説明

一方向性弾性表面波変換器及びそれを用いた弾性表面波デバイス

【課題】励振電極間に浮き電極を配置した一方向性SAW変換器において、方向性を高め、設計を容易にした一方向性SAW変換器を提供することを目的とする。
【解決手段】一方向性変換器10は1基本区間当たり8本の電極指からなり、上下バスバーに接続された励振電極1,5と、上下バスバーに接続せず各々の一端を接続電極により電気的に短絡した短絡型浮き電極2,3,6,7と、上下バスバーに接続せず電気的に開放した開放型浮き電極4,8とを備える。そして、短絡型浮き電極指2、開放型浮き電極4、短絡型浮き電極6、開放型浮き電極8の各々の電極指の中心間距離、及び励振に寄与する励振電極1、短絡型浮き電極3、励振電極5、短絡型浮き電極7の各々の電極指の中心間距離をλ/4とし、且つ、励振電極1と短絡型浮き電極2との中心間距離をλ/8とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、励振電極の間隙に浮き電極を配置し弾性表面波の励振に方向性を付けた一方向性弾性表面波変換器及びそれを用いた弾性表面波デバイスに関する。
【背景技術】
【0002】
近年、弾性表面波(以下、SAWと称す)デバイスは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話等に多く用いられる。また、画像等のデータ通信の需要増により、携帯電話に用いられるIFフィルタにはより広帯域で低損失な特性が要求され、このような厳しい仕様を満たすフィルタとしてはトランスバーサル型SAWフィルタが適している。
【0003】
図7は従来のトランスバーサル型SAWフィルタの平面図を示している。圧電基板101の主表面上にSAWの伝搬方向に沿って入力用のIDT電極102と出力用のIDT電極103を所定の間隔をあけて配置すると共に、IDT電極102、103の間に入出力端子間の直達波を遮蔽するためのシールド電極104を配置する。前記IDT電極102、103は互いに間挿し合う複数の電極指を有する一対のくし形電極より構成されており、IDT電極102の一方のくし形電極を入力端子INに接続すると共に他方のくし形電極は接地し、IDT電極103の一方のくし形電極を出力端子OUTに接続すると共に他方のくし形電極を接地している。また、基板端面からの不要な反射波を抑圧するために、圧電基板101の長辺方向(SAWの伝搬方向)の両端に粘着材105を塗布している。
【0004】
ところで、図7のように電極指を正、負、正と順番に並べた所謂シングル(ソリッド)型でIDT電極を構成すると、SAWは伝搬方向に沿って左右に等しく伝搬するためフィルタの挿入損失が大きくなってしまうという問題があった。
【0005】
この問題を解決すべく、SAWの励振方向を一方向にして挿入損失の劣化を防いだSAW変換器が考えられてきた。図8は、M.Lewis:Low Loss SAW Devices Employing Single Stage Fabrication, IEEE Ultrason.Symp.Proc., pp.104-108 (1983).及び特許第2085072号公報、特許第2984523号公報、特許第3345609号公報に開示されているIDT電極内部に浮き電極を配置し、SAWの励振方向を一方向性としたSAW変換器(以下、反射バンク型SAW変換器と称す)を示している。反射バンク型SAW変換器110は、外部端子115に接続されたバスバー113から伸長する正電極指と接地されたバスバー114から伸長する負電極指を交互に配置したシングル電極116と、前記バスバー113、114のどちらにも電気的に接続されていない開放型浮き電極117から構成されている。弾性表面波の波長をλとした時、シングル電極116の正電極指と負電極指の中心間距離及び開放型浮き電極117の隣り合う電極指の中心間距離をそれぞれλ/2としている。そして、開放型浮き電極117の位置をシングル電極116の中心からλ/2だけ離れた位置からλ/8だけ右側にずらすことにより、図中左方向に強くSAWが励振する一方向性SAW変換器として動作する。
【0006】
次に、図9は、T.Kodama, H.Kawabata, Y.Yasuhara and H.Sato:Design of Low-loss SAW Filters Employing Distributed Acoustic Reflection Transducers, IEEE Ultrason.Symp.Proc., pp.59-64 (1986).にて提案されたDART(Distributed Acoustic Reflection Transducer)と呼ばれる構造である。このDARTの基本的な構造は、図9に示すように3本の電極指対で基本区間を構成し、これを複数回反復して配置することによりIDT電極を形成している。また、基本区間の各電極指の幅をW1=0.375λ、W2=W3=0.125λとし、左端を原点0とした時、各電極指の中心位置をd1=0.250λ、d2=0.625λ、d3=0.875λとしている。このDART構造は基本区間において幅の異なる電極指を配置して非対称な電極構成にすることにより、SAWの励振に方向性を付けている。
【0007】
次に、図10は浮き電極型内部反射一方向性変換器(Floating Electrode Uni-Directional Transducer:FEUDT)を示している。このFEUDTに関しては山之内和彦、古屋敷博美 内部反射すだれ状電極一方向性変換器を用いた弾性表面波フィルタ 電子通信学会技術研究報告 US84−18,PP.95−100にて詳細に述べられている。同図に示すFEUDTはλ/12型FEUDTと呼ばれる構造であり、正電極指132と負電極指134の中心からλ/12だけずれた位置に、開放型浮き電極136と短絡型浮き電極138を配置している。このように開放型浮き電極を正負電極指の中心からずらして配置するとある方向性が得られ、同様に短絡型浮き電極を正負電極指の中心から開放型と反対方向にずらして配置すると開放型とは逆の方向性が得られる。そして、これらの浮き電極を組み合わて励振中心と反射中心の位相差をλ/8に近づけることにより、一方向性SAW変換器として機能させている。
【特許文献1】特許第2085072号公報
【特許文献2】特許第2984523号公報
【特許文献3】特許第3345609号公報
【特許文献4】特開昭60−263505号
【非特許文献1】T.Kodama, H.Kawabata, Y.Yasuhara and H.Sato:Design of Low-loss SAW Filters Employing Distributed Acoustic Reflection Transducers, IEEE Ultrason.Symp.Proc., pp.59-64 (1986).
【非特許文献2】山之内和彦、古屋敷博美 内部反射すだれ状電極一方向性変換器を用いた弾性表面波フィルタ 電子通信学会技術研究報告 US84−18,PP.95−100
【非特許文献3】M.Takeuchi and K.Yamanouchi: New Type of SAW Reflectors and Resonators Consisting of Reflecting Elements with Positive and Negative Reflection Coefficients, IEEE Trans.Ultrason. Ferroelec. Freq. Contr.,vol.33, No.4, pp.369-374 (1986).
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、図8に示す反射バンク型SAW変換器においては、励振電極群の一部を間引いてSAWを反射させる為の開放型浮き電極を配置する構造であるので、励振効率を犠牲にしてSAWの反射量を増やさなければならず、励振効率と反射効率とを両立させることが困難であった。また、一方向性SAW変換器を設計シミュレーションする際には、SAWの波長1λに相当する基本区間を幾つか組み合わせて最良な特性を模索するのが一般的であるが、前記反射バンク型SAW変換器は1つの基本区間内にSAWの励振と反射を同時に存在させることができないため、励振電極の間引き方や開放型浮き電極の本数、配置方法によって特性が大きく変化してしまうので設計シミュレーションが非常に複雑となっていた。
【0009】
一方、図9に示すDART構造は基本区間においてSAWの励振と反射を同時に存在させることができるため、設計シミュレーションを容易に行えるという利点がある。しかし、広帯域なSAWデバイスを実現するために電気機械結合係数が大きい圧電基板を用いると、全て短絡型の電極で構成しているDART構造では再励起効果による反射を利用できないため、他の開放型電極を利用している変換器と比較して一方向性が劣化してしまう欠点があった。これは、短絡型電極は入射波が入ると電極の凸凹形状により生じる機械的反射と圧電短絡効果により生じる電気的反射を生じさせ、開放型電極は機械的反射と再励起効果による反射を生じさせるが、再励起効果による反射は電気機械結合係数が大きいほど反射量が大きくなる。例えばLN基板においては電気的反射よりも再励起効果による反射の方が大きくなる。従って、広帯域化を図るべく電気機械結合係数の大きい圧電基板を選択する場合は、DART構造のような短絡型電極を用いた一方向性変換器より開放型電極を用いた一方向性変換器の方が高い方向性が得られるのである。
【0010】
また、図10に示すFEUDTについては、開放型浮き電極と短絡型浮き電極を非対称に配置し励振中心をずらすことにより励振中心と反射中心の位相差を一方向性が最も強くなるλ/8に近づける動作原理であるが、言い換えれば励振中心のずれを生じさせないと強い方向性が得られないとも言える。一般的に、一方向性変換器を用いたSAWデバイスにおいては群遅延特性や位相直線性を改善するために、1つの基本区間内において局所的に開放型浮き電極を短絡型浮き電極に変える等して反射を間引く手法が用いられる。しかしながら、FEUDTにおいて群遅延特性や位相直線性を改善するために基本区間の反射を間引いてしまうと、励振中心と反射中心の位相差がλ/8からずれてしまい一方向性が損なわれてしまうという問題があった。
【0011】
本発明は上記問題点を解決するためになされたものであって、方向性を高め、設計を容易にした一方向性SAW変換器を提供し、本発明の一方向性SAW変換器を用いてSAWデバイスを構成した時に低損失で広帯域な特性を実現することを目的とする。
【課題を解決するための手段】
【0012】
上記課題を解決するために本発明に係る一方向性SAW変換器及びそれを用いたSAW変換器の請求項1に記載の発明は、圧電基板上に配置してSAW素子を構成するためのSAW変換器であって、前記SAW変換器は、励起されるSAWの波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、前記基本区間のうち少なくとも1つは、第1のバスバーに接続された第1の励振電極と、第2のバスバーに接続された第2の励振電極と、前記第1及び第2のバスバーに接続せず電気的に開放した第1及び第2の開放型浮き電極と、前記第1及び第2のバスバーに接続せず各々の電極指の一端を接続電極により短絡した第1乃至第4の短絡型浮き電極とを備え、弾性表面波の伝搬方向に沿って順に、第1の励振電極、第1の短絡型浮き電極、第2の短絡型浮き電極、第1の開放型浮き電極、第2の励振電極、第3の短絡型浮き電極、第4の短絡型浮き電極、第2の開放型浮き電極が配置されており、前記第1の励振電極と前記第2の短絡型浮き電極と前記第2の励振電極と前記第4の短絡型浮き電極の各々の電極指の中心間距離、及び前記第1の短絡型浮き電極と前記第1の開放型浮き電極と前記第3の短絡型浮き電極と前記第2の開放型浮き電極の各々の電極指の中心間距離はλ/4であり、且つ、前記第1の励振電極と前記第1の短絡型浮き電極の中心間距離はλ/8であることを特徴とする。
【0013】
請求項2に記載の発明は、圧電基板上に配置してSAW素子を構成するためのSAW変換器であって、前記SAW変換器は、励起されるSAWの波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、前記基本区間のうち少なくとも1つは、第1のバスバーに接続された第1の励振電極と、第2のバスバーに接続された第2の励振電極と、前記第1及び第2のバスバーに接続せず電気的に開放した第1及び第2の開放型浮き電極と、前記第1及び第2のバスバーに接続せず各々の電極指の一端を接続電極により短絡した第1乃至第4の短絡型浮き電極とを備え、弾性表面波の伝搬方向に沿って順に、第1の励振電極、第1の短絡型浮き電極、第2の短絡型浮き電極、第1の開放型浮き電極、第2の励振電極、第3の短絡型浮き電極、第4の短絡型浮き電極、第2の開放型浮き電極が配置されており、前記第1の励振電極と前記第2の短絡型浮き電極と前記第2の励振電極と前記第4の短絡型浮き電極の各々の電極指の中心間距離、及び前記第1の短絡型浮き電極と前記第1の開放型浮き電極と前記第3の短絡型浮き電極と前記第2の開放型浮き電極の各々の電極指の中心間距離はλ/4であり、且つ、前記第1の励振電極と前記第1の短絡型浮き電極の中心間距離はλ/8±α(ただし、α≦λ/16)であることを特徴とする。
【0014】
請求項3に記載の発明は、前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、L=Ls=Lo=λ/16とすることを特徴とする。
【0015】
請求項4に記載の発明は、前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、L=λ/16とし、且つ、Ls≠Lo≠λ/16とすることを特徴とする。
【0016】
請求項5に記載の発明は、前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、λ/16<L<λ/8とし、且つ、Ls=Lo=λ/16とするか、或いはLs≠Lo≠λ/16とすることを特徴とする。
【0017】
請求項6に記載の発明は、前記基本区間を構成する電極のうち少なくとも1本は、弾性表面波の伝搬方向に直交する交差長方向の長さが部分的に変化していることを特徴とする。
【0018】
請求項7に記載の発明は、前記圧電基板はニオブ酸リチウムであることを特徴とする。
【0019】
請求項8に記載の発明は、前記一方向性弾性表面波変換器を少なくとも1つ配置した弾性表面波デバイスであることを特徴とする。
【発明の効果】
【0020】
請求項1、3に記載の発明によれば、基本区間において第1の励振電極と第2の励振電極の中心間距離をλ/2とし、前記励振電極の反射波を打ち消すように第2及び第4の短絡型浮き電極を配置することにより励振効率を高め、更に、第1及び第3の短絡型浮き電極と第1及び第2の開放型浮き電極により正負反射型反射エレメント(Positive and Nagative Reflectivity:PNR)を構成して反射量を高めたので、高い一方向性が得られ、また、1基本区間内にSAWの励振と反射が同時に存在するので設計を容易に行える利点がある。
【0021】
請求項2に記載の発明によれば、第1の励振電極と第1の短絡型浮き電極の中心間距離をλ/8±α(ただし、α≦λ/16)とすることにより、励振電極に対し開放型及び短絡型浮き電極の配置を対称に近づけたので、励振中心のずれによる一方向性の劣化を防ぐことができる。
【0022】
請求項4、5に記載の発明によれば、基本区間においてPNRを構成する第1及び第3の短絡型浮き電極の電極指幅Lsと第1及び第2の開放型浮き電極の電極指幅Loとを互いに異ならせることにより基本区間のSAWの反射量を調節したので、更なる高性能化が可能となる。
【0023】
請求項6に記載の発明によれば、基本区間を構成する電極指の交差長方向の長さを変化させることによりSAWの励振又は反射に重み付けを施したので、本発明の一方向性SAW変換器を用いてSAWデバイスを構成した時に良好な位相直線性や群遅延特性を実現できる。
【0024】
請求項7に記載の発明によれば、圧電基板に電気機械結合係数の高いニオブ酸リチウムを用いたので、本発明の一方向性SAW変換器を用いてSAWデバイスを構成した場合に広帯域な特性を実現できる。
【0025】
請求項8に記載の発明によれば、本発明の一方向性SAW変換器を用いてSAWデバイスを構成すれば、低損失で広帯域な特性を実現できる。
【発明を実施するための最良の形態】
【0026】
以下、本発明を図面に図示した実施の形態例に基づいて詳細に説明する。図1は本発明に係る一方向性SAW変換器のSAWの波長1λに相当する基本区間を示している。一方向性変換器10は1基本区間当たり8本の電極指からなり、上下バスバーに接続された励振電極1,5と、上下バスバーに接続せず各々の一端を接続電極により電気的に短絡した短絡型浮き電極2,3,6,7と、上下バスバーに接続せず電気的に開放状態にある開放型浮き電極4,8とを備えており、電極指幅は全てλ/16としている。なお、以下に示す実施例においては、圧電基板に電気機械結合係数が大きく広帯域な特性を実現できる128°回転YカットX伝搬ニオブ酸リチウム(LN)基板を用いている。
【0027】
本発明の一方向性SAW変換器の動作を説明するにあたり、前記一方向性SAW変換器はSAWの励振に寄与する部分と、SAWの反射に寄与する部分とに分けることができる。まず、図2(a)は前記一方向性SAW変換器の励振に寄与する電極指を抜き出した図を示しており、励振電極1、短絡型浮き電極3、励振電極5、短絡型浮き電極7の各々の中心間距離をλ/4としている。このように、励振電極の中間位置に短絡型浮き電極を配置することにより、励振電極で生じる反射波を打ち消すことができる。また、励振電極はλ/2周期で配置されているので高い励振効率が得られる。なお、この時の励振中心は励振電極1の中心位置Aとなる。
【0028】
次に、図2(b)は前記一方向性SAW変換器における反射に寄与する電極指を抜き出した図を示している。これは特許文献4及び非特許文献3に開示されている正負反射型反射エレメント(Positive and Nagative Reflectivity:PNR)と同じ構造であり、短絡型浮き電極2、開放型浮き電極4、短絡型浮き電極6、開放型浮き電極8の中心間距離を各々λ/4とすることにより、短絡型浮き電極の反射波と開放型浮き電極の反射波の位相が同相となり、各電極指の反射波が互いに加え合わされるので大きな反射量が得られる。なお、開放型浮き電極の反射係数が負であり短絡型浮き電極の反射係数が正の場合において、反射の中心は電極指2の中心位置Bとなる。
【0029】
そして、励振に寄与する電極指と反射に寄与する電極指を組み合わせた時に、図1に示すように励振中心Aと反射中心Bの間隔は一方向性が最も高まるλ/8となり、図中右方向に強くSAWを励振させる一方向性SAW変換器として動作する。
【0030】
ここで、図3は図1に示す基本区間を100λ配置して一方向性SAW変換器を構成した時の方向性を表す実測値のデータを示しており、横軸は周波数ωを中心周波数ωoで規格化した周波数ω/ωoを、縦軸は図1の基本区間において右方向(順方向)に伝搬する励振波と左方向(逆方向)に伝搬する励振波のエネルギー比(dB)を方向性の強度として表している。なお、この時の電極材料はAlを主成分とする金属とし、電極膜厚は波長換算で0.3%λとしている。同図に示すように、ω/ωo=1、即ち中心周波数付近においては方向性が高まっており、ω/ωo=1から離れるほど方向性が弱まっていく様子が分かる。従って、本発明の一方向性SAW変換器を用いてフィルタを構成すれば、低損失な通過特性を実現することができる。また、圧電基板に電気機械結合係数の高い128°回転YカットX伝搬ニオブ酸リチウムを用いているので広帯域で且つ低損失な特性も実現することができる。
【0031】
本発明の一方向性SAW変換器は1基本区間の中に8本もの電極指を配置した構造であるので、各々の電極指幅が細くなってしまうのが難点であるが、中心周波数が60(MHz)以下のIFフィルタ等に本発明の一方向性SAW変換器を適用した場合は、基本区間λが100μm以上と極めて大きくなるので電極形成に何ら問題はない。
【0032】
また、図3に示されている通り、本発明の一方向性SAW変換器においては電極膜厚を0.3%λ程度に薄くしても高い一方向性が得られることが確認された。従って、中心周波数が60(MHz)以下の波長λが大きいフィルタ等においても成膜時間を短くできる上、電極膜厚のばらつきによる周波数変動量も低減できるため製造効率が良い。また、本発明の一方向性SAW変換器は1基本区間内にSAWの励振と反射を同時に存在させることができるので、設計シミュレーションが非常に容易である。更に、FEUDTのように励振中心をずらすことによって一方向性を得るものではないので、局所的に反射間引きを施しても一方向性が損なわれないという利点がある。
【0033】
前述の非特許文献3によれば、PNR構造において4本の電極指を各々の中心間距離がλ/4となるように配置した状態で2本の短絡型浮き電極の幅と2本の開放型浮き電極の幅を各々変化させることにより、反射量を調節できることが開示されている。本発明の一方向性SAW変換器においても、PNRを構成する短絡型浮き電極2,6の幅と開放型浮き電極4,8の幅を各々変化させることにより反射量を調節できる。以下、実施例に基づき説明する。
【0034】
図4は、本発明の第2の実施例に係る一方向性SAW変換器の基本区間を示している。一方向性SAW変換器50の励振に寄与する励振電極1,5及び短絡型浮き電極3,7の電極指幅をLとし、PNRを構成する短絡型浮き電極2,6の電極指幅をLs、開放型浮き電極4,8の電極指幅をLoとした時に、(a)はLs≠Lo≠λ/16,L=λ/16としており、(b)はLs≠Lo≠λ/16,λ/16<L<λ/8としている。このようにPNRを構成する短絡型浮き電極と開放型浮き電極の電極指幅を互いに異ならせることにより反射量を調節することが可能となり、また、(b)に示すように励振に寄与する電極指幅を大きくすることで励振効率をより高めることができ、更なる高性能化が可能となる。
【0035】
ところで、第1及び第2の実施例に係る一方向性SAW変換器の構造は、いずれも励振電極に対し開放型浮き電極と短絡型浮き電極が非対称に配列されているため、励振中心にずれが生じてしまう。このずれは微々たる量ではあるが、更なる高性能化が要求された場合はこの励振中心のずれを補正する必要がある。
【0036】
図5は本発明の第3の実施例に係る一方向性SAW変換器を示しており、第1及び第2の実施例と同様に、一方向性SAW変換器60は励振に寄与する励振電極1、短絡型浮き電極3、励振電極5、短絡型浮き電極7の各々の電極指の中心間距離、及びPNRを構成する短絡型浮き電極指2、開放型浮き電極4、短絡型浮き電極6、開放型浮き電極8の各々の電極指の中心間距離をλ/4としている。本実施例の特徴は、励振電極1と短絡型浮き電極2との中心間距離をλ/8+αとしてPNRを構成する4本の電極指の位置をずらしているところにある。なお、このαの値は、圧電基板や電極材料、電極設計により異なるが、α≦λ/16の小さな値になることが実験等により確認されている。このように、励振電極に対し短絡型及び開放型浮き電極指の位置を対称に近づけることで高い一方向性を維持できる。
【0037】
また、前述の一方向性SAW変換器を用いてSAWデバイスを構成する場合、励振又は反射に重み付けを施すことにより更なる高性能化が可能である。図6は、本発明の第4の実施例に係る一方向性SAW変換器を示しており、(a)に示す一方向性SAW変換器70は励振電極5の交差長方向の電極指の長さを短くした構造であり、(b)に示す一方向性SAW変換器80は励振電極5の交差長方向の長さを短くし、更にその上部にダミー電極を形成した構造である。このように、励振電極に重み付けを施し局所的に位相速度を変化させることにより、SAWデバイスを構成した時に良好な位相直線性や群遅延特性を得ることができる。同様に、PNRを構成する短絡型浮き電極2,6及び開放型浮き電極4,8の交差長方向の電極指の長さを変化させることにより反射の重み付けを施すことも可能である。
【0038】
これまで圧電基板に128°回転YカットX伝搬ニオブ酸リチウムを用いた例について説明したが、本発明はこれに限定されるものではなく、圧電基板に水晶、タンタル酸リチウム、四硼酸リチウム、ランガサイト等に用いた場合にも適用できることは言うまでもない。、また、SAWデバイスを実際に製造する上で電極指幅を正確に一致させることは困難であり、製造ばらつきを考慮すると±λ/40程度の製造誤差が生じてしまうことが考えられるが、本発明の一方向性SAW変換器においてはこの程度の製造誤差の範囲内であれば特性上何ら影響を及ぼさない。
【図面の簡単な説明】
【0039】
【図1】本発明の第1の実施例に係る一方向性SAW変換器を説明する図である。
【図2】本発明の一方向性SAW変換器の動作原理を説明する図である。
【図3】本発明の一方向性SAW変換器の規格化周波数に対する方向性の強度を示すデータである。
【図4】本発明の第2の実施例に係る一方向性SAW変換器を説明する図である。
【図5】本発明の第3の実施例に係る一方向性SAW変換器を説明する図である。
【図6】本発明の第4の実施例に係る一方向性SAW変換器を説明する図である。
【図7】従来のトランスバーサル型SAWフィルタを説明する図である。
【図8】反射バンク型一方向性SAW変換器を説明する図である。
【図9】DART構造を説明する図である。
【図10】FEUDT構造を説明する図である。
【符号の説明】
【0040】
1 励振電極
2 短絡型浮き電極
3 短絡型浮き電極
4 開放型浮き電極
5 励振電極
6 短絡型浮き電極
7 短絡型浮き電極
8 開放型浮き電極
A 励振中心
B 反射中心
10,40,50,60,70,80 一方向性SAW変換器

【特許請求の範囲】
【請求項1】
圧電基板上に配置して弾性表面波素子を構成するための弾性表面波変換器であって、
前記弾性表面波変換器は、励起される弾性表面波の波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、
前記基本区間のうち少なくとも1つは、第1のバスバーに接続された第1の励振電極と、第2のバスバーに接続された第2の励振電極と、前記第1及び第2のバスバーに接続せず電気的に開放した第1及び第2の開放型浮き電極と、前記第1及び第2のバスバーに接続せず各々の電極指の一端を接続電極により短絡した第1乃至第4の短絡型浮き電極とを備え、弾性表面波の伝搬方向に沿って順に、第1の励振電極、第1の短絡型浮き電極、第2の短絡型浮き電極、第1の開放型浮き電極、第2の励振電極、第3の短絡型浮き電極、第4の短絡型浮き電極、第2の開放型浮き電極が配置されており、
前記第1の励振電極と前記第2の短絡型浮き電極と前記第2の励振電極と前記第4の短絡型浮き電極の各々の電極指の中心間距離、及び前記第1の短絡型浮き電極と前記第1の開放型浮き電極と前記第3の短絡型浮き電極と前記第2の開放型浮き電極の各々の電極指の中心間距離はλ/4であり、且つ、前記第1の励振電極と前記第1の短絡型浮き電極の中心間距離はλ/8であることを特徴とした一方向性弾性表面波変換器。
【請求項2】
圧電基板上に配置して弾性表面波素子を構成するための弾性表面波変換器であって、
前記弾性表面波変換器は、励起される弾性表面波の波長λに相当する幅を有した基本区間を複数個連結した構成を備えており、
前記基本区間のうち少なくとも1つは、第1のバスバーに接続された第1の励振電極と、第2のバスバーに接続された第2の励振電極と、前記第1及び第2のバスバーに接続せず電気的に開放した第1及び第2の開放型浮き電極と、前記第1及び第2のバスバーに接続せず各々の電極指の一端を接続電極により短絡した第1乃至第4の短絡型浮き電極とを備え、弾性表面波の伝搬方向に沿って順に、第1の励振電極、第1の短絡型浮き電極、第2の短絡型浮き電極、第1の開放型浮き電極、第2の励振電極、第3の短絡型浮き電極、第4の短絡型浮き電極、第2の開放型浮き電極が配置されており、
前記第1の励振電極と前記第2の短絡型浮き電極と前記第2の励振電極と前記第4の短絡型浮き電極の各々の電極指の中心間距離、及び前記第1の短絡型浮き電極と前記第1の開放型浮き電極と前記第3の短絡型浮き電極と前記第2の開放型浮き電極の各々の電極指の中心間距離はλ/4であり、且つ、前記第1の励振電極と前記第1の短絡型浮き電極の中心間距離はλ/8±α(ただし、α≦λ/16)であることを特徴とした一方向性弾性表面波変換器。
【請求項3】
前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、L=Ls=Lo=λ/16とすることを特徴とした請求項1又は2に記載の一方向性弾性表面波変換器。
【請求項4】
前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、L=λ/16とし、且つ、Ls≠Lo≠λ/16とすることを特徴とした請求項1又は2に記載の一方向性弾性表面波変換器。
【請求項5】
前記第1及び第2の励振電極と前記第2及び第4の短絡型浮き電極の電極指幅をL、前記第1及び第3の短絡型浮き電極の電極指幅をLs、前記第1及び第2の開放型浮き電極の電極指幅をLoとした時に、λ/16<L<λ/8とし、且つ、Ls=Lo=λ/16とするか、或いはLs≠Lo≠λ/16とすることを特徴とした請求項1又は2に記載の一方向性弾性表面波変換器。
【請求項6】
前記基本区間を構成する電極のうち少なくとも1本は、弾性表面波の伝搬方向に直交する交差長方向の長さが部分的に変化していることを特徴とする請求項1乃至5のいずれかに記載の一方向性弾性表面波変換器。
【請求項7】
前記圧電基板はニオブ酸リチウムであることを特徴とした請求項1乃至6のいずれかに記載の一方向性弾性表面波変換器。
【請求項8】
請求項1乃至7のいずれかに記載の一方向性弾性表面波変換器を少なくとも1つ配置した弾性表面波デバイス。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−157536(P2006−157536A)
【公開日】平成18年6月15日(2006.6.15)
【国際特許分類】
【出願番号】特願2004−345782(P2004−345782)
【出願日】平成16年11月30日(2004.11.30)
【出願人】(000003104)エプソントヨコム株式会社 (1,528)
【Fターム(参考)】