説明

ラジアルタービンおよび過給機

【課題】ラジアルタービンインペラの強度設計のマージンを確保しつつ、小流量側から大流量側までの広い範囲での性能の向上を図ることができるラジアルタービン及び過給機を提供する。
【解決手段】ラジアルタービンインペラ11と、ラジアルタービンインペラ11の前縁部11Aへ排気ガスを導くノズル流路27Aと、可変ノズルユニット27とを備えるラジアルタービン10であって、ラジアルタービンインペラ11には、軸方向における後縁部11Bまでの長さが互いに異なる第1タービンブレード101及び第2タービンブレード102が周方向に交互に配置されており、第2タービンブレード102は、上記軸方向において、第1タービンブレード101より短く、且つ、第1タービンブレード101のスロート位置よりも短く、ノズル流路27Aの流路幅より長いという構成を採用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ラジアルタービンおよび過給機に関するものである。
【背景技術】
【0002】
過給機(ターボチャージャ)は、内燃機関の排気ガスによりラジアルタービンを駆動させ、そのラジアルタービンインペラの回転軸に連結した圧縮機(コンプレッサ)のコンプレッサインペラを駆動させて空気を圧縮し、高圧になった空気を内燃機関に供給することで、エンジンの出力や効率を向上させるものである。近年の過給機では、ラジアルタービンインペラの上流に複数の可変翼(可変ノズルベーン)を備える可変ノズル装置を配置して、導入される排気ガスの小流量側から大流量側までの広い範囲での性能の向上を図っている。
【0003】
ところで、上記可変ノズル装置を備えるラジアルタービンにおいては、小流量側での効率(排気ガスの流量に対する仕事(回転量)の効率)の向上が課題となっている。小流量側においてはタービンブレードの翼枚数が多い方が、効率が向上することが一般に知られているが、タービンブレードを多く設けると、タービンブレード間のピッチが狭くなり、最大流量を規定するタービンブレードのスロート面積が小さくなり最大流量が減少してしまうというトレードオフの関係がある。
【0004】
特許文献1には、ラジアルタービンインペラに排ガスを導入する導入路を軸方向に可動させて流路面積を2段階で変化させ、流路面積が狭い小流量側に対応する短いタービンブレード及び流路面積が大きい大流量側に対応する長いタービンブレードを備えるラジアルタービンインペラが開示されている。このラジアルタービンによれば、小流量側では短長あわせた枚数のタービンブレードが排気ガスを受けるため効率の向上が図られ、一方の大流量側では上流に設定された可動部が作動することによりピッチ間の広い長いタービンブレードのスロートのみが有効になるため最大流量を確保できる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許出願公開第2007/0031261号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、上記のような短いタービンブレードと長いタービンブレードとをラジアルタービンインペラに設けるには、隣り合うタービンブレードの付根部の干渉を避けるため、従来と比べて長いタービンブレードの枚数を減らす設計変更をする必要がある。
ところが、長いタービンブレードの枚数を減らすと、大流量側で排気ガスを受けるブレード一枚あたりの仕事(負荷)が増えるため、特に大流量側において境界層剥離の発生を助長させ、効率が低下してしまうという問題がある。
【0007】
本発明は、上記問題点に鑑みてなされたものであり、ラジアルタービンインペラにおいて小流量側から大流量側までの広い範囲での性能の向上を図ることができるラジアルタービン及び過給機の提供を目的とする。
【課題を解決するための手段】
【0008】
上記の課題を解決するために、本発明は、外周側から吹き付けられる流体を受けて軸周りの回転力を得るラジアルタービンインペラと、上記外周側に設けられて上記ラジアルタービンインペラの前縁部へ上記流体を導く導入路と、上記導入路の流路面積を可変させて上記ラジアルタービンインペラへ吹き付けられる上記流体の流量を調節する可変ノズル装置とを備えるラジアルタービンであって、上記ラジアルタービンインペラには、上記軸方向における後縁部までの長さが互いに異なる第1タービンブレード及び第2タービンブレードが配設されており、上記第2タービンブレードは、上記軸方向において、上記第1タービンブレードより短く、且つ、第1タービンブレードのスロート位置よりも短く、上記導入路の流路幅より長いという構成を採用する。
この構成を採用することによって、本発明では、第2タービンブレードが小流量側から大流量側までの領域で流体を受けて仕事をする。すなわち、小流量側においては、翼枚数の多い前縁部により仕事を取り出すことで、効率の向上を図ることができる。さらに、大流量側においても、第2タービンブレードが流体を受けて仕事をするので極端な効率の低下を抑制することができ、また、流体を受ける翼枚数が多いため、一枚あたりの負荷が低減される。加えて、第2タービンブレードが第1タービンブレードより短いため、第1タービンブレードの後縁部で最大流量を規定するスロート面積を確保でき、効率と最大流量とのトレードオフの関係を低減できる。
【0009】
また、本発明においては、上記第1タービンブレードは、上記流体を受けた際の上記軸方向における負荷分布の最も高い位置を、上記第2タービンブレードの上記軸方向における長さの領域内に位置させる曲形状を有するという構成を採用する。
この構成を採用することによって、本発明では、第1タービンブレードに生じる負荷分布の最も高い部分を前縁部にシフトさせることで、大流量側においても第2タービンブレードと共に翼枚数の多い前縁部で主に仕事をさせることが可能となり、一枚あたりの負荷を低減させて性能低下を抑制することができる。
【0010】
また、本発明においては、内燃機関からの排気ガスにより駆動される排気タービンと、上記排気タービンにより回転駆動されるコンプレッサインペラにより上記内燃機関に向けて圧縮空気を供給するコンプレッサとを備える過給機であって、上記排気タービンとして、先に記載のラジアルタービンを備えるという構成を採用する。
【発明の効果】
【0011】
本発明によれば、外周側から吹き付けられる流体を受けて軸周りの回転力を得るラジアルタービンインペラと、上記外周側に設けられて上記ラジアルタービンインペラの前縁部へ上記流体を導く導入路と、上記導入路の流路面積を可変させて上記ラジアルタービンインペラへ吹き付けられる上記流体の流量を調節する可変ノズル装置とを備えるラジアルタービンであって、上記ラジアルタービンインペラには、上記軸方向における後縁部までの長さが互いに異なる第1タービンブレード及び第2タービンブレードが配設されており、上記第2タービンブレードは、上記軸方向において、上記第1タービンブレードより短く、且つ、第1タービンブレードのスロート位置よりも短く、上記導入路の流路幅より長いという構成を採用することによって、第2タービンブレードが導入路の流路幅より長いため、小流量側から大流量側までの領域で流体を受けて仕事をする。すなわち、小流量側においては、翼枚数の多い前縁部により仕事を取り出すことで、効率の向上を図ることができる。さらに、大流量側においても、第2タービンブレードが仕事をするので極端な効率の低下を抑制することができ、また、流体を受ける翼枚数が多いため、一枚あたりの負荷が低減される。加えて、第2タービンブレードが第1タービンブレードのスロート位置より短いため、第1タービンブレードの後縁部で最大流量を規定するスロート面積を確保でき、効率と最大流量とのトレードオフの関係を低減できる。
従って、本発明では、ラジアルタービンインペラにおいて、小流量側から大流量側までの広い範囲での性能の向上を図ることができる。
【図面の簡単な説明】
【0012】
【図1】本発明の実施形態におけるターボチャージャが設けられた駆動系の全体構成を示す概略図である。
【図2】本発明の実施形態におけるラジアルタービンの構成を示す断面図である。
【図3】本発明の実施形態におけるラジアルタービンインペラの構成を示す拡大図である。
【図4】図3における点線Lで沿ったタービンブレードの断面の曲形状を、軸方向位置と周方向位置とで示す図である。
【図5】本発明の実施形態におけるラジアルタービンの性能特性と、従来のラジアルタービンの性能特性とを比較する図である。
【発明を実施するための形態】
【0013】
以下、図面を参照して、本発明の実施形態について説明する。
図1は、本発明の実施形態におけるターボチャージャTが設けられた駆動系1の全体構成を示す概略図である。
駆動系1は、空気を清浄化するエアクリーナ2と、燃料と空気との混合気体を燃焼させて駆動力を得るエンジン(内燃機関)3と、エアクリーナ2から供給される空気を圧縮してエンジン3に供給するターボチャージャ(過給機)Tと、ターボチャージャTから排出される排気ガスを清浄化する排気ガス浄化装置4とを有している。
【0014】
エアクリーナ2は、第1吸気管91を介して導入された車両外部の空気から粉塵等を分離する濾過器である。エアクリーナ2と、ターボチャージャTのコンプレッサ20とは、第2吸気管92によって互いに連結されている。エアクリーナ2によって清浄化された空気は、第2吸気管92に導入される。
【0015】
エンジン3は、ターボチャージャTのコンプレッサ20から供給される空気と、不図示の燃料供給装置から供給される燃料とを混合させた気体を燃焼させて駆動力を得る。コンプレッサ20とエンジン3の給気口3aとは、第3吸気管93によって互いに連結され、エンジン3の排気口3bとターボチャージャTのラジアルタービン10とは、第1排気管95によって互いに連結されている。
【0016】
排気ガス浄化装置4は、排気ガスから有害物質を除去するための触媒である。なお、有効に有害物質を除去するために、排気ガス浄化装置4を所定の温度(例えば300℃)以上に維持することが好ましい。ラジアルタービン10と排気ガス浄化装置4とは、第2排気管96によって互いに連結されている。排気ガス浄化装置4には、第3排気管97が接続されており、清浄化された排気ガスは第3排気管97に導入される。
【0017】
ターボチャージャTは、エンジン3から排出された排気ガスが導入されるラジアルタービン10と、エアクリーナ2から導入される空気を圧縮するコンプレッサ20とを有している。
【0018】
ラジアルタービン10の内部には、排気ガスの流動によって軸周りに回転するラジアルタービンインペラ11が設けられ、コンプレッサ20の内部には、空気を圧縮するコンプレッサインペラ21が設けられている。なお、ラジアルタービンインペラ11とコンプレッサインペラ21とは、インペラ軸12によって同軸で一体的に連結されており、インペラ軸12は軸受け部30に回転自在に支持されている。
【0019】
続いて、図2〜図4を参照して本実施形態のラジアルタービン10の構成について詳しく説明する。
図2は、本発明の実施形態におけるラジアルタービン10の構成を示す断面図である。図3は、本発明の実施形態におけるラジアルタービンインペラ11の構成を示す拡大図である。図4は、図3における点線Lで沿ったタービンブレードの断面の曲形状を、軸方向位置と周方向位置とで示す図である。
【0020】
図2に示すように、ラジアルタービン10は、ラジアルタービンインペラ11を囲うタービンハウジング5と、ラジアルタービンインペラ11の径方向外側に設けられるタービンスクロール流路17と、第2排気管96と連通するタービンハウジング出口19とを有している。また、タービンハウジング5内のラジアルタービンインペラ11の径方向外側には、略環状を呈する可変ノズルユニット(可変ノズル装置)27が設置されている。
【0021】
タービンスクロール流路17は、ラジアルタービンインペラ11を囲んで略環状に形成され、排気ガスを導入するための第1排気管95と連通している。また、タービンスクロール流路17は、可変ノズルユニット27内のノズル流路(導入路)27Aと連通している。
【0022】
可変ノズルユニット27は、シュラウドリング31と、シュラウドリング31に対向して設置されるノズルリング29と、シュラウドリング31とノズルリング29との間に保持される複数のノズルベーン(可変ノズルベーン)37と、各ノズルベーン37を同期して回転させる同期機構43とを有している。なお、上述したノズル流路27Aは、シュラウドリング31とノズルリング29との間に形成される。
【0023】
ノズルベーン37は、ノズルリング29とシュラウドリング31の間に周方向で等間隔に複数設けられており、ラジアルタービンインペラ11の回転軸と平行な軸周りに各々回転自在である。
【0024】
同期機構43は、略リング状を呈しノズルリング29の後側に複数の連結ピン33を介して固定されるサポートリング35と、サポートリング35により軸周りに回転自在に支持される駆動リング47と、駆動リング47の回転により各ノズルベーン37の角度を調整する複数の同期用伝達リンク51と、駆動リング47を回転させる駆動用伝達リンク59と、駆動用伝達リンク59に連結されインペラ軸12に平行な軸周りに回転自在に支持される駆動軸55とを備えている。
なお、駆動軸55の駆動用伝達リンク59の逆側端部には駆動レバー57が一体的に連結され、駆動レバー57には不図示のシリンダ等のアクチュエータが連結されている。
【0025】
ラジアルタービンインペラ11は、図3に示すように、軸方向における後縁部11Bまでの長さが互いに異なる第1タービンブレード101及び第2タービンブレード102を、周方向に交互に等ピッチで備えている。すなわち、ラジアルタービンインペラ11を構成する翼形状を2種類として、排気ガスの入口側(前縁部11A側)では翼枚数を多くし、排気ガスの出口側(後縁部11B側)では翼枚数を少なくしている。
【0026】
本実施形態の第1タービンブレード101及び第2タービンブレード102の翼枚数は、それぞれ8枚となっている。なお、第1タービンブレード101のみで構成した通常のラジアルタービンインペラの翼枚数は10枚であり、本実施形態では、ブレードの付根部の干渉を避けるために、通常と比べて第1タービンブレード101の枚数を2枚減らしている。
【0027】
第2タービンブレード102は、図2に示すように、軸方向において第1タービンブレード101よりも短い(前縁部11A側は同じで後縁部11B側が短い)。大流量側における最大流量は、スロート面積により規定され、該スロート面積は、ブレードの後縁部において隣接するブレードとそれを囲うハウジングとの間で形成する最小面積で定まる。すなわち、本実施形態では、第2タービンブレード102が第1タービンブレード101より短く、且つスロート位置(図3において符号Thで示す)よりも短いため、スロート面積に対してはピッチ間の広い第1タービンブレード101の後縁部11Bが有効になり、該スロート面積を大きく形成することが可能となる。
【0028】
また、第2タービンブレード102は、軸方向においてノズル流路27Aの流路幅(図3において符号K2で示す)よりも長い。したがって、第2タービンブレード102は、小流量側から大流量側までの範囲で常に排気ガスを受けることが可能な構成となっている。小流量側においては、翼枚数の多い前縁部11Aにより仕事を取り出すことで、効率の向上を図ることができる。同様に、大流量側においても、第2タービンブレード102が前縁部11Aにおいて仕事をする。また、前縁部11Aにおいては、排気ガスを受ける翼枚数が多いため、一枚あたりの負荷を低減することが可能となる。
以上のように、第2タービンブレード102の長さの上限は、スロート位置Thとの関係で長さK1となり、第2タービンブレード102の長さの下限は、ノズル流路27Aの流路幅との関係で長さK2となる。
【0029】
なお、排気ガスの出口側においては、第1タービンブレード101のみであり、翼枚数が少ないため、翼一枚あたりの負荷が増える傾向にある。このため、第1タービンブレード101は、図4に示すような、曲形状(図3において点線Lで沿ったタービンブレードの断面の曲形状)を備える。
なお、図4における実線は、本実施形態における第1タービンブレード101の負荷分布変更形状を示し、点線は、従来形状を示す。また、図4においては、横軸に軸方向の位置をとり、縦軸に周方向の位置をとる。図4中の境界線Aは、軸方向における第2タービンブレード102の長さの領域を示す。
【0030】
図4に示すように、負荷分布変更形状及び従来形状は共に、軸方向において前縁部11Aから後縁部11Bに向かうにつれて、周方向に2次的に曲がる。しかし、従来形状では、一度正転方向に向かって曲がった後、逆転方向に曲がるが、負荷分布変更形状では、初めから逆転方向に曲がる。さらに、両者は曲がりの逆転方向における変化が最も大きい位置(図4中、点C、点C´で示す)が異なっており、従来形状のよりも負荷分布変更形状の方が、前縁部11A側にシフトして、境界線Aの内側に位置している。
【0031】
ラジアルタービンインペラにおいては、ブレードの軸方向に対する周方向の曲がり(逆転方向)の変化が最も大きい部位が最も仕事をする(負荷を受ける)領域となる。本実施形態では、排気ガスを受けた際の軸方向における第1タービンブレード101の負荷分布の最も高い位置を前縁部11A側にシフトすることにより、負荷を入口側で受けることが可能となる。すなわち、大流量側においても、第2タービンブレード102と共に翼枚数の多い前縁部11Aで主に仕事をさせることが可能となり、出口側の第1タービンブレード101一枚あたりの負荷を低減させて効率低下を抑制することができる。
【0032】
続いて、本実施形態におけるラジアルタービン10の動作と、図5を参照して本実施形態におけるラジアルタービン10の性能特性について説明する。
エンジン3から導入される排気ガスが小流量の場合、ラジアルタービン10は、ノズル流路27Aの流路面積を絞るように可変ノズルユニット27を駆動させる。このノズル流路27Aを通過した排気ガスは、高速で噴流のようにラジアルタービンインペラ11の前縁部11Aに流入する。このとき、ラジアルタービンインペラ11は衝動タービンとして作動し、主に前縁部11A側(入口側)で仕事をする。前縁部11Aには、第1タービンブレード101及び第2タービンブレード102が配置してあり翼枚数が多いので、有効に仕事を取り出すことができ、効率が向上する。
【0033】
一方、エンジン3から導入される排気ガスが大流量の場合、ラジアルタービン10は、ノズル流路27Aの流路面積を開くように可変ノズルユニット27を駆動させる。このノズル流路27Aを通過した排気ガスは、小流量側と同じくラジアルタービンインペラ11の前縁部11Aに流入する。第1タービンブレード101の曲形状は、図4のように負荷を前縁部11A側で受ける形状であるため、翼枚数の多い前縁部11Aにおいて主に仕事をすることができる。したがって、従来よりも第1タービンブレード101の翼枚数を少なくしたとしても、前縁部11Aの翼枚数が多い部位で負荷を受けることができ、結果、翼一枚あたりに加わる負荷を低減させて、効率低下を抑制することができる。加えて、大流量側の最大流量は、第1タービンブレード101の後縁部11Bのみで規定されるため、効率と最大流量とのトレードオフの関係を低減できる。
【0034】
図5は、本発明の実施形態におけるラジアルタービン10の性能特性と、従来のラジアルタービンの性能特性とを比較する図である。図5においては、横軸に排気ガスの流量をとり、縦軸に排気ガスの流量に対する仕事の効率をとる。また、図5において、左側は小流量側を示し、右側は大流量側を示す。なお、ここで小流量側は、最大流量を100%とした場合に30%程度の範囲の流量のことを指す。
また、図5において、実線は本実施形態におけるラジアルタービンインペラ11の性能特性を示し、点線は従来形状の長いブレードを10枚配置したラジアルタービンインペラの性能特性を示し、一点鎖線は従来形状の長いブレードを10枚より多く配置したラジアルタービンインペラの性能特性を示し、二点鎖線は従来形状の長いブレードを10枚より少なく配置したラジアルタービンインペラの性能特性を示す。
【0035】
図5に示すように従来のラジアルタービンインペラでは、小流量側の場合、翼枚数が多い方が、効率が高くなる傾向にある。一方、大流量側の場合、比較的流量の小さいときには翼枚数が多い方が効率が高いが、最大流量側に向かうにつれて翼枚数の多い方の効率が極端に下がる傾向がある。また、最大流量は、スロート面積を大きく確保できる翼枚数の少ない方が有利である。
本実施形態のラジアルタービンインペラ11は、小流量側においては、翼枚数の多い前縁部11A側で仕事をするので翼枚数の多い方に近い性能特性を示し、また、大流量側においては、第1タービンブレード101のみでスロート面積を規定して最大流量を確保できるので翼枚数の少ない方に近い性能特性を示すこととなる。したがって、この図から、効率と最大流量とのトレードオフの関係が低減されていることがわかる。
【0036】
従って、上述の本実施形態によれば、外周側から吹き付けられる排気ガスを受けて軸周りの回転力を得るラジアルタービンインペラ11と、上記外周側に設けられてラジアルタービンインペラ11の前縁部11Aへ排気ガスを導くノズル流路27Aと、ノズル流路27Aの流路面積を可変させてラジアルタービンインペラ11へ吹き付けられる排気ガスの流量を調節する可変ノズルユニット27とを備えるラジアルタービン10であって、ラジアルタービンインペラ11には、軸方向における後縁部11Bまでの長さが互いに異なる第1タービンブレード101及び第2タービンブレード102が周方向に交互に配設されており、第2タービンブレード102は、軸方向において、第1タービンブレード101より短く、且つ、ノズル流路27Aの流路幅より長いという構成を採用することによって、第2タービンブレード102がノズル流路27Aの流路幅より長いため、小流量側から大流量側までの領域で排気ガスを受けて仕事をする。すなわち、小流量側においては、翼枚数の多い前縁部11Aにより仕事を取り出すことで、効率の向上を図ることができる。さらに、大流量側においても、第2タービンブレード102が仕事をするので効率の低下を抑制することができ、また、排気ガスを受ける翼枚数が多いため一枚あたりの負荷が低減される。加えて、第2タービンブレード102が第1タービンブレード101のスロート位置より短いため、第1タービンブレード101の後縁部11Bのみで最大流量を規定するスロート面積を確保でき、効率と最大流量とのトレードオフの関係を低減できる。
従って、本実施形態では、ラジアルタービンインペラ11における小流量側から大流量側までの広い範囲での性能の向上を図ることができる。
【0037】
また、本実施形態においては、第1タービンブレード101は、排気ガスを受けた際の軸方向における負荷分布の大きい位置を、第2タービンブレード102の軸方向における長さの領域内(図4における境界線Aの内側)に位置させる曲形状を有するという構成を採用することによって、第1タービンブレード101に生じる負荷分布の最も高い部分を前縁部11Aにシフトさせることで、第2タービンブレード102と共に翼枚数の多い前縁部11Aで主に仕事をさせることが可能となり、一枚あたりの負荷を低減させて効率低下を抑制することができる。
【0038】
以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
【符号の説明】
【0039】
3…エンジン(内燃機関)、6…ウェイストゲートバルブ、10…ラジアルタービン、11…ラジアルタービンインペラ、11A…前縁部、11B…後縁部、20…コンプレッサ、21…コンプレッサインペラ、27…可変ノズルユニット(可変ノズル装置)、27A…ノズル流路(導入路)、101…第1タービンブレード、102…第2タービンブレード、T…ターボチャージャ(過給機)、K2…流路幅、Th…スロート位置

【特許請求の範囲】
【請求項1】
外周側から吹き付けられる流体を受けて軸周りの回転力を得るラジアルタービンインペラと、前記外周側に設けられて前記ラジアルタービンインペラの前縁部へ前記流体を導く導入路と、前記導入路の流路面積を可変させて前記ラジアルタービンインペラへ吹き付けられる前記流体の流量を調節する可変ノズル装置とを備えるラジアルタービンであって、
前記ラジアルタービンインペラには、前記軸方向における後縁部までの長さが互いに異なる第1タービンブレード及び第2タービンブレードが配設されており、
前記第2タービンブレードは、前記軸方向において、前記第1タービンブレードより短く、且つ、前記第1タービンブレードのスロート位置よりも短く、前記導入路の流路幅より長いことを特徴とするラジアルタービン。
【請求項2】
前記第1タービンブレードは、前記流体を受けた際の前記軸方向における負荷分布の最も高い位置を、前記第2タービンブレードの前記軸方向における長さの領域内に位置させる曲形状を有することを特徴とする請求項1に記載のラジアルタービン。
【請求項3】
内燃機関からの排気ガスにより駆動される排気タービンと、
前記排気タービンにより回転駆動されるコンプレッサインペラにより前記内燃機関に向けて圧縮空気を供給するコンプレッサとを備える過給機であって、
前記排気タービンとして、請求項1または2に記載のラジアルタービンを備えることを特徴とする過給機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2011−117344(P2011−117344A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2009−274569(P2009−274569)
【出願日】平成21年12月2日(2009.12.2)
【出願人】(000000099)株式会社IHI (5,014)
【Fターム(参考)】