される蛍光層12に導電性物質が含まれているため、イオンビームによる電気エネルギを、蛍光層12を介して導電性材料から成るベース板11に伝達することができる。そのため、蛍光層12における蓄電を抑制し、蓄電による放電現象を防止することができる。また、導電性物質を含む蛍光層12が、導電性材料から成るベース板11の表面に成膜され、蛍光体全体が導電性を有する構成であるため、蛍光層12のスパッタリングを抑制することができる。これにより、蛍光層12の劣化を防止することができる。 (もっと読む)


【課題】 リボン状のイオンビームのX方向およびY方向における発散角を簡単な方法で測定する測定方法を提供する。
【解決手段】 このイオンビーム測定方法は、イオンビーム2の一部を通過させる小孔62を有するマスク板60と、その下流側に設けられていて、前記小孔を通過したイオンビームを受けてそのビーム電流をそれぞれ検出する複数のビーム検出器12をX方向に有していて、Y方向に可動のビームモニタ10とを用いる。そして当該ビームモニタ10をY方向に移動させることによって、小孔62を通過したイオンビームのX方向およびY方向における中心位置x3 、y3 をそれぞれ測定し、その中心位置x3 、y3 とそれに対応する小孔62間のX方向およびY方向における距離L4 、L5 ならびにマスク板60とビームモニタ10間のZ方向における距離L3 に基づいて、小孔62を通過したイオンビームのX方向およびY方向における発散角αX 、αY をそれぞれ測定する。 (もっと読む)


【課題】エミッタンス測定およびリボンビームの強度分布均一化を簡易な手段で実施できるようにする。
【解決手段】イオンビームIBの軌道上に設けられて、そのビーム強度分布を測定するビームプロファイルモニタと、イオンビームIBを挟んでx方向に対向配置され、互いの間でイオンビームIBを通過させる開口を形成する一対のビーム遮蔽部材6とを利用する。そして、ビーム遮蔽部材6の少なくとも一方を、y方向には隙間なく、かつ、x方向には独立して進退可能に設けられた複数の可動遮蔽板61からなるものとしたうえで、可動遮蔽板61の位置を調整して、対向するビーム遮蔽部材6との間に微小開口Pを形成し、微小開口Pを通過したイオンビームIBについての強度分布測定結果から、イオンビームIBのエミッタンスを算出するように構成した。 (もっと読む)


【課題】緊急時用として長期間待機状態に置かれていても、ヨウ素捕集剤の吸湿が少ないままに維持され、捕集効率の低下が防止される放射性ヨウ素サンプラおよびそれを具備する放射性ヨウ素モニタを提供する。
【解決手段】放射性ヨウ素サンプラは、環境空気に含まれる放射性ヨウ素から放出される放射線を検出するために、上記環境空気をサンプリングし、サンプリングされた空気中のヨウ素またはその化合物をヨウ素捕集剤に捕集する放射性ヨウ素サンプラにおいて、待機時、上記ヨウ素捕集剤を気密状態で収納する気密収容手段と、上記ヨウ素捕集剤が収納されている空間の空気から水蒸気を除湿する除湿手段と、が備えられる。 (もっと読む)


【課題】
ワイヤースキャン法のバックグラウンドノイズと微分によってノイズが強調される問題点を克服し、より高精度なX線ビームプロファイル計測を行うことが可能なX線ナノビーム強度分布の精密測定方法及びその装置を提供する。
【解決手段】
X線ビームを横切るようにナイフエッジを走査するとともに、ナイフエッジの背後でX線源に対して幾何学的暗部となる位置に配置したX線検出器でX線強度を測定する暗視野計測法を用い、X線ビームの断面におけるX線強度分布を測定するX線ナノビーム強度分布の精密測定方法であって、ナイフエッジは、それを透過するX線の位相を進める作用を有する重金属で作製するとともに、透過X線と該ナイフエッジの先端で回折した回折X線とが強め合う範囲の位相シフトが得られる厚さに設定し、回折X線と透過X線とが重ね合わさったX線をX線検出器で測定する。 (もっと読む)


【課題】ワイヤーロッドをイオンビームの検出に用いることで、簡単な構成によって、容易かつ正確にイオンビームを評価することができるイオンビームの評価測定方法及びイオンビームの評価測定装置を実現する。
【解決手段】導電性のワイヤーロッド4は、全体形状は互いに直交する第1ロッド8及び第2ロッド9からL型に形成されており、該第1ロッド8を、該第1ロッド8に直交する第1の方向に移動して前記イオンビーム12を横切るように移動しながら、該ワイヤーロッド4を流れるビーム電流を測定することにより、イオンビーム12のビーム密度分布を検出し、同様に、第2ロッド9に直交する第2の方向に移動して前記イオンビーム12を横切ることでイオンビーム12の該第2の方向のビーム密度分布を測定する (もっと読む)


【課題】
量子ビームの3次元的な測定を簡便に行うことができるビーム測定装置、及びビーム測定方法、及びそれを用いたポンプ・プローブ測定方法を提供する。
【解決手段】
本発明の一態様にかかるビーム測定装置100は、レーザ発振器11によって発振したパルスレーザ光の波長が時間に応じて変化するよう、パルスレーザ光のパルス波形を整形して出射する光源部10と、光源部10から出射したパルスレーザ光に対して入射位置に応じた時間遅延を与える遅延素子23と、パルスレーザ光を入射位置に応じて異なる偏光状態に変換する偏光変換素子24と、を有する入射光学系20と、入射位置に応じて異なる結晶軸を有する電気光学素子30と、パルスレーザ光から所定の偏光成分を取り出す偏光子46と、偏光子46で取り出されたパルスレーザ光のスペクトルを測定する分光測定器50と、を備えるものである。 (もっと読む)


【課題】微細な電子ビームの形状を簡便な方法で測定することが可能なナノワイヤ架橋デバイスとその作成方法を、また、それを応用した電子ビームの形状測定方法を提供する。
【解決手段】金属板を渡るようにナノワイヤ、例えばカーボンナノチューブを配置し、ナノワイヤの両端部分を金属板に固定するナノワイヤ架橋デバイスの作成方法および金属板を渡るように架設されたナノワイヤを有するナノワイヤ架橋デバイス。 (もっと読む)


【課題】 ビームモニタの各ビーム検出器に流入するビーム電流の波形を、少ない数の電流測定器を用いて短時間で精度良く測定する。
【解決手段】 ビームモニタ30の各ビーム検出器32を、スイッチSをそれぞれ介して一つの電流測定器40に接続しておく。そして、各ビーム検出器32のビーム入射孔のX方向の幅をWf、隣り合うビーム入射孔間のX方向の間隔をWs、イオンビーム4のX方向のビーム幅をWb、ビーム検出器32の総数をpとし、nを0≦n≦(p−2)の整数とすると、次式を満たすn個ずつ飛ばして複数のスイッチSを同時にオン状態にしている状態で、ビームモニタ30によってイオンビーム4を受けて電流測定器40に流入するビーム電流の波形を測定する測定工程と、同時にオン状態にしているスイッチSを前記条件の下で切り換える切換工程とを繰り返す。
Wb<{n・Wf+(n+1)Ws} (もっと読む)


【課題】放射線ビームの位置や範囲を、明室下で目視により、明瞭かつ正確に短時間で確認する方法に用いられる簡便な放射線感応シートを提供する。
【解決手段】放射線感応シート10a・10bは、ハロゲン基とアセタール基との少なくともいずれかの基及び水酸基を有する高分子化合物と、呈色性の電子供与体有機化合物と、電子供与体有機化合物を呈色させる活性種生成有機化合物と、放射線吸収剤及び/又は放射線蛍光剤とが含まれた放射線呈色性組成物、又はポリアセチレン化合物とジアリールエテン化合物との少なくともいずれかが含まれた放射線呈色性組成物が、基材表面の少なくとも一部に付されており、放射線ビーム1の通過ライン上に載置される放射線感応シートであって、前記放射線ビーム1によって呈色する前記放射線呈色性組成物が、確認すべき前記放射線ビーム1の位置及び/又は範囲に応じ、それより広範囲に、前記基材表面へ付されている。 (もっと読む)


【課題】 複雑な演算処理を要することなく、多孔電極を有するイオン源のイオン引出し孔から出射される際のイオンビームが持つ特性を測定することができる装置および方法を提供する。
【解決手段】 このイオンビーム測定装置40aは、イオン源2の多孔電極6から引き出されたイオンビーム10の一部を通過させる開口14を有する遮蔽板12と、開口14を通過したイオンビーム10のビーム電流を検出する検出器18と、それをx方向に移動させる検出器駆動装置24とを備えている。かつ、多孔電極6と検出器18間の距離をL、遮蔽板12と検出器18間の距離をd、x方向に関して、多孔電極6の各イオン引出し孔8の寸法をa、その間隔をp、開口14の寸法をb、検出器18の寸法をwとすると、次式の関係を満たしている。
{w(L−d)+bL}/d<(p−a) (もっと読む)


【課題】放射光ビームや軟X線ビーム等の位置及びその強度分布、更には、これらの時間変化を高精度で長期間安定して検出することが可能で、従来の検出装置よりも低コストで製造し得るビーム検出部材およびそれを用いたビーム検出器を提供する。
【解決手段】ビームの位置や強度を検出するためのビーム検出部材2であって、ビーム7が照射されるビーム照射部6が、少なくとも珪素(Si)、窒素(N)、リチウム(Li)、ベリリウム(Be)、ホウ素(B)、リン(P)、硫黄(S)、ニッケル(Ni)、バナジウム(V)から選ばれた一種または二種以上の元素(X)を、X/C=0.1〜1000ppm含む多結晶ダイヤモンド(C)膜4からなり、この多結晶ダイヤモンド膜4に前記ビーム7が照射されると発光8,8aする発光機能を有する。このようなビーム検出部材2と前記発光現象を観測する発光観測手段3,3aとによりビーム検出器1を構成する。 (もっと読む)


【課題】電子ビームとレーザービームの焦点及び入射角度を精密に一致させることができ、かつ電子ビーム及びレーザービームの4次元プロファイル(3次元プロファイルの時間変化)を測定することができ、これによりレーザービームの利用効率を大幅に高めることができる電子ビーム及びレーザービームのプロファイル測定装置及び方法を提供する。
【解決手段】電子ビーム1とレーザービーム3が正面衝突する衝突位置近傍の各ビームの断面プロファイルを測定するプロファイル測定装置30と、プロファイル測定装置を各ビームの軸方向にほぼ一致する所定の方向に連続的に移動する移動装置40とを備える。さらにプロファイル形成装置50により、プロファイル測定装置による断面プロファイル、その所定方向の位置、及びビームの発振タイミングから電子ビーム及びレーザービームの3次元プロファイルの時間変化を形成する。 (もっと読む)


【目的】 高精度なビーム強度分布を取得すると共に、高精度なビーム分解能を取得することを目的とする。
【構成】 本発明は、Si基板20上に形成されたドットマーク10を用いて、ドットマーク10幅寸法より小さいビームサイズの電子ビーム200を走査してドットマーク10の手前からドットマーク10上へと移動するように照射する照射工程(S102)と、電子ビーム200の照射によりドットマーク10から反射した反射電子12を計測する計測工程(S104)と、計測工程の結果に基づいて、電子ビーム200のビーム強度分布を演算するビーム強度分布演算工程(S106)と、を備えたことを特徴とする。本発明によれば、高精度なビーム強度分布とビーム分解能を測定することができる。 (もっと読む)


1 - 20 / 31