説明

ランフラットタイヤ

【課題】ランフラット耐久性を高めたタイヤの提供。
【解決手段】断面三日月状のサイド補強ゴム層10を具えるランフラットタイヤであって、インナーライナゴム層はブチル系ゴムを含むゴム成分100質量部に対し、平均粒子径が40〜100μmのマイカを10〜100質量部含むゴム。タイヤ赤道面Cからタイヤ最大断面巾SWの45%の距離SPを隔てるタイヤ外面上の点をPとするとき、タイヤ外面の曲率半径RCが、タイヤ赤道点CPから前記点Pに至るまでの間で徐々に減少する。タイヤ赤道面Cからタイヤ最大断面巾SWの半巾の60%、75%、90%及び100%の距離を隔てるタイヤ外面上の各点と、タイヤ赤道点CPとの間の各半径方向距離をY60、Y75、Y90及びY100 とし、かつタイヤ断面高さをSHとするとき、 0.05< Y60 /SH ≦0.1 0.1< Y75 /SH ≦0.2 0.2< Y90 /SH ≦0.4 0.4< Y100 /SH ≦0.7の関係を満足する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パンク等によりタイヤ内の空気が抜けたデフレート状態においても比較的長距離を走行しうるランフラットタイヤに関する。
【背景技術】
【0002】
このようなランフラットタイヤとして、タイヤの骨格をなすカーカスの内側(内腔側)かつサイドウォール部に、断面三日月状のサイド補強ゴム層を設け、デフレート状態におけるタイヤの負荷荷重をこのサイド補強ゴム層で支えることによりランフラット走行を可能とした所謂サイド補強タイプのもが知られている(例えば特許文献1など参照)。
【0003】
そしてこの種のタイヤが、ランフラット走行において招く故障の主原因の一つとして、前記サイド補強ゴム層に発生する亀裂損傷がある。その抑制策として、従来、前記サイド補強ゴム層に高弾性かつ低発熱性のゴムを使用し、荷重支持能力を高めてくり返し変形による屈曲疲労を減じるとともに自己発熱による温度上昇を抑えることが行われているが、未だ充分満足しうるレベルに至っていない。
【発明の開示】
【発明が解決しようとする課題】
【0004】
そこで本発明者は、前記サイド補強ゴム層の亀裂損傷の発生メカニズムついて研究した。その結果、前記サイド補強ゴム層の損傷は、このサイド補強ゴム層に隣接するインナーライナゴム層にまず最初に亀裂が発生し、この亀裂がサイド補強ゴム層へと次第に進行していくことによることが判明した。又前記インナーライナゴム層の亀裂発生原因として、 (1) インナーライナゴム層は、耐空気透過性に優れるブチル系ゴムを高配合(例えば80質量%)しているが、このブチル系ゴムは損失正接が高く、従って、インナーライナゴム層に、自己発熱によって熱劣化しやすい傾向があること;及び
(2) サイド補強ゴム層では、高弾性とするために加硫剤である硫黄を例えば5〜6phrと高配合しているが、加流成形時、前記硫黄が高配合のサイド補強ゴム層から低配合のインナーライナゴム層に移行し、インナーライナゴム層を設計値よりも高弾性化(硬質化)しかつ耐亀裂成長性を低下させること:
を究明し得た。
【0005】
従って、サイド補強ゴム層の損傷を抑制しランフラット耐久性を向上させるためには、まずインナーライナゴム層において、優れた耐空気透過性を維持しながら、発熱性の高いブチル系ゴムの配合を減じるとともに、サイド補強ゴム層からの硫黄の移行を抑制することが有効であることを見出し得た。
【0006】
他方、本出願人は、通過騒音を低減しながらハイドロプレーニング性能を向上したタイヤとして、図7に略示するように、タイヤ赤道面Cから、タイヤ最大断面巾SWの45%の距離SPを隔てるタイヤ外面上の点Pに至るまでの間で、タイヤ外面の曲率半径RCが、タイヤ赤道点CPから前記点Pまで徐々に減少するとともに、前記タイヤ赤道面Cからタイヤ最大断面巾SWの半巾(SW/2)の60%、75%、90%及び100%の距離X60、X75、X90及びX100 を夫々隔てるタイヤ外面上の各点と、タイヤ赤道点CPとの間の各半径方向距離をそれぞれY60、Y75、Y90及びY100 とし、かつタイヤ断面高さをSHとするとき、
0.05< Y60 /SH ≦0.1
0.1< Y75 /SH ≦0.2
0.2< Y90 /SH ≦0.4
0.4< Y100 /SH ≦0.7
の関係を満足させた特殊プロファイルのタイヤを提案している(特許文献2参照)。この特殊プロファイルのタイヤでは、トレッドが非常に丸くなるため、フットプリントが、接地巾が小かつ接地長さを大とした縦長楕円形状となり、騒音性能とハイドロプレーニング性能とを向上しうるという効果が発揮できる。
【0007】
そして本発明者の研究の結果、前記特殊プロファイルは、トレッドが非常に丸くサイドウォール部の領域が短いため、この特殊プロファイルをサイド補強タイプのランフラットタイヤに採用した場合には、サイド補強ゴム層のゴムボリュームを低減でき、タイヤ質量の増加や乗り心地性の低下を低く抑えうることを見出し得た。しかしこのランフラットタイヤでは、特にサイドウォール部の領域が短いため、ランフラット走行時のサイドウォール部の変形の度合いが大きく、前記サイド補強ゴム層における亀裂損傷の発生がより顕著であることが判明した。従ってこの特殊プロファイルのランフラットタイヤでは、ランフラット耐久性の向上のために、サイド補強ゴム層での損傷抑制がより重要となる。
【0008】
そこで本発明は、インナーライナゴム層において、その耐空気透過性を維持しながら低発熱化を図り、しかもサイド補強ゴム層からの硫黄の移行を抑制することにより、前記特殊プロファイルを採用したランフラットタイヤにおけるランフラット耐久性を効果的に向上しうるランフラットタイヤを提供することを目的としている。
【0009】
【特許文献1】特開平2000−351307号公報
【特許文献2】特許第2994989号公報
【課題を解決するための手段】
【0010】
前記目的を達成するために、本願請求項1の発明は、トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスプライからなるカーカスと、トレッド部の内方かつ前記カーカスの半径方向外側に配されるベルト層と、サイドウォール部かつ前記カーカスの内側に配され最大厚さを有する中央部分から半径方向内外に厚さを減じてのびる断面三日月状のサイド補強ゴム層と、タイヤ内腔面をなすインナーライナゴム層とを具えるランフラットタイヤであって、
正規リムに装着されかつ正規内圧を充填した正規内圧状態におけるタイヤ子午断面において、
タイヤ赤道面Cからタイヤ最大断面巾SWの45%の距離SPを隔てるタイヤ外面上の点をPとするとき、
タイヤ外面の曲率半径RCが、タイヤ赤道点CPから前記点Pに至るまでの間で徐々に減少するとともに、
前記タイヤ赤道面Cから前記タイヤ最大断面巾SWの半巾(SW/2)の60%、75%、90%及び100%の距離X60、X75、X90及びX100 を夫々隔てるタイヤ外面上の各点と、タイヤ赤道点CPとの間の各半径方向距離をそれぞれY60、Y75、Y90及びY100 とし、かつタイヤ断面高さをSHとするとき、
0.05< Y60 /SH ≦0.1
0.1< Y75 /SH ≦0.2
0.2< Y90 /SH ≦0.4
0.4< Y100 /SH ≦0.7
の関係を満足する一方、
前記インナーライナゴム層は、ブチル系ゴムを30〜90質量%含むゴム成分100質量部に対して、平均粒子径が40〜100μmであるマイカを10〜100質量部含有させたことを特徴としている。
【0011】
又請求項2の発明では、前記インナーライナゴム層の前記ゴム成分は、ブチル系ゴムを30〜60質量%と、天然ゴム又はイソプレンゴム20〜50質量%と、及びブタジエンゴム10〜40質量%とからなることを特徴としている。
又請求項3の発明では、前記マイカは、アスペクト比を50〜100としたことを特徴としている。
又請求項4の発明では、前記インナーライナゴム層は、ゴム成分100質量部に対して、可塑剤を4〜20質量部、かつカーボンブラック及び/又はシリカを10〜50質量部含有させたことを特徴としている。 又請求項5の発明では、前記ベルト層は、最も幅広のベルトプライのタイヤ軸方向のプライ巾BWが、前記タイヤ最大断面巾SWの0.70〜0.95倍であることを特徴としている。
又請求項6の発明では、前記正規内圧状態のタイヤに正規荷重の80%の荷重を負荷した状態において、前記タイヤ外面が接地するタイヤ軸方向最外端間のタイヤ軸方向距離である接地巾CWは、前記タイヤ最大断面巾SWの50%〜85%であることを特徴としている。
【0012】
なお前記「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えばJATMAであれば標準リム、TRAであれば "Design Rim" 、或いはETRTOであれば "Measuring Rim"を意味する。また前記「正規内圧」とは、前記規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表 "TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES" に記載の最大値、ETRTOであれば "INFLATION PRESSURE" を意味するが、乗用車用タイヤの場合には180kPaとする。
【発明の効果】
【0013】
本発明は叙上の如く、前記特殊プロファイルを、サイド補強タイプのランフラットタイヤに採用しているため、トレッドが非常に丸い輪郭形状となる。そのため、サイドウォール部の領域が短くなるなどサイド補強ゴム層のゴムボリュームを低減でき、ランフラット性能を確保しながらタイヤ質量の増加や乗り心地性の低下を低く抑えることができる。
【0014】
又前記特殊プロファイルのものは、特にサイドウォール部の領域が短いため、ランフラット走行時のサイドウォール部の変形度合が大きく、前記サイド補強ゴム層における亀裂損傷の発生がより顕著である。そこで本発明では、インナーライナゴム層に、ブチル系ゴムを30〜90質量%含むゴム成分100質量部に対して、平均粒子径が40〜100μmであるマイカを10〜100質量部含有させている。
【0015】
前記マイカは、インナーライナゴムを圧延する際、その表面がインナーライナゴムの表面に沿う向きに配向するため、優れた空気遮断効果を発揮できる。従って、その分、発熱性の高いブチル系ゴムの配合量を減じることができ、インナーライナゴム層において、耐空気透過性を維持しながら低発熱化を図ることが可能となる。又前記マイカは、その遮断効果により、硫黄がインナーライナゴム内に移行するのを抑制でき、該移行によるインナーライナゴムの高弾性化や耐亀裂成長性の低下を防止できる。そしてこの相乗効果により、前記特殊プロファイルのランフラットタイヤに強く望まれるサイド補強ゴム層の亀裂損傷抑制を達成でき、ランフラット耐久性を向上しうる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の一形態を、図示例とともに説明する。図1は、本発明のランフラットタイヤの正規内圧状態を示す子午断面図である。
図1において、本実施形態のランフラットタイヤ1は、トレッド部2からサイドウォール部3をへてビード部4のビードコア5に至るカーカス6と、トレッド部2の内方かつ前記カーカス6の半径方向外側に配されるベルト層7と、サイドウォール部3かつ前記カーカス6の内側に配されるサイド補強ゴム層10とを具える。
【0017】
前記カーカス6は、カーカスコードをタイヤ周方向に対して例えば70〜90°の角度で配列した1枚以上、本例では1枚のカーカスプライ6Aから形成される。カーカスコードとしては、ナイロン、ポリエステル、レーヨン、芳香族ポリアミドなどの有機繊維コードが好適に使用される。又前記カーカスプライ6Aは、前記ビードコア5、5間を跨るプライ本体部6aの両側に、前記ビードコア5の周りをタイヤ軸方向内側から外側に折り返されるプライ折返し部6bを一連に具える。
【0018】
そしてこのプライ本体部6aとプライ折返し部6bとの間には、ゴム硬度が65〜95°の硬質のゴムからなり、前記ビードコア5から半径方向外側に先細状にのびるビード補強用のビードエーペックスゴム8が配される。このビードエーペックスゴム8のビードベースラインBLからのタイヤ半径方向の高さhaは、特に限定はされないが、小さすぎるとランフラット耐久性が低下しやすく、逆に大きすぎてもタイヤ質量の過度の増加や乗り心地の悪化を招くおそれがある。このような観点より、ビードエーペックスゴム8の前記高さhaは、タイヤ断面高さSHの10〜60%、より好ましくは20〜40%程度が望ましい。
【0019】
また本例では、前記カーカス6のプライ折返し部6bが、前記ビードエーペックスゴム8を半径方向外側に超えて巻き上がり、その外端部6beが、プライ本体部6aと前記ベルト層7との間に挟まれて終端する超ハイターンアップのカーカス構造を具える。これにより、1枚のカーカスプライ6Aを用いて、サイドウォール部3を効果的に補強しうる。また前記プライ折返し部6bの外端部6beが、ランフラット走行時に大きく撓むサイドウォール部3から離れるため、該外端部6beを起点とした損傷を好適に抑制しうる。なおプライ折返し部6bとベルト層7との重なり部のタイヤ軸方向巾EWは、5mm以上、さらには10mm以上が好ましく、その上限は、軽量化の観点から25mm以下が好ましい。なおカーカス6が複数枚のカーカスプライから形成される場合には、少なくとも1枚のカーカスプライがこの態様をなすのが好ましい。
【0020】
次に、前記ベルト層7は、ベルトコードをタイヤ周方向に対して例えば10〜35゜の角度で配列した半径方向内外のベルトプライ7A、7Bから形成され、各ベルトコードがプライ間相互で交差することにより、ベルト剛性を高め、タガ効果を有してトレッド部2を強固に補強する。ここで、前記ベルト層7は、内のベルトプライ7Aが最も幅広であり、このベルトプライ7Aのタイヤ軸方向のプライ巾BWを、タイヤ最大断面巾SWの0.70〜0.95倍の範囲とすることにより、トレッド部2のほぼ全域に亘ってタガ効果を付与し、後述するタイヤ外面の特殊プロファイルを保持する。なおこのベルト層7の半径方向外側には、高速耐久性を高める目的で、例えばナイロン等の有機繊維のバンドコードを周方向に対して5度以下の角度で螺旋状に巻回させたバンド層9を設けることができる。
【0021】
ここで、前記「タイヤ最大断面巾SW」とは、タイヤ外面の基準輪郭線jにおける最大巾であり、この基準輪郭線jは、タイヤ外面に局部的に形成される例えば文字、図形、記号等を示す装飾用、情報用等の微細なリブや溝、リム外れ防止用のリムプロテクトリブ、カット傷防止用のサイドプロテクトリブなどの局部的凹凸部を除外した滑らかな輪郭線を意味する。
【0022】
なお本例では、前記ビード部4には、リムプロテクトリブ11が凸設される場合が例示される。このリムプロテクトリブ11は、図2に示すように、リムフランジJFを覆うように基準輪郭線jから突出するリブ体であり、タイヤ軸方向外側に最も突出する突出面部11cと、この突出面部11cからビード外側面に滑らかに連なる半径方向内側の斜面部11iと、前記突出面部11cからタイヤ最大巾点M近傍位置で前記基準輪郭線jに滑らかに連なる半径方向外側の斜面部11oとで囲まれる断面台形状をなす。なお前記内側の斜面部11iは、リムフランジJFの円弧部よりも大きい曲率半径rで形成された凹円弧面で形成され、通常走行時においては、縁石等からリムフランジJFを保護する。又ランフラット走行時には、内側の斜面部11iがリムフランジJFの円弧部に寄りかかって接触するため、タイヤの縦たわみ量を軽減でき、ランフラット性能及びランフラット耐久性の向上に役立つ。
【0023】
次に、前記サイド補強ゴム層10は、最大厚さを有する中央部分10aから、タイヤ半径方向内端10i及び外端10oに向かってそれぞれ厚さを徐々に減じてのびる断面三日月状をなす。前記内端10iは、ビードエーペックスゴム8の外端よりもタイヤ半径方向内側に位置し、前記外端10oは、ベルト層7の外端7eよりもタイヤ軸方向内側に位置する。このときサイド補強ゴム層10とビードエーペックスゴム8とのタイヤ半径方向の重なり巾Wiを5〜50mm、かつサイド補強ゴム層10とベルト層7とのタイヤ軸方向の重なり巾Woを0〜50mmとするのが好ましく、これにより前記外端10o及び内端10iでの剛性段差の発生を抑える。
【0024】
このサイド補強ゴム層10は、カーカス6のプライ本体部6aのタイヤ軸方向内側(タイヤ内腔側)に配されるため、サイドウォール部3の曲げ変形時には、サイド補強ゴム層10には主として圧縮荷重が、またコード材を有するカーカスプライ6Aには主として引張荷重が作用する。ゴムは圧縮荷重に強く、かつコード材は引張荷重に強いため、上記のようなサイド補強ゴム層10の配設構造は、サイドウォール部3の曲げ剛性を効率良く高め、ランフラット走行時のタイヤの縦撓みを効果的に低減しうる。なおサイド補強ゴム層10のゴム硬度は、60゜以上、さらには65°以上であるのが好ましい。前記ゴム硬度が60゜未満であると、ランフラット走行時の圧縮歪が大きくなって、ランフラット性能が不充分となる。逆にゴム硬度が高すぎても、タイヤの縦バネ定数が過度に上昇し、本発明によっても乗り心地性を改善し得なくなる。このような観点より、前記サイド補強ゴム層10のゴム硬度の上限は80゜以下、さらには75゜以下が好ましい。又サイド補強ゴム層10の最大厚さtは、タイヤサイズや、タイヤのカテゴリ等によって適宜設定されるが、乗用車用タイヤの場合5〜20mmが一般的である。
【0025】
そして本発明では、ランフラット性能を維持しながら、前記サイド補強ゴム層10のゴムボリュームを最小限に抑え、タイヤの軽量化、及び乗り心地性の向上を図るために、タイヤ外面2Aを、特許第2994989号公報で提案する如き特殊プロファイルで形成している。
【0026】
詳しくは、タイヤ1を正規リムに装着しかつ正規内圧を充填した正規内圧状態でのタイヤ子午断面におけるタイヤ外面2Aを以下のように定める。
【0027】
先ず図4に示すように、タイヤ赤道面Cから前記タイヤ最大断面巾SWの45%の距離SPを隔てるタイヤ外面2A上の点をPとし、タイヤ赤道面Cとタイヤ外面2Aとが交わる点をタイヤ赤道点CPとするとき、タイヤ外面2Aの曲率半径RCは、前記タイヤ赤道点CPから前記点Pに至るまでの間で徐々に減少するように設定される。
【0028】
又前記タイヤ赤道面Cからタイヤ最大断面巾SWの半巾(SW/2)の60%、75%、90%及び100%の距離X60、X75、X90及びX100 を夫々隔てる各タイヤ外面2A上の点をP60、P75、P90及びP100 とする。又この各タイヤ外面2A上の点P60、P75、P90及びP100 と、前記タイヤ赤道点CPとの間の半径方向の距離をY60、Y75、Y90及びY100 とする。
【0029】
そして、前記正規内圧状態においてビードベースラインBLから前記タイヤ赤道点CPまでの半径方向高さであるタイヤ断面高さをSHとするとき、前記半径方向距離Y60、Y75、Y90及びY100 は、それぞれ以下の関係を満足することを特徴としている。
0.05< Y60 /SH ≦0.1
0.1< Y75 /SH ≦0.2
0.2< Y90 /SH ≦0.4
0.4< Y100 /SH ≦0.7
ここで、RY60=Y60/SH
RY75=Y75/SH
RY90=Y90/SH
RY100 =Y100 /SH
として前記関係を満足する範囲RYiを図5に例示する。図4、5のように前記関係を満足するプロファイルは、トレッドが非常に丸くなるため、フットプリントが、接地巾が小かつ接地長さを大とした縦長楕円形状となり、騒音性能とハイドロプレーニング性能とを向上しうることが、前記特許第2994989号公報で報告されている。なお前記RY60、RY75、RY90及びRY100 の値が、各下限値を下回ると、トレッド部2を中心としてタイヤ外面2Aが平坦化するため、従来タイヤとのプロファイルの差が少なくなる。逆に各上限値を上回ると、トレッド部2を中心としてタイヤ外面2Aが著しく凸状をなすため、接地巾が過小となり、通常走行において必要な走行性能を確保することができなくなる。
【0030】
なおタイヤでは、予めタイヤサイズを定めることにより、JATMA、ETRTOなどのタイヤの規格から、タイヤ偏平率、タイヤ最大断面巾、タイヤ最大高さなどを概ね定め得るため、前記RY60、RY75、RY90及びRY100 の範囲を容易に算出できる。従って、前記タイヤ外面2Aは、前記各位置におけるRY60、RY75、RY90及びRY100 の範囲を満たすように、かつ曲率半径RCが徐々に減少するように、前記タイヤ赤道点CPから前記点Pまで滑らかな曲線で描くことにより適宜定めうる。
【0031】
又前記タイヤは、前記正規内圧状態のタイヤに正規荷重の80%の荷重を負荷した状態において、前記タイヤ外面2Aが接地するタイヤ軸方向最外端間のタイヤ軸方向距離である接地巾CWを、前記タイヤ最大断面巾SWの50%〜65%の範囲とするのが好ましい。これは、前記接地巾CWが、前記タイヤ最大断面巾SWの50%未満の場合、通常走行において轍でふらつきやすくなるなどワンダリング性能が低下し、かつ接地圧の不均一化により偏摩耗しやすくなる。逆に、接地巾CWが、タイヤ最大断面巾SWの65%を超える場合には、接地巾が過大となって前述の通過騒音とハイドロプレーニング性能との両立が難しくなる。
【0032】
しかし本発明では、前記特殊プロファイルによる前述の作用効果以外に、該特殊プロファイが有する「サイドウォール部の領域が短い」という他の特徴に着目して達成された。即ち前記「サイドウォール部の領域が短い」という特徴を活かし、該特殊プロファイルをランフラットタイヤに採用することにより、サイド補強ゴム層10のゴムボリュームを低減でき、ランフラットタイヤにおける質量低下と乗り心地性の向上とを達成している。
【0033】
しかし、この特殊プロファイルをランフラットタイヤに採用した場合には、サイドウォール部3の領域が短いため、ランフラット走行時のサイドウォール部3の変形度合が大きく、前記サイド補強ゴム層10での亀裂損傷の発生がより顕著となる。
【0034】
そこで本発明では、前記サイド補強ゴム層10に隣接して配されかつタイヤ内腔面を形成するインナーライナゴム層12を、ブチル系ゴムを含むゴム成分100質量部に対して、平均粒子径が40〜100μmであるマイカを10〜100質量部含有させたマイカ配合ゴムで形成している。
【0035】
このようなマイカ配合ゴムは、インナーライナゴムをシート状に圧延する際、マイカ表面がシート表面に沿う向きに配向するため、優れた空気遮断効果を発揮できる。従って、その分、発熱性の高いブチル系ゴムの配合量を減じることができ、インナーライナゴム層10において、必要な耐空気透過性を維持しながら損失正接(tan δ)を例えば0.15以下に低く抑えることが可能となる。又マイカは、前記空気遮断効果と同様、加流成型時、隣接するサイド補強ゴム層10から硫黄がインナーライナゴム層12内に移行するのを遮断する効果を発揮でき、該硫黄の移行によるインナーライナゴム層12の高弾性化(硬質化)や耐亀裂成長性の低下を抑制できる。
【0036】
そして前記損失正接(tan δ)の低下と、硫黄の移行遮断との相乗効果により、ランフラット走行時におけるインナーライナゴム層12の亀裂発生を効果的に抑制しうる。そしてこれにより、該インナーライナゴム層12の亀裂成長に起因するサイド補強ゴム層10の亀裂損傷を防止でき、ランフラット耐久性を向上することができる。このランフラット耐久性の向上効果は、前記特殊プロファイルを採用したランフラットタイヤにおいて、より高く発揮できる。
【0037】
ここで、前記ゴム成分としては、少なくともブチル系ゴムを30〜90質量%含み、その残部ゴムとして、例えば天然ゴム(NR)、イソプレイゴム(IR)、スチレン・ブタジエンゴム(SBR)、ブタジエンゴム(BR)等のジエン系ゴムの一種若しくは複数種が使用できる。しかし、接着性や耐亀裂成長性の観点から、前記残部ゴムを、NRまたはIRと、BRとから構成するのが好ましい。
【0038】
前記ブチル系ゴムとしては、ブチルゴム、及びハロゲン化ブチルゴム等が挙げられるが、接着性や加硫速度の観点から、ハロゲン化ブチルゴムが好ましい。ゴム成分中におけるブチル系ゴムの含有率が30質量%未満になると、マイカを配合した場合にも、必要な耐空気透過性の維持が難しくなる。逆に90質量%を超えると、損失正接(tan δ)が依然大となるなど自己発熱による熱劣化を招き、インナーライナゴム層12における亀裂発生を抑制できなくなる。このような観点からブチル系ゴムの含有率の上限は、60質量%以下、さらには55質量%以下が好ましく、又下限は、35質量%以上が好ましい。
【0039】
BRとしては、タイヤ工業などにおいて一般的に使用されるものが使用できる。BRは、弾性に優れるなど高い耐亀裂成長性を有しかつ低発熱であるため、インナーライナゴムに好ましく含有しうる。前記ゴム成分中におけるBRの含有率は、10質量%以上、さらには12質量%以上が好ましく、10質量%未満では、BRの利点である耐亀裂成長性を発揮することができなくなる。なおBRの含有率の上限は、40質量%以下さらには30質量%以下が好ましく、40質量%を超えるとロールによる加工性が悪く、シート状に穴開きなく圧延するのが難しくなる。
【0040】
NR、IRとしては、タイヤ工業などにおいて一般的に使用されるものが使用できるが、破断特性や価格の観点からNRを用いることが好ましい。前記ゴム成分中におけるNRまたはIRの含有率は、20質量%以上、さらには30質量%以上が好ましく、20質量%未満では、破断特性が不充分となる。なおNRまたはIRの含有率の上限は、50質量%以下、さらには40質量%以下が好ましく、50質量%を超えると、ブチル系ゴムやBRの含有率が相対的に減じ、耐空気透過性や耐亀裂成長性に不利となる。
【0041】
次に、前記マイカ(雲母)として、マスコバイト(白雲母)、フロゴバイト(金雲母)およびバイオタイト(黒雲母)から選択される一種以上のものが好ましく採用しうる。特にフロゴバイト(金雲母)は、他のマイカよりも偏平率が大きく空気や硫黄の遮断効果に優れるため好ましい。前記マイカの平均粒子径は40μm以上、好ましくは45μm以上である。40μm未請では、空気や硫黄の遮断効果が充分発揮でない傾向がある。またマイカの平均粒子径の上限は、100μm以下、さらには70μm以下が好ましく、100μmをこえると、マイカが過大となり、逆にマイカ自体が基点となって亀裂を発生しやすくする。
【0042】
又マイカのアスペクト比(偏平率)は、50以上、さらには55以上が好ましい。アスペクト比が50未満では、充分な耐空気透過性の向上効果、及び硫黄の移行抑制効果が得られない。またアスペクト比の上限は、100以下、さらには70以下が好ましく、100を超えるとマイカの強度が低下することで、マイカに割れが生じやすくなる。ここで、前記「アスペクト比」とは、マイカにおける厚きに対する長径の比をいう。
【0043】
又マイカの含有量は、前記ゴム成分100質量部に対して10質量部以上、さらには30質量部以上が好ましい。含有量が10質量部未満では、インナーライナゴム層12において、必要な耐空気透過性を確保しながら、ブチル系ゴムの含有率を抑え、損失正接(tan δ)を充分に減じることが難しく、又硫黄の移行抑制効果が発揮できない。又マイカの含有量の上限は、50質量部以下、さらには45質量部以下、さらには40質量部以下が好ましく、50質量部を超えると、ゴムの引き裂き強度が減じて、亀裂が発生しやすくなる。
【0044】
このマイカは、ゴム成分との接着を高めるために、その表面の少なくとも一部を合成樹脂にて被覆するのが好ましい。この合成樹脂として、ウレタン樹脂、アクリル樹脂、エポキシ樹脂、ナイロン樹脂、ポリエステル樹脂などが挙げられるが、なかでも、ゴムとの相溶性の観点からウレタン樹脂、アクリル樹脂、エボキシ樹脂が好ましい。被覆方法としては、樹脂を溶融させ、その中にマイカを入れて撹拌したのち凝固させ、それを粉砕するなどの方法が用いうる。
【0045】
又前記インナーライナゴム層12には、補強用充填剤を含有することができる。補強用充填剤としては、カーボンブラック及び/又はシリカが好ましく、炭酸カルシウムは、核となって亀裂を誘発する恐れがあるため使用しないのが望ましい。
【0046】
カーボンブラック、シリカとしては、タイヤ工業などにおいて一般的に使用されるものが使用でき、その含有量は、ゴム成分100質量部に対して50質量部以下、さらには45質量部以下が好ましい。なお50質量部を超えると、発熱性が悪くなる傾向がある。又補強の観点から、カーボンブラック、シリカの含有量の下限は10質量部以上、さらには20質量部以上が好ましい。
【0047】
又前記インナーライナゴム層12には、可塑剤をさらに含有することが好ましく、この可塑剤としてパラフィン系、ナフテン系、アロマチック系のオイル等が挙げられる。可塑剤の含有量は、ゴム成分100質量部に対して4質量部以上、さらには6質量部以上が好ましく、4質量部未満では、マイカがゴムに分散し難くなり、また加工性を損ねる傾向となる。また可塑剤の含有量の上限は、20質量部以下、さらには16質量部以下が好ましく、20質量部を超えると未加流時の粘度が下がり、混練り時の加工性を損ねる(スリップトルク)傾向となる。なおインナーライナゴム層12には、さらにタイヤ工業においてー般的に使用される、老化防止剤、ステアリン酸、酸化亜鉛、加硫剤、加硫促進剤などを適宣配合することができる。
【0048】
なおインナーライナゴム層12の厚さは、特に規制されないが、従来タイヤと同様0.8〜2.5mmの範囲が好ましい。
【0049】
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
【実施例】
【0050】
図1に示す構造をなすタイヤサイズ245/40R18の乗用車用タイヤを表1の仕様で試作するとともに、各試供タイヤの、ランフラット耐久性をテストし、その結果を表1に記載した。表1に記載以外は同仕様である。なお表1のタイヤに用いたタイヤプロファイルの詳細は表2に示し、又は表3にはインナーライナゴム層のゴム組成、及び該ゴム組成品を加硫した試験サンプルの複素弾性率、損失正接、及び耐亀裂成長性を測定した。
【0051】
又カーカスは、プライ数(1枚)、コード(ポリエステル;1500dtex/2)、コード角度(90°)とした。又ベルト層は、プライ数(2枚)、コード(スチールコード;1×4/0.27)、コード角(+24°/−24°)とした。
【0052】
マイカは、株式会社レブコ性マイカS−200HG(アスペクト比50、平均粒子径50μm)のものを使用した。
【0053】
(1)複素弾性率、及び損失正接
粘弾性スペクトロメーターを用い、温度70℃、周波数10Hz、初期歪10%、動歪2%として測定した値で有り、数値が小なほど低発熱である。
【0054】
(2)耐亀裂成長性
JIS K6260に基づいてサンブルを作製し、屈曲亀裂成長試験を行ない、70%伸張を30万回繰り返してゴムシートを屈曲させたのち、発生した亀裂の長さを測定した。そして、測定値の逆数をとり、ゴムAを100とした指数で表示した。数値が大きいほど、耐亀裂成長性に優れている。
【0055】
(3)ランフラット耐久性
各供試タイヤをバルブコアを取り去ったリム(18×8.5JJ)にリム組し、デフレート状態でドラム試験機上を速度(80km/h)、縦荷重(4.14kN:正規荷重の65%の荷重)、室温(38±2℃)の条件にて、タイヤが破壊するまでの走行距離を測定した。結果は比較例1を100とする指数により表示しており、数値が大きいほどランフラット耐久性に優れている。
【0056】
(4)耐空気透過性
各供試タイヤをリム(18×8.5JJ)にリム組みし内圧(200kPa)を充填して30日間放置し、放置後の内圧と、放置前の内圧との比を比較した。数値が大きいほど、耐空気透過性に優れている。
【0057】
【表1】

【0058】
【表2】

【0059】
【表3】

【0060】
表1の如く実施例のタイヤは、インナーライナゴム層を改善することにより、ランフラット耐久性を向上しうるのが確認できる。又ランフラット耐久性の向上効果は、従来プロファイルのランフラットタイヤに比して、前記特殊プロファイルのランフラットタイヤにおいて、特に高く発揮されるのが確認できる。
【図面の簡単な説明】
【0061】
【図1】本発明のランフラットタイヤの一実施例を示す断面図である。
【図2】そのビード部を拡大して示す断面図である。
【図3】トレッド部を拡大して示す断面図である。
【図4】タイヤ外面のプロファイルを示す線図である。
【図5】タイヤ外面の各位置におけるRYiの範囲を示す線図である。
【図6】表1の比較例1、2のタイヤプロファイルを示す線図である。
【図7】従来のタイヤプロファイルの一例を示す線図である。
【符号の説明】
【0062】
2 トレッド部
3 サイドウォール部
4 ビード部
5 ビードコア
6 カーカス
6A カーカスプライ
7 ベルト層
7A、7B ベルトプライ
10 サイド補強ゴム層
12 インナーライナゴム層

【特許請求の範囲】
【請求項1】
トレッド部からサイドウォール部をへてビード部のビードコアに至るカーカスプライからなるカーカスと、トレッド部の内方かつ前記カーカスの半径方向外側に配されるベルト層と、サイドウォール部かつ前記カーカスの内側に配され最大厚さを有する中央部分から半径方向内外に厚さを減じてのびる断面三日月状のサイド補強ゴム層と、タイヤ内腔面をなすインナーライナゴム層とを具えるランフラットタイヤであって、
正規リムに装着されかつ正規内圧を充填した正規内圧状態におけるタイヤ子午断面において、
タイヤ赤道面Cからタイヤ最大断面巾SWの45%の距離SPを隔てるタイヤ外面上の点をPとするとき、
タイヤ外面の曲率半径RCが、タイヤ赤道点CPから前記点Pに至るまでの間で徐々に減少するとともに、
前記タイヤ赤道面Cから前記タイヤ最大断面巾SWの半巾(SW/2)の60%、75%、90%及び100%の距離X60、X75、X90及びX100 を夫々隔てるタイヤ外面上の各点と、タイヤ赤道点CPとの間の各半径方向距離をそれぞれY60、Y75、Y90及びY100 とし、かつタイヤ断面高さをSHとするとき、
0.05< Y60 /SH ≦0.1
0.1< Y75 /SH ≦0.2
0.2< Y90 /SH ≦0.4
0.4< Y100 /SH ≦0.7
の関係を満足する一方、
前記インナーライナゴム層は、ブチル系ゴムを30〜90質量%含むゴム成分100質量部に対して、平均粒子径が40〜100μmであるマイカを10〜100質量部含有させたことを特徴とするランフラットタイヤ。
【請求項2】
前記インナーライナゴム層の前記ゴム成分は、ブチル系ゴムを30〜60質量%と、天然ゴム又はイソプレンゴム20〜50質量%と、及びブタジエンゴム10〜40質量%とからなることを特徴とする請求項1記載のランフラットタイヤ。
【請求項3】
前記マイカは、アスペクト比を50〜100としたことを特徴とする請求項1又は2記載のランフラットタイヤ。
【請求項4】
前記インナーライナゴム層は、ゴム成分100質量部に対して、可塑剤を4〜20質量部、かつカーボンブラック及び/又はシリカを10〜50質量部含有させたことを特徴とする請求項1〜3の何れかに記載のランフラットタイヤ。
【請求項5】
前記ベルト層は、最も幅広のベルトプライのタイヤ軸方向のプライ巾BWが、前記タイヤ最大断面巾SWの0.70〜0.95倍であることを特徴とする請求項1〜4の何れかに記載のランフラットタイヤ。
【請求項6】
前記正規内圧状態のタイヤに正規荷重の80%の荷重を負荷した状態において、前記タイヤ外面が接地するタイヤ軸方向最外端間のタイヤ軸方向距離である接地巾CWは、前記タイヤ最大断面巾SWの50%〜85%であることを特徴とする請求項1〜5の何れかに記載のランフラットタイヤ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−69775(P2007−69775A)
【公開日】平成19年3月22日(2007.3.22)
【国際特許分類】
【出願番号】特願2005−259735(P2005−259735)
【出願日】平成17年9月7日(2005.9.7)
【出願人】(000183233)住友ゴム工業株式会社 (3,458)
【Fターム(参考)】