説明

低コストのペプチド製造

本発明は、微生物を使用することによる、抗菌性ペプチド(AMP)を含む様々なペプチドの低コスト製造方法に関する。本発明の方法は、この分野でこれまでに知られている方法と比較して、ペプチド/AMPの非常に改善された収量を可能にする。本発明の方法はまた、驚くべきことに、AMPおよび他のペプチドを製造するためにシュードモナス・フルオレセンスの使用を可能にする。本発明の方法の構成要素はいくつかあり、それらは単独または組合せで使用することができる。本発明の方法は、コンカテマー前駆体でのペプチド/AMPの製造を規定する。本発明の方法はまた、モノマーをマルチマーに組み立てる新規な方法、および、マルチマーを切断して、活性なモノマーを得る新規な方法を提供する。本発明の方法はまた、融合タンパク質を製造するためにキャリアペプチドに融合されたこれらのマルチマーの使用に関する。好ましくは、マルチマーおよび融合タンパク質(キャリアポリペプチドを有するマルチマー)はともに電荷均衡を欠いている。驚くべきことに、マルチマー構築物における多数コピーのAMPの正荷電を相殺することは必ずしも必要でないことが明らかにされた。従って、本発明の方法は、より広範囲の様々なマルチマーおよびキャリアペプチドの使用を可能にする。

【発明の詳細な説明】
【背景技術】
【0001】
様々なタンパク質およびペプチドがヒトの健康(およびその他)のために有用かつ有益である。例えば、定義のとおりの、抗生物質特性を有する広範囲の種類の抗菌性ペプチド(AMP)が存在する。これらのペプチドは、経済的に製造することができるならば、治療剤、抗感染剤、消毒剤および保存剤として幅広く使用される可能性を有している。
【0002】
他のタイプの小ペプチドには、広範囲の治療的用途を有するホルモンが含まれる。
【0003】
抗菌性ペプチドは、哺乳動物、鳥類、爬虫類、昆虫および植物を含む多くのタイプの生物の天然の抗微生物防御の天然成分である。多くのタイプの抗菌性ペプチドが存在し、また、これらのペプチドの多くの天然の供給源が存在する。多くの種類の天然AMPが命名されている。例えば、カエルから得られるマガイニン類(例えば、Zasloff他(1987)を参照のこと);カイコガから得られるアタシン類およびセクロピン類(例えば、Bowman他(1983)を参照のこと);ウサギ、ヒトおよび他の哺乳動物から得られるディフェンシン類(例えば、Pardi他(1992)を参照のこと);雌牛から得られるインドリシジン類およびバクテレシン類(例えば、Selsted他(1992)およびNiidome他(1999)を参照のこと);ならびに、ミツバチから得られるアピダエシン類(例えば、Casteels他(1989)を参照のこと)がある。国際特許出願公開WO00/31729もまた参照のこと。
【0004】
さらに、様々なAMPが、節足動物(カニ、エビ、カブトガニ、クモ、サソリ)および下等無脊椎動物(ミミズ、軟体動物(molusc)および海綿)によって産生されている。微生物もまたAMPを産生しており、そのような微生物には、粘液細菌、放線菌、真性細菌、菌類(子嚢菌類および担子菌類の両方)、ならびに原生生物(アメーバなど)が含まれる。表1を参照のこと。
【0005】
【表1】

【0006】
いくつかのAMPおよび構造的に類似するペプチドが、ガン細胞に対する選択的な活性を有することが見出されている。例えば、国際特許出願公開WO97/33908(CSIRO)および同WO90/12866(ルイジアナ州立大学)を参照のこと。人為的なAMP配列および抗腫瘍ペプチド配列を、天然アナログの改変によって合成すること(例えば、米国特許第5,994,306号(Intrabiotics)を参照のこと)、または、ペプチド構造/活性の関係の一般的な原理からの設計によって合成すること(例えば、米国特許第5,861,478号(Helix Biomedix)を参照のこと)、または、ランダムな組合せ体のスクリーニング(例えば、米国特許第5,504,190号(Torrey Pines Institute)を参照のこと)によって行うことさえもまた可能である。
【0007】
典型的なAMPは長さが約10アミノ酸から50アミノ酸である。これらのペプチドは、塩基性アミノ酸(リシンおよびアルギニン)が比較的多い傾向を有しており、従って、(正味の正荷電を有して)カチオン性である傾向がある。AMPは自然界では両親媒性である(すなわち、分子の一部が親水性であり、その一方で、それ以外の部分は疎水性である)。広く研究されているが、AMPの作用モードは依然として科学的議論の対象である。多くの場合、データは、両親媒性ペプチドが、細孔または通路を膜に形成するように組織化することを示唆している。例えば、Durell他(1992)、Biophysical Journal、63:1623〜1631を参照のこと。別の場合には、AMPは、膜との「カーペット様」の会合を形成することによって膜を破壊するようである。例えば、Shai他(1995)、Biochemistry、34:11479〜88を参照のこと。これは、細胞膜の脱分極および必須細胞成分の喪失を引き起こすことによって微生物を破壊し、殺す。
【0008】
AMPは、広い作用スペクトルの抗菌活性を有している。このことは、AMPを医薬用の抗生物質として使用することの注目される局面の1つである。様々な典型的な化学的抗生物質に対して耐性である病原性微生物の出現がますます拡大していることに照らして、抗菌性ペプチド(AMP)を、経済的に製造することができるならば、典型的な化学的抗生物質の代替物として使用することが注目されている。
【0009】
AMPは、治療剤(例えば、米国特許第6,132,775号(ニューヨーク大学)を参照のこと)、抗感染剤(例えば、米国特許第6,071,879号(オクラホマ大学)を参照のこと)、消毒薬(例えば、Jaynes他[1996]、CLAO J.、22:114〜7を参照のこと)、保存剤(例えば、国際特許出願公開WO00/01400(Assoc.Cape Cod Inc.)を参照のこと)として、また、食品安全性(例えば、Padgett他[1988]、Journal of Food Protection、61:1330〜1335を参照のこと)のために広範囲に使用できる可能性を有している。AMPおよびAMP様ペプチドはまた、レトロウイルス(例えば、Tamamura他[1998]、Bioorganic and Medicinal Chemistry、6:231〜238を参照のこと)を含めて、ガンおよびウイルスに対する治療的使用のために注目されている(例えば、Egal他[1999]、International Journal of Antimicrobial Agents、13:57〜60を参照のこと)。同様に、主として遺伝子組換え植物法を使用することによって、植物病の蔓延防止のためにAMPを使用することにもかなり注目されている。例えば、Norelli他(1990)、Phytopathology、89:S56を参照のこと。
【0010】
しかしながら、AMPまたは他の短いペプチド配列の大規模な治療的使用および関連する使用に対する実際の制限は、それらは、大量に製造するためには高価(および困難/非効率的)であるということである。例えば、AMP(および他のペプチドまたはタンパク質)の化学的なペプチド合成は非常にコストがかかる。
【0011】
治療的または機能的(例えば、触媒作用的)に重要な異種タンパク質の微生物における合成的な製造が達成されている。例えば、Swartz,J.R.(2001)、Current Opinion in Biotechnology、12:195〜201を参照のこと。ポリペプチドを製造するそのような方法は、固相合成を上回る利点をいくつかもたらす可能性を有しており、そのような利点には、配列忠実性、利便性、低コスト、および、長いポリペプチド/タンパク質を製造することができることが含まれる。あるタイプのタンパク質およびポリペプチドの微生物による製造は好都合かつ費用効果的であり得るが、そのような技術は何にでも適用することができず、多くの場合、様々な制限が明らかである。これらの制限には、1)低い収率、2)誤って折り畳まれた不活性なタンパク質の蓄積、3)微生物成長の阻害、および4)ポリペプチド(特に、低分子量のポリペプチド)の検出または単離/精製が困難であることを挙げることができる。
【0012】
全体的なタンパク質収率を改善するために、より大きい融合タンパク質の一部として小ペプチドを生物学的に製造する試みがなされている。例えば、米国特許第6,242,219号および同第6,274,344号(Xoma Corp.)は、キャリアタンパク質に融合された(かつ、そのキャリアタンパク質から切断され得る)殺菌性の/透過性増大タンパク質(BPI)に由来するペプチドに関する。’219号特許は、キャリアからのペプチドの同時的な酸溶解および切断に関する。Asp−Pro連結がペプチドとキャリアとの間で使用され得る。’344号特許は、BPIのように、キャリアはカチオン性であることが可能であることを示している。
【0013】
小ペプチドは、細菌内の天然のプロテアーゼによる分解を極めて受けやすい。小ペプチドは、AMPを含めて、自然界では、マルチペプチド前駆体の一部として産生される場合がある。Casteels−Josson他(1993)、EMBO Journal、12(4):1569〜1578。昆虫のニューロペプチド(短いペプチド)は、同様な様式で自然界では産生されるようである。例えば、Rao他(1996)、Gene、17:1〜5を参照のこと。しかしながら、天然の事象をインビトロで繰り返すことは極めて困難であり得る。例えば、多数コピーの所望するDNAフラグメントを容易に切断可能な様式で組み立て、発現することは、手間および費用のかかるプロセスであり得る。多数コピーのクローン化されたDNAセグメントを増幅することに関する背景については、より一般的には、例えば、Cohen他(1986)、DNA、5(4):334〜345(これは、DNAフラグメントの直列反復を使用して逆向きにされた反復構造を有するマルチマーを製造することに関する)(ポリオーマウイルスDNAがモノマーとして使用された);および、Kim他(1988)、Gene、71:1〜8(これは、クローン化されたDNAを直列マルチマー(この場合、モノマーは非対称な付着末端を有する)として増幅することに関連する)を参照のこと。
【0014】
従って、小ペプチドの合成的製造には様々な障害があり、AMPは、生物学的に合成することは特に困難である。短いこと、および、タンパク質分解的な分解を受けやすいことに加えて、AMPは、定義のとおり、細菌および他の微生物に対して毒性である。従って、天然の活性な物質としてAMPをバイオリアクターで製造することは、実際上、不可能である。さらに、AMPは正荷電/カチオン性になりやすく、このことが、より詳細には下記で説明されるように、合成的な生物学的製造に対する別の障害をもたらしている。
【0015】
例えば、組換えエシェリヒア・コリ(Escherichia coli)が、AMPを生合成的に製造するために様々な試みで使用されている。しかしながら、(これまでの)収率は、産生された場合、極めて低いものである。定義により、AMPは細菌および他の微生物に対して毒性である。従って、何らかの著量のAMPが(例えば、エシェリヒア・コリの)培養によって産生されるとき、AMPは、培養物を殺す傾向がある。米国特許第5,206,154号(Xoma Corp.)は、セクロピンの活性を抑制する目的でキャリア(araB)に融合されたセクロピンを特許請求している。この方法が成功した場合、キャリアに対するAMPの相対的な収率は低いと考えられる。
【0016】
また、活性なモノマーを生じさせるために後で切断されるマルチマー/コンカテマー前駆体としてAMPを最初に合成することによってAMPを合成的に製造することも試みられている。しかしながら、これにもまた、AMPをそのような様式で製造することに関して様々な問題が存在していた。
【0017】
AMPをマルチペプチド前駆体として製造しようとする試みには、生物学的合成に関して、他にない、特に困難な様々な問題がある。より詳細には、1個のAMPは非常にカチオン性/正荷電であるので、複数のAMPモノマーを含むマルチマータンパク質を作製することは、本質的には、より大きい、非常にカチオン性のタンパク質を作製することである。(塩基性アミノ酸残基がAMPに多数存在することによりカチオン性である)発生期のAMPマルチマーの正荷電は、転写および翻訳に関与する(酸性である)DNAおよび/またはRNAの負荷電と相互作用し、それにより、天然の細胞プロセスを乱し、任意の実質的なレベルへの所望するAMPの産生を妨げることが提案されている。例えば、Lee他(1996)、Genetic Analysis:Biomolecular Engineering、13:139〜145を参照のこと(これは、93塩基対のマガイニンモノマーの直列マルチマーを含む構築物の増幅に関する。ポリマーの正荷電アミノ酸は、ポリマーを負荷電のタンパク質に融合することによって中和されなければならないことがこれには提案されている)。生成物ペプチドのプロテアーゼ分解は別の観測された問題である。
【0018】
AMPの正荷電をキャリアタンパク質によって均衡または中和させる融合タンパク質の形態でAMPを製造する試みが行われている。国際特許出願公開WO96/28559(ブリティッシュ・コロンビア大学;Hancock他)は、アニオン性AMP部分と、カチオン性部分の抗菌活性を抑制すると言われるカチオン性/LPS結合部分とを有する融合タンパク質に関する。
【0019】
米国特許第5,593,866号(ブリティッシュ・コロンビア大学)は、AMPを生合成的に製造するための試みにおけるカチオン性/アニオン性の融合体の使用を記載している。この特許には、セクロピンの最初の18アミノ酸と、メリチンの最後の8アミノ酸とを含むセクロピン/メリチンの融合体が開示されている。その特許に記載されたキャリアペプチドの例には、黄色ブドウ球菌(S.aureus)に由来するGSTタンパク質、および、緑濃菌(P.aeruginosa)に由来する外膜タンパク質(プロテインF)が含まれる。臭化シアンが、融合体を切断して、活性なペプチドを回収するために使用されていた。この特許では、融合タンパク質を製造するために、大腸菌、黄色ブドウ球菌および緑濃菌の使用が特許請求されている。この特許はまた、その発明のAMPは、大腸菌、緑濃菌、E.cloacae、ネズミチフス菌(S.typhimurium)および黄色ブドウ球菌を阻害するために使用することができると述べている。この特許はまた、2つのさらなるリシン残基をカルボキシ末端に有するAMPに関連する。これは、驚くべきことに、AMPの抗菌活性を2倍にしたことが報告された。
【0020】
Lee他(1998)(J.Microbiol.Biotechnol.、8(1):34〜41)は、十分な発現を達成するための試みにおいて、マイガイニン(maigainin)マルチマーに融合されたマルトース結合タンパク質を使用している。Lee他はXa因子切断部位をモノマー間に使用している。この参考文献は、Xa因子による切断から生じたAMPが、さらなるアミノ酸残基をコアAMPに有するにもかかわらず、活性を驚くほど保持していたと述べた。
【0021】
Lee他(1998年2月;Protein Expression and Purification、第2巻、第1号、53頁〜60頁)は、塩基性/正荷電AMP(ブホリンII)に融合された酸性ペプチドの直列反復を使用している。システイン残基が、酸性ペプチドの各末端に重要なエレメントとして付加された。臭化シアンが、そこにおいて使用された切断剤であった。
【0022】
Lee他(1999年6月)(J.Microbiol.and Biotech.、9(3):303〜310)は、システインが多い酸性ペプチドに融合されたブホリンII AMPを使用している。Zhang他(1998)(Biochemical and Biophysical Research Communications、247:674〜680)は、セクロピン/マガイニンと、アニオン性プレプロドメイン(RepAドメイン)およびセルロース結合ドメインを含むキャリアタンパク質とを含む融合タンパク質に関する。
【0023】
国際特許出願公開WO98/54336(Kim、Lee他、Samyang GenexおよびKorea Advanced Institute Science;米国特許第6,183,992号もまた参照のこと)は、少なくとも2つのシステイン残基を有する、酸性ペプチド(グアメリン)とのAMP(ブホリンII)の融合体の使用に関する。この特許出願は、この酸性ペプチドが、AMPの翻訳時におけるDNAおよびRNAとの電気的な引き寄せおよび相互作用を防止するために塩基性/正荷電のAMPを中和するために要求されることを教示している。システイン残基はまた、ポリペプチドの2つの部分の相互作用および適正な折り畳みを容易にするために必要であることが教示されている。国際特許出願公開WO98/54336は、一般的な酸性キャリアペプチド遺伝子は単独では塩基性の抗菌性ペプチドの効率的な発現を可能にしないと述べて、米国特許第5,593,866号と異なっている。すなわち、酸性ペプチドにおける少なくとも2つのシステイン残基の存在が、問題を効率的に解決するために必要であるとしている。国際特許出願公開WO98/54336も、同様に、国際特許出願公開WO96/28559を、効力がないとして記載しており、また、そのような問題に対する解決策としてアニオン性ペプチドにおけるシステイン残基の使用を同じように示唆している。
【0024】
国際特許出願公開WO99/64611(Samyang Genex Corp.)は、purF遺伝子およびAMPを含む融合体の使用に関する。Samyang Genexの別の特許出願(国際特許出願公開WO00/34312)は、塩基性ペプチド/タンパク質を融合パートナーから切断するためのヒドロキシルアミンの使用に関する。米国特許第6,255,279号および国際特許出願公開WO99/48912(Korea Advanced Institute)は、口内洗浄薬および洗眼薬におけるAMPの使用が可能であることを述べている。国際特許出願公開WO97/22624(Beiersdorf AG)は、抗菌性の化粧品調製物、デオドラント化粧品などにおいて使用されるランダムマルチマーの使用に関する。
【0025】
国際特許出願公開WO00/31279(Micrologix Biotech Inc.)は、酸性ペプチド(セルロース結合ドメイン)に融合されたマルチマーAMPであると考えられる「マルチドメイン融合タンパク質」に関し、この場合、必須エレメントとして、アニオン性スペーサーが、「電荷均衡」のために(すなわち、カチオン性ペプチド成分の電荷を除去するために)各AMPモノマーの間に存在する。この特許出願では、細胞によって産生される総タンパク質と比較してAMPの相対的な産生を増大させるために、(集中した負荷電を提供する)小さいスペーサーが使用されている:このタイプのマルチマーは自身がキャリアタンパク質(セルロース結合ドメイン)に融合され得る。この特許出願は、70%ギ酸が可能な切断剤であり得ると簡単には述べているが、臭化シアン(CNBr)がこの出願を通して例示されていて、マルチドメインタンパク質を(メチオニン残基において)切断して、活性なモノマーを生じさせている。国際特許出願公開WO00/31279は、融合タンパク質が不溶性のタンパク質で存在し得ると述べている。ここでは、「不溶性ペプチド」は、「細胞を破壊し、細胞破片が遠心分離(例えば、10,000Xgから15,000Xg)によって沈殿させたとき、クーマシブルー染色を伴うSDSポリアクリルアミドゲルによって決定したとき、可溶性の成分を実質的にもたらさないポリペプチド」であると、定義されている。
【0026】
シュードモナス・フルオレセンス(Pseudomonas fluorescens)がAMPを製造するために好都合であるかまたはAMPを製造することができるということは、この分野ではこれまで示唆されていない。
【0027】
シュードモナス・エルギノサ(Pseudomonas aeruginosa)およびシュードモナス・フルオレセンスは、ビタミンB12を製造するために商業的に使用されている。Schenectady County Community Collegeのウエブサイトを参照のこと。ある種のシュードモナス・フルオレセンス菌株が抗真菌特性を有することが知られている。例えば、米国特許第6,048,713号を参照のこと。いくつかのシュードモナス・フルオレセンス菌株は、抗生物質を産生することが知られており、これら抗生物質を製造する際に使用することができる。例えば、米国特許第4,108,724号を参照のこと。米国特許第5,348,742号もまた参照のこと。殺昆虫性のタンパク質毒素を製造するためのシュードモナス・フルオレセンスの使用もまた知られている。例えば、米国特許第5,840,554号、同第5,527,883号、同第5,128,130号および同第5,055,294号(Mycogen Corporation)を参照のこと。シュードモナス・フルオレセンスはまた、環境汚染の生物浄化のためにも使用されている。例えば、米国特許第5,711,945号および同第4,853,334号を参照のこと。
【発明の開示】
【発明が解決しようとする課題】
【0028】
これらのペプチド発現システムのすべてにおいて、細胞培養において導入遺伝子から発現したポリペプチドの収率は、典型的には、数マイクログラム/リットルから約100mg/Lまでの範囲で報告されている。結果として、著しくより大きい収量をもたらす遺伝子組換えポリペプチド発現システムがこの分野では依然として求められている。従って、AMPを含む様々な小ペプチドを、微生物発酵を使用して効率的かつ費用効果的な様式で製造する方法に対する要求は大きく、以前から意識されている。
【課題を解決するための手段】
【0029】
(要約)
小ペプチドの生合成的製造方法であって、少なくとも1個の微生物細胞;および、前記微生物細胞が、(a)切断可能なリンカーによって下記(b)に連結された少なくとも1つの高発現キャリアポリペプチドと、(b)少なくとも2つの小ペプチドユニットを直列配置で含有する少なくとも1つのペプチドマルチマー(ただし、それぞれの小ペプチドユニットは、少なくとも1つのAsp−Proジペプチドを含有する切断部位によって少なくとも1つの隣接する小ペプチドユニットに連結されている)とを含有するキャリア−ペプチド融合ポリペプチドを発現することができる少なくとも1つの核酸、を提供すること;前記核酸を前記微生物細胞にトランンスフェクションして、形質転換された微生物細胞を得ること;前記形質転換された微生物細胞を、細胞が核酸を発現することができ、前記核酸によりコードされたキャリア−ペプチド融合ポリペプチドを産生させることができる条件に置くこと;場合により、前記キャリア−ペプチド融合ポリペプチドを前記形質転換された微生物細胞から回収すること;場合により、切断反応を行って、前記キャリアポリペプチド(1つまたは複数)を前記ペプチドマルチマーから切断すること;切断反応を行って、マルチマーの小ペプチドユニットを互いに切断し、それにより小ペプチドを得ること;および、場合により、末端切断反応を行って、小ペプチドの末端に存在する切断部位アミノ酸残基または切断可能なリンカーアミノ酸残基またはそれらの両方を除くこと、を含む前記方法。
【0030】
前記微生物細胞が細菌細胞である前記方法。前記細菌細胞がγプロテオバクテリア綱のメンバーである前記方法。前記細菌細胞がシュードモナス属のメンバーである前記方法。前記細菌細胞がシュードモナス・フルオレセンス群のメンバーである前記方法。前記細菌細胞がシュードモナス・フルオレセンスである前記方法。前記細菌細胞がシュードモナス・フルオレセンス細分類Aである前記方法。
【0031】
小ペプチドユニットを連結する切断部位のそれぞれが少なくとも1つのGly−Asp−Proトリペプチドを含有する前記方法。小ペプチドユニットを連結する切断部位のそれぞれがGly−Asp−Proトリペプチドである前記方法。ペプチドマルチマーが少なくとも3つのペプチドユニットを直列配置で含有する前記方法。ペプチドユニットのそれぞれが前記ペプチドマルチマー内で同じ配向で発現する前記方法。ペプチドマルチマーの小ペプチドユニットが同一のアミノ酸配列を有する前記方法。前記高発現キャリアポリペプチドが、微生物細胞において高度に発現するタンパク質のN末端フラグメントである前記方法。前記N末端フラグメントが長さ約10アミノ酸残基以上である前記方法。前記タンパク質がロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003ハロアルカンデハロゲナーゼ(配列番号30)である前記方法。
【0032】
(a)切断可能なリンカーによって下記(b)に連結された少なくとも1つの高発現キャリアポリペプチドと、(b)少なくとも2つの小ペプチドユニットを直列配置で含有する少なくとも1つのペプチドマルチマー(ただし、それぞれの小ペプチドユニットは、少なくとも1つのAsp−Proジペプチドを含有する切断部位によって少なくとも1つの隣接する小ペプチドユニットに連結されている)とを含有するキャリア−ペプチド融合ポリペプチドを発現させることができる核酸。ベクターである前記核酸。前記ベクターがプラスミドである前記核酸。シュードパリンドロームオリゴマーを含むオリゴマーのアニーリングおよび連結を行って、ペプチドユニットをコードするオリゴヌクレオチドを直列で含有し、および切断部位をコードするオリゴヌクレオチドによって連結されたマルチマーポリヌクレオチドのプール(前記プールは、ペプチドユニットをコードするオリゴヌクレオチド部分がすべて同じ配向で配置されているマルチマーポリヌクレオチドと、ペプチドユニットをコードするオリゴヌクレオチド部分が異なる配向で配置されているマルチマーポリヌクレオチドとの両方を含有する)を形成すること、次いで、適切な制限エンドヌクレアーゼで前記マルチマーポリヌクレオチドを処理して、ペプチドユニットをコードするオリゴヌクレオチド部分が異なる配向で配置されているようなマルチマーポリヌクレオチドのみを加水分解することを伴う方法によって調製される前記核酸。前記核酸を含有する微生物細胞。
【0033】
前記方法によって製造される小ペプチド。小ペプチドが抗菌性ペプチド(AMP)である発明。
【発明を実施するための最良の形態】
【0034】
(配列の簡単な説明)
配列番号1は、コアD2A21抗菌性ペプチドに対するアミノ酸を示す。
【0035】
配列番号2は、配列番号1のペプチドをコードするために使用されたDNA配列を示す。
【0036】
配列番号3は、配列番号4のペプチドをコードするために使用されたDNA配列を示す。
【0037】
配列番号4は、マルチマーに組み立てるためのペプチド連結/切断部位の3つのさらなるアミノ酸残基を有するコアD2A21抗菌性ペプチドモノマーについてのアミノ酸配列を示す。
【0038】
配列番号5は、(大腸菌発現ベクターpET21bを使用する)配列番号6の4Aダイマーをコードするために使用されたDNA配列である。
【0039】
配列番号6は、(リーダーセグメント、トリペプチドリンカーにより隔てられた2つのAMP、およびトレーラーセグメントを含む)4Aダイマーのアミノ酸配列を示す。
【0040】
配列番号7は、D2A21’AMPモノマーのアミノ酸配列を示す。
【0041】
配列番号8は、Asp−Proの切断可能なジペプチドリンカーをコードする好ましいヘキサヌクレオチド配列である。
【0042】
配列番号9は、(リーダーセグメント、トリペプチドリンカーにより隔てられた3つのAMP、およびトレーラーセグメントを含む)AB4トリマーのアミノ酸配列を示す。
【0043】
配列番号10は、(大腸菌発現ベクターpET21bにおける)配列番号9のAB4トリマーをコードするために使用されたDNA配列である。
【0044】
配列番号11は、TF3トリマーのアミノ酸配列を示す。
【0045】
配列番号12は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号11のTF3トリマーをコードするために使用されたDNA配列である。
【0046】
配列番号13は、D4E1 AMPのアミノ酸配列である。
【0047】
配列番号14は、D4E1トリマーのアミノ酸配列である。
【0048】
配列番号15は、(シュードモナス・フルオレセンス発現ベクターpMYC1803およびエシェリヒア・コリ発現ベクターpET24bにおける)配列番号14のD4E1トリマーをコードするために使用されたDNA配列である。
【0049】
配列番号16は、D4E1テトラマーのアミノ酸配列である。
【0050】
配列番号17は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号16のD4E1テトラマーをコードするために使用されたDNA配列である。
【0051】
配列番号18は、D4E1ペンタマーのアミノ酸配列である。
【0052】
配列番号19は、(シュードモナス・フルオレセンス発現ベクターpMYC1803および大腸菌発現ベクターpET24bにおける)配列番号18のD4E1ペンタマーをコードするために使用されたDNA配列である。
【0053】
配列番号20は、ジヒドロ葉酸レダクターゼ(DHFR)タンパク質のアミノ酸配列である。
【0054】
配列番号21は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号20のデハロゲナーゼタンパク質をコードするDHFR遺伝子のDNA配列である。
【0055】
配列番号22は、DHFR/TF3トリマー融合体のアミノ酸配列である。
【0056】
配列番号23は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号22の融合体をコードするために使用されたDNA配列である。
【0057】
配列番号24は、DHFR/D4E1トリマー融合体のアミノ酸配列である。
【0058】
配列番号25は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号24の融合体をコードするために使用されたDNA配列である。
【0059】
配列番号26は、DHFR/D4E1テトラマー融合体のアミノ酸配列である。
【0060】
配列番号27は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号26の融合体をコードするために使用されたDNA配列である。
【0061】
配列番号28は、DHFR/D4E1ペンタマー融合体のアミノ酸配列である。
【0062】
配列番号29は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号28の融合体をコードするために使用されたDNA配列である。
【0063】
配列番号30は、全長デハロゲナーゼタンパク質のアミノ酸配列である。
【0064】
配列番号31は、配列番号30のデハロゲナーゼタンパク質をコードするために使用されたDNA配列である。
【0065】
配列番号32は、「3I」融合体(デハロゲナーゼ/D2A21’トリマー)のアミノ酸配列である。
【0066】
配列番号33は、(シュードモナス・フルオレセンス発現ベクターpMYC1803およびエシェリヒア・コリ発現ベクターpET21bにおける)配列番号32の「3I」融合体をコードするために使用されたDNA配列である。
【0067】
配列番号34は、「4C」構築物(123アミノ酸の短縮型デハロゲナーゼ/D2A21’トリマー)のアミノ酸配列である。
【0068】
配列番号35は、(シュードモナス・フルオレセンス発現ベクターpMYC1803およびエシェリヒアメコリ発現ベクターpET21bにおける)「4C」構築物をコードするために使用されたDNA配列である。
【0069】
配列番号36は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)16A(D2A21)トリマーをコードするDNA配列である。
【0070】
配列番号37は、16A(D2A21)トリマーのアミノ酸配列である。
【0071】
配列番号38は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)21A(D2A21)トリマーをコードするDNA配列である。
【0072】
配列番号39は、21A(D2A21)トリマーのアミノ酸配列である。
【0073】
配列番号40は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)21B(D2A21)トリマーをコードするDNA配列である。
【0074】
配列番号41は、21B(D2A21)トリマーのアミノ酸配列である。
【0075】
配列番号42は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)JP2(D2A21)ダイマーをコードするDNA配列である。
【0076】
配列番号43は、JP2(D2A21)ダイマーのアミノ酸配列である。
【0077】
配列番号44は、短縮化デハロゲナーゼ/D4E1ペンタマー融合体のアミノ酸配列である。
【0078】
配列番号45は、(シュードモナス・フルオレセンス発現ベクターpMYC1803における)配列番号44の融合タンパク質をコードするDNA配列である。
【0079】
(好ましい実施態様の詳細な説明)
本発明は、抗菌性ペプチド(AMP)を含む様々な小ペプチドの効率的かつ安価な製造方法を提供する。本発明によれば、細菌(および他の好適な微生物)、好ましくはシュードモナス・フルオレセンスが、大規模発酵において、ペプチド/AMPを製造するために使用される。AMPは、本発明による製造のための好ましいペプチドであるが、本発明の構成要素は、単独または組合せで、治療的有用性または触媒的有用性を有する他のタイプのペプチドを製造するために使用することができ、または、そのような用途のために適合させることができる。
【0080】
本発明の要素は、単独および/または組合せで、AMPおよび目的とする他の小ペプチドを製造するためのシュードモナス・フルオレセンスの驚くほど有利な使用を可能にする。本発明は、広く、AMPを含む様々なペプチドを製造するためのシュードモナス・フルオレセンスの使用に関する。従って、本発明は、抗菌性ペプチドを製造するための方法を包含し、この方法は、前記ペプチドをコードするポリヌクレオチドを好ましくはシュードモナス・フルオレセンス細胞において発現させることを含む。AMPをシュードモナス・フルオレセンスにおいて産生させることが好ましいが、本発明の構成要素は、単独または組合せで、他の生物との使用のために、また、AMP以外のペプチドを製造するために使用することができ、または適合させることができる。このことは、本開示の恩恵を受ける当業者には明らかである。
【0081】
本発明によれば、高レベルのAMP(または他の小ペプチド)を、活性なモノマーを生じさせるために後で切断される非毒性のコンカテマー/マルチマー前駆体として細菌(好ましくはシュードモナス・フルオレセンス)において製造することができる。AMPをこの様式で製造することは、AMPの毒性(会合して細胞の膜に細孔を形成する能力に依存する)を除くことに役立つ。ペプチドを一般にこの様式で製造することはまた、小ペプチドが特に受けやすい望ましくないタンパク質分解的な分解を小ペプチドが回避することを助けることができる。
【0082】
本発明の局面の1つはマルチマーである。本発明のマルチマーは、2個、3個、4個、5個またはそれ以上のペプチド/AMPサブユニットを含むことができる。例示された構築物は、マルチマーにおいて所望される数のモノマーを製造するように改変し得る。
【0083】
本発明は、抗菌性ペプチド(AMP)を含む様々な小ペプチドを製造する効率的かつ安価な方法を提供する。本発明による発現システムは、約1g/Lを超えて、多くの場合約5g/Lで遺伝子組換えペプチドの生産をもたらすことが予想外にも見出された。これらの収量は、産業界での使用において既に報告されているシステムの収量を実質的に改善するものである。
【0084】
特に好ましい実施態様において、細菌(および他の好適な微生物)、好ましくはシュードモナス・フルオレセンス(シュードモナス・フルオレセンス)が、大規模発酵において、ペプチドを製造するために使用される。AMPは本発明による製造のための好ましいペプチドであり、シュードモナス・フルオレセンスは好ましい微生物である。本発明の構成要素はまた、単独または組合せで、他のタイプの微生物を用いて他のタイプのペプチドを製造するために使用することができ、または適合させることができる。
【0085】
本明細書中で使用される用語「ペプチド」は、少なくとも2つのアミノ酸を含有するオリゴペプチド分子またはポリペプチド分子を示し、この場合、そのような分子において、そのアミノ酸はペプチド結合だけによって互いに結合している。本発明によるペプチドは、機能的ペプチド;構造的ペプチド;それらのフラグメント;それらの前駆体;前記のいずれかの組合せ;および/または前記のいずれかのコンカテマーである任意のオリゴペプチド分子またはポリペプチド分子である。
【0086】
上記で記されたように、本発明において有用なペプチドには、機能的ペプチド;構造的ペプチド;それらのフラグメント;それらの前駆体;前記のいずれかの組合せ;および/または前記のいずれかのコンカテマーであるペプチドが含まれる。
【0087】
有用な機能的ペプチドには、例えば、生物活性なペプチド(すなわち、生物学的実体(例えば、生物、細胞、培養物、組織、器官またはオルガネラ)におけるか、またはそのような生物学的実体の生物学的な機能または活性の開始、増強、延長、弱化、終結または防止を発揮するか、または誘発するか、または、そうでなければ、生じさせるペプチド);触媒作用ペプチド;微細構造活性ペプチドおよびナノ構造活性ペプチド(すなわち、何らかの活動(例えば、運動、エネルギー伝達)を行うか、または、一緒になってそのような活動を行う操作された微小構造またはナノ構造の一部を形成するペプチド);および刺激性ペプチド(例えば、ペプチド矯味剤、着色剤、オドラント、フェロモン、誘因剤、抑止剤および忌避剤)が含まれるが、これらに限定されない。
【0088】
有用な生物活性ペプチドには、例えば、免疫活性ペプチド(例えば、抗原性ペプチド、アレルゲンペプチド、ペプチド免疫制御因子、ペプチド免疫調節因子);シグナル変換ペプチドおよびシグナル伝達ペプチド(例えば、ペプチドホルモン、サイトカインおよび神経伝達物質;受容体;アゴニストペプチドおよびアンタゴニストペプチド;ポリペプチド標的化ペプチドおよび分泌シグナルペプチド);および生物阻害ペプチド(例えば、毒性ペプチド、殺生物ペプチド、バイオスタティック(biostatic)ペプチド、例えば、ペプチド毒素および抗菌性ペプチドなど)が含まれるが、これらに限定されない。
【0089】
有用な構造的ペプチドには、例えば、ペプチドアプタマー、フォールディングペプチド(例えば、別の分子における物理的な立体配座の形成または保持を促進または誘導するペプチド);接着促進ペプチド(例えば、接着性ペプチド、細胞接着促進ペプチド);界面ペプチド(例えば、ペプチド界面活性剤およびペプチド乳化剤);微小構造構成ペプチドおよびナノ構造構成ペプチド(すなわち、操作された微小構造またはナノ構造の一部を形成する構造的ペプチド);および活性化前のペプチド(例えば、プレタンパク質、プロタンパク質およびプレプロタンパク質ならびにプレペプチド、プロペプチドおよびプレプロペプチドのリーダーペプチド;インテイン)が含まれるが、これらに限定されない。
【0090】
本発明は、広く、AMPおよび他の小ペプチドを製造するためのP.flurorescensの使用に関する。本発明の要素は、単独および/または組合せで、AMPを含む様々な小ペプチドを製造するためのP.flurorescensの驚くほど有用な使用を可能にする。本発明の様々な要素はまた、本開示の恩恵を受ける当業者には明らかであるように、単独または組合せで、他の生物とともに(および他の目的のために)使用することができる。
【0091】
本発明によれば、高レベルのAMP(または他の小ペプチド)を、活性なモノマーを生じさせるために後で切断される非毒性のコンカテマー/マルチマー前駆体として細菌(好ましくはシュードモナス・フルオレセンス)において製造することができる。AMPをこの様式で製造することは、AMPの毒性(会合して細胞の膜に細孔を形成する能力に依存する)を除くことに役立つ。ペプチドを一般にこの様式で製造することはまた、小ペプチドが非常に受けやすい望ましくないタンパク質分解的な分解を小ペプチドが回避することを助けることができる。
【0092】
本発明は、この分野で以前になされた教示または示唆のいずれとも異なる構造的特徴を有するマルチマー(好ましくはAMPマルチマー)ならびにAMP(および他のペプチド)を提供する。本発明は、マルチマーを形成させるためにAMP/ペプチドモノマーを連結するための新規な手段を提供する。本発明はまた、モノマーをマルチマーから切断するための新規な手段を提供する。本発明の好ましいコンカテマー前駆体はAsp−Proペプチド連結/酸切断部位を個々のAMP/ペプチドサブユニット(モノマー)の間に含有する。Gly−Asp−Pro連結が特に好ましい。これにより、活性なモノマーを生じさせるための、マルチマーの安価かつ効率的な切断が可能になる。薄い無機酸または有機酸が好ましい切断剤である。そのような切断/切断部位をマルチマーにおける各コピーのペプチド/AMPモノマーの間に使用することはこの分野では教示されていなかった。
【0093】
また、ペプチドをコードするポリペプチドの多数コピーをマルチマー構築物において好ましい配向で組み立て、一方、同時に、受け入れられ得る切断部位を導入するための方法も開示される。すなわち、受け入れられ得る切断部位をマルチマーに有することに加えて、本発明は、切断部位をコードするDNA配列を提供する。この場合、対応するDNA配列は、所望する配向での多数コピーのペプチド/AMP「遺伝子」の効率的かつ安価な組立てを可能にする。他の知られている遺伝子構築方法とは異なり、本発明のこの局面は、最小限に改変された活性なAMP/ペプチド生成物を生じさせる特異的な化学的切断法を提供することとの適合性を有する。
【0094】
本発明はまた、キャリアポリペプチド/タンパク質に融合された本発明のコンカテマー/マルチマーを好ましくは含む融合タンパク質を提供する。そのような融合体は、目的とするペプチド/AMPの回収レベルをさらに高めることができる。キャリアポリペプチドが使用される本出願の実施態様において、キャリアポリペプチドをマルチマーのN末端に融合することが好ましい。しかしながら、本発明のマルチマーは、末端融合に限定されない様々な発現システムでの使用のために適合させることができる。本発明のキャリアポリペプチドの種類もまた独特である。
【0095】
本発明の他の非常に驚くべき局面は、本発明の好ましいカチオン性AMPマルチマーは電荷均衡を欠いているということである。さらに、本発明の好ましい融合タンパク質(これは、好ましくは、キャリアポリペプチドに融合されたAMPモノマーを含む)もまた電荷均衡を欠いている。すなわち、AMPは典型的にはカチオン性/正荷電である。本発明は、マルチマー構築物における多数コピーのAMPの正荷電を相殺することは必ずしも必要でないという驚くべき発見に関連している。先行技術は、これとは反対のこと、すなわち、十分な数の負荷電アミノ酸を、AMPの正味の正荷電を完全に相殺する(または、少なくとも著しく中和するために)、キャリアタンパク質において付加し、かつ/またはマルチマーに付加しなければならないことを教示していた。従って、本発明では、マルチマーAMP構築物の微生物による発現のために要求された、この分野でこれまで教示されていたこの要素が除かれる。本発明のこの局面はまた、AMP以外のカチオン性ペプチドに関する使用のためにも同様に特に好都合である。
【0096】
従って、本発明は、以前に考えられていたよりも広範囲の様々なキャリアポリペプチドの使用を可能にする。本発明は、驚くべきことに、キャリアタンパク質を、アニオン性(すなわち、AMPマルチマーはカチオン性であるので、ほぼアニオン性として)であるタンパク質に制限しなくとも、好ましいキャリアタンパク質またはポリペプチドが、それらは自身が目的の宿主において十分に発現する故に、選択されるはずであることを教示している。
【0097】
本発明のマルチマーおよびマルチマー融合タンパク質は、好ましくは、不溶性のタンパク質封入体として製造される。本発明のシュードモナス・フルオレセンスは、好都合にも、マルチマーをこのような形態で産生させるために十分に適している。細菌で発現されたとき、本発明の好ましいコンカテマー前駆体は不溶性の不活性なタンパク質封入体に分配される。産生後、高密度の封入体を宿主細胞から機械的に分離することができる。所望する場合、溶媒またはカオトロピック剤で可溶化した後、コンカテマーは、活性なAMP/ペプチドモノマーを生じさせるために、希酸を使用して切断することができる。あるいは、また、好都合には、弱酸により、封入体を可溶化すること、およびコンカテマーを所望するペプチド生成物に切断することの両方を安価な1工程で行うことができる。本発明のプロセスは、固相合成と比較して費用を削減することができる。
【0098】
従って、本発明は、ペプチドを微生物において経済的に製造するための簡便なシステムを提供する。本発明のペプチド発現システムは、抗菌性ペプチドを経済的に製造するために使用することさえできる。シュードモナス・フルオレセンス発現システムが好ましい。AMPが好ましいペプチドではあるが、本発明の発現システムは、他の種類のペプチドを経済的に製造するために使用することができる。細胞内プロテアーゼの望ましくない作用を避けること、および、AMPの毒性を低下させることができることに加えて、本発明の酸切断/キャリア−コンカテマーシステムはまた、組換えペプチドの発現をより「プロセスに適した」ものにする。すなわち、目的とするペプチドを、遠心分離またはろ過などの簡便かつ安価な操作によって多くの宿主混入物(他の細胞成分/残片)から分離することができる。その後、所望する画分を、酸処理によって活性な形態に容易に変換することができる。本明細書中で明らかにされる、シュードモナス・フルオレセンス発酵システムを安価なプロセス処理手順と効率的に結びつけることにより、天然由来ペプチドの製造および精製のために非常に競合し得るプロセスがもたらされる。
【0099】
本発明は、この分野で以前になされた教示または示唆のいずれとも異なる構造的特徴を有するマルチマーおよびペプチド(AMPを含む)を提供する。本発明は、ペプチド/AMPモノマーを連結してマルチマーにするための新規な手段を提供する。本発明の好ましいコンカテマー前駆体はAsp−Proペプチド結合/切断部位を個々の(抗菌性)ペプチドサブユニット(モノマー)の間に含有する。Gly−Asp−Pro連結が特に好ましい。希酸が、有機酸または無機酸のいずれであっても、活性なモノマーを生じさせるための安価かつ効率的な切断を可能にする好ましい切断剤である。
【0100】
このような切断/切断部位をモノマー(AMP)各コピーの間で使用することはこの分野では教示されていなかった。通常、余分なアミノ酸残基はペプチド/AMPの活性を破壊するか、またはペプチド/AMPの活性に負の影響を及ぼすことが予想されると考えられていた。このように、酸に不安定なAsp−Pro連結をモノマー間で使用することは、切断時に、その抗菌活性を驚くほど保持している誘導体化されたAMPをもたらす。従って、本発明は、広く、そのような伸張部(N末端およびC末端におけるさらなるアミノ酸残基)を有するAMPに関し、また、Asp−Pro切断部位(ならびにGly−Asp−Pro連結)をモノマー間に有するAMPマルチマーに関し、また、これらの実施態様をコードするポリヌクレオチドに関する。本発明はまた、全般に、AMPモノマーをAMPマルチマーから切断するための希酸の使用にも関する。
【0101】
本発明の驚くべき局面の1つは、本発明の切断部位およびその好ましい希酸切断により、それぞれがコアペプチド/AMPをN末端およびC末端におけるさらなるアミノ酸残基と一緒に含む活性なモノマーが得られるということである。好ましくは、マルチマーの酸切断から生じるAMPモノマーのそれぞれには、およそ3個のさらなるアミノ酸残基(C末端における2個の残基およびN末端における1個の残基)が存在する。例示されたモノマーは、コアAMPと、コアAMPのアミノ末端におけるプロリン残基と、C末端におけるグリシン残基およびアスパラギン酸残基とを含む。そのようなモノマーが優れた(抗菌)活性を保持することは驚くべきことである。この分野ではこれまで、ペプチド/AMPに残ったアミノ酸、特に、コアAMP/カチオン性ペプチドの両末端における酸性/アニオン性の残基は、通常、ペプチド(AMP)の(抗菌)活性を破壊することが教示されていたからである。この「伸張された」ペプチドが活性であると推測するための根拠は全く存在せず、この「伸張された」ペプチドは所望された活性を失っていると通常予想されていた。従って、本発明のこの局面は、カチオン性ペプチド(好ましくはAMP)を製造するために特に好都合である。
【0102】
本発明の別の関連する局面は、モノマーをマルチマーから切断するための新規な手段である。本発明によれば、有機酸、好ましくは、0.025NのHCLまたは10%の酢酸などの希酸が、好ましくは、活性なペプチド/AMPモノマーをマルチマー(および、使用された場合にはキャリアポリペプチド)から分離するための切断剤として使用される。本発明による使用のために合わせることができる様々な切断剤が存在するが(上記の背景技術の節で議論された様々な参考文献では、様々な切断剤が使用されている)、本発明の希酸はいくつかの理由のために好ましい。1つの利点は、好ましい薄い有機酸による切断から生じるモノマーは天然の生成物であるということである;一部の切断剤は、自然界には存在しない望ましくない化学的誘導体を生じさせる。このことは、例えば、臭化シアンについては正しい。ギ酸もまた、望ましくないホルミル化を受けている残基を生じさせ得る。ギ酸はまた、除くことが困難である(ギ酸を使用してマルチマーの切断およびモノマーの取り出しを行った後では、ギ酸は、水性の生成物から分離することが困難になり得る。これは、ギ酸が水との極めて高い沸点の共沸混合物を形成するからである。この作用は水をギ酸よりも速く蒸発させ得るし、これはギ酸の除去工程を長くする)。従って、ギ酸以外の希酸が、驚くべきことに好ましい。このことは、先行技術の教示とは反対である。
【0103】
本発明の所望されるペプチド/抗菌性ペプチドは、好ましくは、最初、少なくとも2つのペプチド/AMPモノマーを含むマルチマー前駆体の一部として細胞によって発現される。好ましい製造方法はさらに、マルチマーAMP/ペプチドを希酸で切断して、AMP/ペプチドモノマーを遊離させる工程を含む。具体的に例示された実施態様において、前記の切断から生じるAMPモノマーは、配列番号7により表されるペプチドである。マルチマーの例示された実施態様において、マルチマーは配列番号6のアミノ酸配列を含む。様々な他のペプチドおよびマルチマーが本明細書中で例示される。具体的に例示されたAMPモノマーのほかに、様々なさらなるペプチドモノマーを代わりに使用することができる。本明細書中で議論、例示および/または示唆されたペプチド/タンパク質のいずれかをコードする構築物およびポリヌクレオチドも本発明に含まれる。
【0104】
受け入れられ得る切断部位をマルチマーに有することに加えて、切断部位をコードする対応するDNA配列もまた、多数コピーのペプチド/AMP「遺伝子」の所望する配向での効率的かつ安価な組立てを可能にするに違いない。多数コピーのペプチド/AMPをコードするポリヌクレオチドを好ましい配向でマルチマー構築物において組み立て、一方、同時に、受け入れられ得る切断部位を導入するための方法もまた開示される。キャリア−AMP融合ポリペプチドの高発現キャリアポリペプチドは、微生物宿主細胞において高度に発現する任意のタンパク質またはポリペプチドから選択される。その例には、トレドキシン(thoredoxine)、マルトース結合タンパク質、および、ニトリラーゼを除くヒドロラーゼが含まれる。ヒドロラーゼを使用する好ましい実施態様において、高発現のグリコシダーゼ(EC3.2.1)または高発現のデハロゲナーゼ(EC3.8.1)が選択される。高発現グリコシダーゼの好ましい例には、ガラクトシダーゼ、例えば、β−ガラクトシダーゼ(EC3.2.1.23)がある。高発現デハロゲナーゼの好ましい例には、ハロアルカンデハロゲナーゼ(EC3.8.1.5)があり、例えば、ロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003(これは、American Type Culture Collection(ATCC)(P.O.Box 1549、Manassas、VA20108、米国;所在地、108101 University Blvd.、Manassas、VA20110、米国)からATCC55388として入可能な生物である)から得られるハロアルカンデハロゲナーゼ(配列番号30)がある。
【0105】
キャリアポリペプチドは、キャリア−ペプチド構築物の最初(すなわち、N末端)の部分として発現されるので、構築物のN末端部分は、完全な選択された高発現タンパク質もしくは高発現ポリペプチドまたはそれらのN末端フラグメントのいずれかを含有することができる。好ましくは、構築物のN末端部分は、選択された高発現タンパク質もしくは高発現ポリペプチドのN末端フラグメントであり、すなわち、そのようなN末端フラグメントを表す。好ましくは、N末端フラグメントは長さが少なくとも10アミノ酸残基である。好ましい実施態様において、N末端フラグメントは長さが約15アミノ酸残基以上である。好ましい実施態様において、N末端フラグメントは長さが約20アミノ酸残基以上である。好ましい実施態様において、N末端フラグメントは長さが150アミノ酸残基未満であり、より好ましくは約120アミノ酸残基以下であり、さらにより好ましくは約100アミノ酸残基以下であり、さらにより好ましくは約80アミノ酸残基以下であり、なお一層より好ましくは約60アミノ酸残基以下である。好ましい実施態様において、N末端フラグメントは長さが約10アミノ酸残基から約150アミノ酸残基であり、より好ましくは約10アミノ酸残基から約120アミノ酸残基であり、さらにより好ましくは約15アミノ酸残基から約100アミノ酸残基であり、さらにより好ましくは約15アミノ酸残基から約80アミノ酸残基であり、なお一層より好ましくは約20アミノ酸残基から約60アミノ酸残基である。好ましい実施態様において、N末端フラグメントは長さが約50アミノ酸残基または約40アミノ酸残基または約30アミノ酸残基または約20アミノ酸残基である。好ましい実施態様において、キャリアポリペプチドは、高度にアニオン性でないポリペプチドから選択される。この場合、高度にアニオン性は、pKaまたはpIが5.5以下であるとして定義される。従って、好ましくは、キャリアポリペプチドは5.5よりも大きいpKaまたはpIを有する。
【0106】
キャリアポリペプチドのアミノ酸配列は、選択された高発現ポリペプチドのN末端アミノ酸配列から得られるか、または選択された高発現ポリペプチドのN末端アミノ酸配列に由来する。電荷均衡についてのキャリアポリペプチドの最初の選択は、4つのクラスのアミノ酸を参照して考慮される。好ましい実施態様において、キャリアポリペプチドのアミノ酸配列は、選択された高発現ポリペプチドのN末端部分のアミノ酸配列と同一である。好ましい実施態様において、キャリアポリペプチドのアミノ酸配列は上記N末端部分のアミノ酸配列の保存的変化体である。本明細書中で使用される表現「保存的変化体」は、アミノ酸配列(この場合、選択されたキャリアポリペプチドのアミノ酸配列)の保存的に変異した変化体を示す。アミノ酸配列の保存的変異は、下記の7群の1つまたは複数の内部でなされたアミノ酸置換として定義される:酸性:Asp、Glu;非荷電の極性アミド:Asn、Gln;塩基性:Lys、Arg、His;小さい非荷電または非極性:Gly、Ala;非極性アルキル:Va、Leu、Ile;極性アルコール:Ser、Thr;芳香族:Phe、Trp、Tyr。保存的変化体の好ましい実施態様において、75%未満のアミノ酸残基、より好ましくは50%未満のアミノ酸残基が変異させられる。好ましくは約33%以下、より好ましくは約30%以下、さらにより好ましくは約25%以下、なお一層より好ましくは約20%以下、なおさらにより好ましくは約10%以下、なお一層より好ましくは約5%以下のアミノ酸残基が変異させられる。キャリアポリペプチドのアミノ酸配列が高発現ポリペプチドのアミノ酸配列と同一であるか、または高発現ポリペプチドのアミノ酸配列の保存的変化体であるかのいずれかである場合、そのポリヌクレオチドコード配列は、選択された宿主細胞に対してコドンが最適化され得る。
【0107】
下記の実施例は、長さが約120アミノ酸から約160アミノ酸の程度であるキャリアポリペプチドを参照して記載されるが、長さが約20アミノ酸であるキャリアポリペプチドもまた、首尾良く使用されている。例えば、ロドコッカス・ロドクロウスのハロアルカンデハロゲナーゼのN末端の20merフラグメントが、実施例において開示される、より大きいキャリアポリペプチド構築物について観測される発現レベルと比較して、キャリア−ペプチド融合タンパク質の発現の低下を全く伴うことなくAMPコンカテマーを発現させるために使用されている。
【0108】
本発明によるペプチドは、微生物において、すなわち、微生物宿主細胞において生合成的に製造される。本明細書中で使用される用語「微生物」および用語「微生物(的)」は、真菌(糸状菌および酵母を含む)および細菌を示す。好ましい糸状菌には、例えば、アスペルギルス(Aspergillus)、クリソスポリウム(Chrysosporium)、ノイロスポラ(Neurospora)およびトリコデルマ(Trichoderma)の種が含まれる。好ましい酵母には、例えば、カンジダ(Candida)、クルイベロミセス(Kluyveromyces)、ピキア(Pichia)、サッカロミセス(Saccharomyces)、シゾサッカロミセス(Schizosaccharomyces)、ヤロウイア(Yarrowia)およびジゴサッカロミセス(Zygosaccharomyces)の種が含まれる。特に好ましい実施態様において、微生物は細菌である。
【0109】
細菌が微生物宿主細胞として選択される好ましい実施態様において、細菌は発酵菌門(Firmicutes)のメンバーであり、より好ましくはバチルス綱(Bacilli)のメンバーである。バチルス綱の細菌が宿主細胞として選択されるとき、好ましくは、細菌はバチルス目(Bacillales)またはラクトバチルス目(Lactobacillales)のメンバーである。バチルス目の細菌が選択されるとき、好ましくは、細菌はバチルス科(Bacillaceae)のメンバーであり、より好ましくはバチルス(Bacillus)属のメンバーであり、例えば、バチルス・サブチリス(Bacillus subtilis)である。ラクトバチルス目の細菌が選択されるとき、好ましくは、細菌はラクトバチルス科(Lactobacillaceae)のメンバーであり、より好ましくはラクトバチルス(Lactobacillus)属のメンバーである。細菌が宿主細胞として使用される代わりの好ましい実施態様において、細菌は放線菌門(Actinobacteria)のメンバーであり、その好ましい例には、コリネバクテリウム(Corynebacterium)属、ロドコッカス(Rhodococcus)属およびストレプトミセス(Streptomyces)属の種が含まれる。
【0110】
細菌宿主細胞を使用する特に好ましい実施態様において、細菌は、プロテオバクテリア門(Proteobacteria)のメンバーであり、より好ましくはγプロテオバクテリア綱のメンバーである。γプロテオバクテリア綱の細菌が宿主細胞として選択されるとき、好ましくは、細胞は腸内細菌目(Enterobacteriales)またはシュードモナス目(Pseudomonadales)のメンバーである。腸内細菌目の細菌が選択されるとき、好ましくは、細菌はエンテロバクテリア科(Enterobacteria)のメンバーであり、より好ましくはエシェリヒア(Escherichia)属またはセラチア(Serratia)属のメンバーである。エシェリヒアの種の好ましい例はエシェリヒア・コリ(E.coli)であり、セラチア種の好ましい例はセラチアメマルセセンス(S.marcescens)である。
【0111】
シュードモナス目の細菌が選択されるとき、好ましくは、細菌はシュードモナス科(Pseudomonadaceae)のメンバーであり、さらにより好ましくはシュードモナス(Pseudomonas)属のメンバーである。シュードモナス属の細菌が宿主細胞として選択されるとき、好ましくは、細菌は、シュードモナス・クロロラフィス(P.chlororaphis)、シュードモナス・フルオレセンス(P.fluorescens)群のメンバーであり、この群には、シュードモナス・クロロラフィス(Pseudomonas chlororaphis)群、例えば、シュードモナス・オーランチカ(P.aurantiaca)、シユードモナス・クロロラフィス(P.chlororaphis)、シュードモナス・フラジ(P.fragi)、シュードモナス・ルンデシス(P.lundensis)およびシュードモナス・タエトロレンス(P.taetrolens);および、シュードモナス・フルオレセンス群、例えば、シュードモナス・アゾトホルマンス(P.azotoformans)、シュードモナス・ブレンネル(P.brenneri)、シュードモナス・セドリナ(P.cedrina)、シュードモナス・コングレランス(P.congelans)、シュードモナス・コルガタ(P.corrugata)、シュードモナス・コンスタンチニー(P.costantinii)、シュードモナス・エキトレモリエンタリス(P.extremorientalis)、シュードモナス・フルオレセンス(P.fluorescens)、シュードモナス・フルギダ(P.fulgida)、シュードモナス・ガスサルディー(P.gassardii)、シュードモナス・リバネンシス(P.libanensis)、シュードモナス・マンデリー(P.mandelii)、シュードモナス・マルギナリス(P.marginalis)、シュードモナス・メジテラネア(P.mediterranea)、シュードモナス・ミグラエ(P.migulae)、シュードモナス・ムシドレンス(P.mucidolens)、シュードモナス・オリエンタリス(P.orientalis)、シュードモナス・ポアエ(P.poae)、シュードモナス・ロデシアエ(P.rhodesiae)、シュードモナス・シンザンタ(P.synxantha)、シュードモナス・トラアジ(P.tolaasii)、シュードモナス・トリビアリス(P.trivialis)およびシュードモナス・ベロンニー(P.veronii)が含まれる。
【0112】
より好ましくは、細菌宿主細胞はシュードモナス・フルオレセンス群のメンバーであり、好ましくはシュードモナス・フルオレセンスである。シュードモナス・フルオレセンスが選択されるとき、好ましくは、それは、シュードモナス・フルオレセンス細分類A、シュードモナス・フルオレセンス細分類B、シュードモナス・フルオレセンス細分類C、シュードモナス・フルオレセンス細分類G、シュードモナス・フルオレセンス Pf−5、シュードモナス・フルオレセンス Pf0−1またはシュードモナス・フルオレセンス SBW25のいずれかである。シュードモナス・フルオレセンス細分類Aが特に好ましい。
【0113】
本発明に従って製造される小ペプチドは、長さが少なくとも2アミノ酸である。好ましくは、小ペプチドは長さが約5アミノ酸以上であり、より好ましくは約10アミノ酸以上であり、さらにより好ましくは約15アミノ酸以上であり、さらにより好ましくは約20アミノ酸以上であり、なお一層より好ましくは約25アミノ酸以上である。好ましくは、小ペプチドは長さが約300アミノ酸以下であり、より好ましくは約250アミノ酸以下であり、さらより好ましくは約200アミノ酸以下であり、なお一層より好ましくは約180アミノ酸以下であり、さらにより好ましくはは約150アミノ酸以下であり、なお一層より好ましくは約120アミノ酸以下である。小ペプチドが120アミノ酸未満の長さである場合、好ましくは、小ペプチドは長さが約100アミノ酸以下であり、より好ましくは約80アミノ酸以下であり、さらにより好ましくは約60アミノ酸以下であり、さらにより好ましくは約50アミノ酸以下であり、なお一層より好ましくは約40アミノ酸以下であり、なお一層より好ましくは約30アミノ酸以下である。
【0114】
好ましい実施態様において、小ペプチドは長さが2アミノ酸から約100アミノ酸であり、より好ましくは約5アミノ酸から約80アミノ酸であり、さらにより好ましくは約5アミノ酸から約60アミノ酸であり、さらにより好ましくは約5アミノ酸から約50アミノ酸であり、さらにより好ましくは約10アミノ酸から約40アミノ酸であり、さらにより好ましくは約15アミノ酸から約40アミノ酸であり、なお一層より好ましくは約20アミノ酸から約30アミノ酸である。
【0115】
代わりの好ましい実施態様において、小ペプチドは長さが約5アミノ酸から約300アミノ酸であり、より好ましくは約10アミノ酸から約250アミノ酸であり、さらにより好ましくは約15アミノ酸から約200アミノ酸であり、なお一層より好ましくは約20アミノ酸から約180アミノ酸であり、さらにより好ましくは約25アミノ酸から約150アミノ酸であり、なお一層より好ましくは約30アミノ酸から約120アミノ酸である。
【0116】
小ペプチドのアミノ酸配列は、生物学的生物に本来備わるペプチドのアミノ酸配列と同一であり得るし、また、そのようなペプチドのアミノ酸配列から得ることができる。あるいは、配列は合成され得る。すなわち、配列は、確率論的または推理的のいずれかであっても、遺伝子操作技術または遺伝子操作プロセスの適用によるような、人が介入した結果である。好ましい実施態様において、小ペプチドのアミノ酸配列が生物学的生物から得られる場合、好ましくは、生物は中温性生物である。
【0117】
好ましい実施態様において、本発明の方法に従って製造される小ペプチドは、切断部位ペプチドまたは切断可能なリンカーペプチドまたは両者によってもたらされる末端アミノ酸残基を除くためにさらに処理することができる。これは、この分野で知られているような酵素的または化学的な手段によって行うことができる。
【0118】
本明細書中に記載されているように、本発明において使用される導入遺伝子は、ペプチドマルチマー構築物(すなわち、ペプチドのコンカテマー)の上流(すなわち、ペプチドモノマー構築物に対してN末端部分)で発現するキャリアポリペプチドを含有する。ペプチドマルチマーに関して本明細書中で使用される用語「マルチマー」は、2個、3個またはそれ以上のペプチドユニットを含有するポリペプチドを示す。従って、ペプチドマルチマーは少なくともダイマーである。好ましい実施態様において、ペプチドマルチマーは少なくともトリマーである。ペプチドマルチマー構築物は、少なくとも2つの小ペプチド(ペプチドユニット)だけでなく、直列になったペプチドの間で、直列になったペプチドをつなぐ少なくとも1つのペプチド切断部位をも含む。好ましい実施態様において、ペプチドマルチマーは長さが約600アミノ酸以下である。好ましくは、ペプチドマルチマーは長さが約500アミノ酸以下であり、より好ましくは約450アミノ酸以下であり、さらにより好ましくは約400アミノ酸以下であり、なお一層より好ましくは約350アミノ酸以下であり、なおさらにより好ましくは約300アミノ酸以下であり、なお一層より好ましくは約250アミノ酸以下であり、さらにより好ましくは約200アミノ酸以下であり、一層さらにより好ましくは約150アミノ酸以下である。好ましくは、ペプチドマルチマーは長さが約10アミノ酸以上であり、より好ましくは約15アミノ酸以上であり、さらにより好ましくは約20アミノ酸以上であり、さらにより好ましくは約25アミノ酸以上であり、なお一層より好ましくは約30アミノ酸以上であり、さらにより好ましくは約40アミノ酸以上であり、なお一層より好ましくは約50アミノ酸以上であり、さらに好ましくは約60アミノ酸以上であり、さらに好ましくは約70アミノ酸以上であり、なお一層より好ましくは約80アミノ酸以上であり、なおさらに好ましくは約90アミノ酸以上であり、なお一層より好ましくは約100アミノ酸以上である。好ましい実施態様において、ペプチドマルチマーは長さが約10アミノ酸から約600アミノ酸であり、より好ましくは約15アミノ酸から約500アミノ酸であり、さらにより好ましくは約20アミノ酸から約450アミノ酸であり、なお一層より好ましくは約25アミノ酸から約400アミノ酸であり、さらにより好ましくは約30アミノ酸から約300アミノ酸である。
【0119】
まとめると、ここに示される結果は、本発明の独特のコンカテマーペプチド/AMP構築物が微生物(より好ましくは細菌、最も好ましくはシュードモナス・フルオレセンス)において効率的に製造され得ることを示している。AMP遺伝子のコンカテマー化は、2つの特筆すべき作用を抗菌性ペプチドに対して有すると思われる。すなわち、AMP遺伝子のコンカテマー化は、毒性を(細胞外および細胞内の両方で)低下させる。また、AMP遺伝子のコンカテマー化は、細胞内分配および封入体形成を増大させ、それにより、プロテアーゼに対する感受性を低下させることができ、およびさらに、毒性作用を緩和することができる。
【0120】
ペプチド/AMP遺伝子のコンカテマー化は、所望するペプチドの十分な発現を容易にするために十分であることが見出された一方で、キャリアポリペプチド(デハロゲナーゼが一例である)が、ペプチド/AMPのさらにより大きい発現レベルを生じさせるために使用された。マルチマー/コンカテマーをキャリアポリペプチドと一緒に使用することは、特に高度発現を促進させるために、特にシュードモナス・フルオレセンスでは好ましい。
【0121】
本発明はまた、キャリアポリペプチド/タンパク質に融合された本発明のコンカテマー/マルチマーを好ましくは含む融合タンパク質を提供する。そのような融合体はさらに、目的とするペプチドの回収レベルを高めることができる。全長タンパク質の短縮化形態(一例がデハロゲナーゼのN末端の123残基である)もまた、機能付与融合パートナーとして全長タンパク質と同様に(または全長タンパク質よりも良好に)機能し得る。そのような短縮化タンパク質は完全に折り畳まれないことがあり、全長のタンパク質よりも小さい溶解性を有し得る。これらの融合タンパク質はまた、不溶性の溶解物画分に分配され得る。従って、このタイプの無力化されたタンパク質フラグメントは容易に凝集し、沈殿し得る。これにより、結びつけられたペプチド/AMPコンカテマーが、そうでない場合にはコンカテマーがプロテアーゼに容易にさらされる溶液から、都合良く取り出される。
【0122】
遺伝子コンカテマー化およびある種の融合体の使用はともに、非毒性の高発現ペプチド/AMP構築物を構築するために好都合である。封入体の形成は発現ペプチドの蓄積を容易にし得るが、このことが、高度発現レベルが現在達成された唯一の理由であるとは思われない。例えば、DHFR(ジヒドロ葉酸レダクターゼ)−AMP(モノマー)の融合体は、封入体を形成するために強く分配されることが観測された。しかしながら、この構築物はシュードモナス・フルオレセンス宿主に対して依然として毒性であった。これらのDHFR−AMP封入体のSDS−PAGE分析は、AMPペプチドがDHFR融合タンパク質から切断されたことを示唆した。このタンパク質分解により、細胞は、遊離した(毒性の)AMPにさらされたと考えられる。AMP分子のコンカテマー化は、キャリアポリペプチド(例えば、DHFRまたはデハロゲナーゼなど)に融合されたときには特に、そのようなタンパク質分解の事象における細胞に対するさらなるレベルの保護をもたらす。
【0123】
キャリアポリペプチドが使用される本出願の実施態様では、キャリアポリペプチドをマルチマーのN末端に融合することが好ましい。しかしながら、本発明のマルチマーは、末端融合に限定されない様々な発現システムにおける使用のために適合させることができる。本発明のキャリアポリペプチドはまた、(例えば、向き合ったマルチマーとしてのモノマーとともに)本明細書中に具体的に例示されていない様々な方法で使用することができる。
【0124】
本明細書中で特定された重要なパラメーターにより、広範囲の様々な「次世代」の発現構築物が、改善されたペプチド/AMP発現のために可能になる。高発現構築物を、シュードモナス・フルオレセンス発酵の注目される低コストの属性と結びつけることにより、今や、新規な高容量適用のためのペプチド/AMPの経済的な製造が可能になる。本明細書中に例示されるプロセスは高密度発酵で実施することができる。好ましくは、シュードモナス・フルオレセンスが、これらの大規模発酵において使用される細菌である。本発明は、この分野でこれまでに知られている収量と比較して、ペプチド/AMPの非常に改善された収量を可能にする。
【0125】
本発明の別の非常に驚くべき局面は、カチオン性AMPマルチマーが電荷均衡を欠き得るということである。さらに、本発明の融合体(キャリアポリペプチド/タンパク質に融合されたマルチマーを含む)はまた、電荷均衡を欠き得る。すなわち、AMPは、しばしば、カチオン性/正荷電である。本発明は、マルチマー構築物における多数コピーのAMPの正荷電を相殺することは必ずしも必要でないという驚くべき発見に関連している。本発明のマルチマーおよび融合体は、好都合に、しかし驚くべきことに、マルチマーまたは完全な融合体において電荷を均衡させることを必要としない。本発明では、マルチマーAMP構築物において要求された、この分野でこれまで教示されていたこの要素が除かれる。先行技術の試みのいくつかが、マルチマータンパク質および/または融合タンパク質の形態で不活性なAMPを最初に製造することによって、AMPを生物学的に製造するためにこの分野では行われていた。しかしながら、十分な数の負荷電アミノ酸が、AMPの正荷電を完全に相殺するために、キャリアタンパク質として付加されなければならないか、またはマルチマーに付加されなければならないということがこれまで教示されていた。あるタイプの酸性タンパク質が、AMPの塩基性(pH)の性質を均衡させて打ち消すために(マルチマー内および/またはキャリア内に)要求された。この分野では、翻訳時に、発生期のAMPまたはAMPマルチマー(これはカチオン性/正荷電/塩基性である)が、翻訳に関与する核酸分子と相互作用すること、そしてまた、これにより、翻訳が効果的に停止させられることがこれまで教示されていた。従って、キャリアタンパク質は、AMPの電荷を均衡または無効にするために十分なアニオン性を有することに関してこれまで選択されていた。本開示に照らして明らかであるように、本発明はまた、AMP以外のカチオン性ペプチドを製造するために特に好都合である。
【0126】
本発明は、驚くべきことに、また、好都合なことに、AMP/AMPマルチマーの正電荷を著しく相殺するために、好ましくは、カチオン性であるか、または十分にアニオン性でないかのいずれかであるキャリアポリペプチドを提供する。すなわち、マルチマーAMPおよびAMP融合体の正味の正荷電は酸性/負荷電のアミノ酸残基によって著しく相殺および/または均衡されない。本発明は、驚くべきことに、また、好都合なことに、この分野でこれまで教示されていたこととに反する。すなわち、相殺すること、すなわち、負荷電のアミノ酸セグメントは本発明のマルチマーおよび融合体には存在しない。同様に、本発明のポリヌクレオチドは、コードされたAMPの累積的な正荷電を著しく低下させることを最終的には担う成分を含まない。さらに、本発明のスペーサーおよびキャリアポリペプチド(ならびにAMPサブユニット)は、先行技術の一部が示唆していたこととは反対に、付加されたシステイン残基を有していない。
【0127】
下記の表(表2)には、本発明の目的のために、4種類のアミノ酸が存在することが例示される。すなわち2種類(非極性および非荷電極性)が非荷電アミノ酸についてであり、残りの2種類(酸性および塩基性)が、それらがその一部であるタンパク質/ペプチドに電荷を与えるアミノ酸についてである。本明細書中で使用される場合、「酸性」アミノ酸は負荷電をタンパク質に加え、「塩基性」アミノ酸は正荷電をタンパク質に加える。
【0128】
【表2】

【0129】
荷電均衡は必須ではないという本発明の発見により、本発明に従った使用のために利用することができるはるかにより大きな範囲のマルチマーおよびキャリアポリペプチドが提供される。従って、本発明は、この分野で以前に考えられていたよりも広範囲の様々なマルチマーおよびキャリアポリペプチドの使用を可能にする。本発明はカチオン性マルチマーを提供する。様々なクラスの本発明のキャリアポリペプチドはまた独特である。本発明は、驚くべきことに、キャリアタンパク質を、十分にアニオン性であるタンパク質に(AMPマルチマーはカチオン性であるので、ほぼアニオン性として)限定するのではなく、好ましいキャリアは目的とする宿主において自身が十分に発現するタンパク質またはポリペプチドフラグメントであることを本発明は教示していることを示している。発現レベルは優先的には総細胞タンパク質の2%から25%である。本発明はまた、融合タンパク質を細胞質において溶液から取出して、不溶性の封入体/タンパク質凝集物にするように不溶性にしやすいキャリアポリペプチドを提供する。本発明のキャリアポリペプチドは、好都合なことに、結合したペプチド/AMPを沈澱させる。これは、ペプチド/AMPの回収レベルを、そうでない場合には可溶性のペプチド/AMPの細胞質プロテアーゼに対する感受性を低下させることによって、改善することを助けることができ、また、毒性ペプチド(例えば、AMP)の細胞内活性を低下させることを助けることができる。
【0130】
本発明のマルチマー融合タンパク質は、好ましくは、不溶性のタンパク質封入体として製造される。本発明のシュードモナス・フルオレセンスは、好都合なことに、マルチマーAMPをこの形態で製造するために十分に適する。
【0131】
上記で示されたように、本発明は、そのような構築物のそれぞれが、本明細書中で議論または示唆されるようなアミノ酸セグメントをコードするDNAセグメントを含むポリヌクレオチド構築物を包含する。好ましくは、本発明のマルチマーおよび/または融合タンパク質をコードするDNAセグメントは「機能的に連結され」、すなわち、別のヌクレオチド配列との機能的な関係に置かれ、その結果、DNAセグメントを、目的とするタンパク質を産生させるために、目的の細胞において発現(転写および翻訳)させることができる。例えば、シュードモナス・フルオレセンスにおいて機能的であるプロモーターをコード配列に機能的に連結することができ、その結果、プロモーターはコード配列の転写を行わせる。一般に、「機能的に連結される」は、連結されている配列が連続していること、および、2つのタンパク質コード領域を結合するために必要な場合には、連続し、かつ読み枠が合っていることを意味する。しかしながら、エンハンサーなどのある種の遺伝子エレメントは、連続していない場合でさえ、機能的に連結され得ることが広く知られている。
【0132】
原核生物宿主または真核生物宿主への導入のために調製されたDNA構築物(すなわち、ベクタ−)は、通常は、所望されるポリペプチドをコードする意図されたDNAフラグメントを含む、宿主によって認識される複製システムを含み、そしてまた、好ましくは、ポリペプチドをコードするセグメントに機能的に連結された転写開始調節配列および翻訳開始調節配列を含む。発現システム(発現ベクター)は、例えば、複製起点または自律複製配列(ARS)および発現制御配列、プロモーター、エンハンサー、および必要なプロセシング情報部位(例えば、リボソーム結合部位、RNAスプライス部位、ポリアデニル化部位、転写ターミネーター配列、およびRNA安定化配列)などを含むことができる。シグナルペプチドもまた、ペプチドの分泌を促進させるために、または、そうでなければ、タンパク質が細胞膜を横断するか、もしくはタンパク質が細胞膜と結合することを可能にするために含めることができる。
【0133】
発現ベクターおよびクローニングベクターは、おそらくは、選択マーカー、すなわち、ベクターで形質転換された宿主細胞の生存または生育のために必要なタンパク質をコードする遺伝子を含有する。そのようなマーカー遺伝子は、宿主細胞に同時に導入される別のポリヌクレオチド配列で運搬されることがあるが、殆んどの場合にクローニングベクター上に含有される。マーカー遺伝子が導入されている宿主細胞のみが選択条件のもとで生存および/または生育する。通常、選択遺伝子は、(a)抗生物質または他の毒性物質(例えば、アンピシリン、ネオマイシン、メトトレキサートなど)に対する抵抗性を付与するタンパク質、(b)栄養要求性欠損を相補するタンパク質、または(c)規定された増殖培地から利用することができない重要な栄養素を供給するタンパク質をコードする。適正な選択マーカーの選択は宿主細胞に依存しており、種々の宿主に対する適切なマーカーがこの分野で知られている。
【0134】
形質転換体はまた、目的とする核酸配列を含むハイブリダイゼーションプローブを使用することによって検出することができる。好ましくは、ハイブリダイゼーションは、例えば、Keller,G.H.、M.M.Manak(1987)、DNA Probes、Stockton Press、New York、NY、169頁〜170頁に記載されるような低いストリンジェンシー、中程度のストリンジェンシーおよび/または高いストリンジェンシーの条件のもとで行われる。本発明の範囲に含まれるポリヌクレオチドはこの様式で検出することができる。
【0135】
本明細書中で使用される「組換え」ポリヌクレオチドは、核酸配列の2つの、そうでない場合には分離されているセグメントの組合せによって作製されるポリヌクレオチドを示す。この場合、これらの配列は、(遺伝子操作技術または化学合成による)人為的な操作によって結合される。そうする際には、それぞれが所望する機能を有する複数の異種のポリヌクレオチドセグメントを結合して、機能の所望する組合せを有するポリヌクレオチドを作製することができる。本明細書中で使用される場合、「単離された」ポリヌクレオチドおよび/または「精製された」タンパク質に対する参照は、それらが、自然界で一緒に見出されるそれ以外の分子と会合していないときのこれらの分子を示す。従って、「単離された」および/または「精製された」に対する参照は、本明細書中で記載されるように、「人の手」の関与を意味する。
【0136】
本発明に従って前記微生物細胞によって製造されるマルチマー、融合タンパク質および/またはAMPは、好ましくは、前記微生物細胞によって産生される総細胞タンパク質の約2%から25%である量で産生される。これらの微生物細胞は、好ましくは、前記微生物細胞の大規模な回文式培養物を製造するために生育させられる(そのような培養物を繁殖させることができる)。マルチマー、融合タンパク質および/またはAMPは、好ましくは、回文式培養物によって産生される総細胞タンパク質の約2%から25%として産生される。
【0137】
同様に、本発明の1つの局面は、本発明のポリヌクレオチドおよび/またはタンパク質を含む微生物細胞である。遺伝子組換え宿主細胞は、本発明に関して、本発明の単離されたDNA分子を含有するように遺伝子改変されている宿主細胞である。DNAは、特定のタイプの細胞について適切である、この分野で知られている任意の手段によって導入することができ、そのような手段には、形質転換、リポフェクション、エレクトロポレーションおよびボムバードメントが含まれるが、これらに限定されない。遺伝子組換え細胞にはまた、目的とする異種DNAを有する、そのような人為的に「形質転換された」細胞の「天然の」子孫も含まれる。異種DNAは、好ましくは、宿主細胞のゲノムに取り込まれる。これを達成するための様々な技術がこの分野では広く知られている。目的とするポリヌクレオチドはまた、非ゲノムのプラスミドとして子孫細胞において厳密に維持され、かつ発現され得る。これを達成するための様々な技術もまた、この分野では広く知られている。
【0138】
DNA配列は、遺伝暗号の縮重性およびコドン使用頻度のために変化し得ることが当業者によって認められている。本明細書中で議論および例示されているペプチドおよびタンパク質をコードするDNA配列はすべてが本発明に包含される。
【0139】
さらに、対立遺伝子変化が、例示されたポリヌクレオチドおよびタンパク質/ペプチドに存在する場合があり、それらは、タンパク質/ペプチドの所望する活性を著しく変化させないことが当業者によって認識される。そのような均等物はすべて、本発明の範囲内に含まれる。保存的なアミノ酸置換を、上記の表1に示されたアミノ酸の種類に関して行うことができる。場合により、非保存的な変化を、本明細書中で議論されているタンパク質/ペプチドの所望する活性/機能を著しく変化させることなく行うことができる。
【0140】
本明細書中で参照または引用されている特許、特許出願、仮特許出願および刊行物はすべて、それらが本明細書の明白な教示と矛盾しない程度に、その全体が参照して組み込まれる。
【0141】
下記は、本発明を実施するための手順を例示する実施例である。これらの実施例は限定として解釈してはならない。別途示されない限り、すべての百分率は重量比であり、すべての溶媒混合物の割合は体積比である。
【実施例1】
【0142】
マルチマーAMPの設計および製造
D2A21抗菌性ペプチドが本発明の製造法による例示的なAMPとして使用された。このコアAMPは、α−らせんの立体配置にある、フェニルアラニン、アラニンおよびリシンからなる23残基のペプチドである。
【0143】
【化1】

【0144】
このAMPをコードする遺伝子を合成し、その後、プラスミド構築物を、D2A21前駆体を細菌において発現させるために組み立てた。最初に、D2A21ペプチドをコードするDNA配列を化学合成した。配列番号2は、配列番号1のD2A21ペプチドをコードするために使用されたDNA配列を示す。このDNA分子およびその非コード相補体を(正しい配向で)連結して、マルチマー/コンカテマーを形成させた。酸に不安定なAsp−Pro切断部位が、活性なモノマーへのマルチマーの切断を可能にするために、(マルチマーを形成させるために連結される)各AMPモノマーの間に必要とされた。従って、「コアAMP」は、マルチマー生成物の(機能的モノマーへの)合成後の酸加水分解のためのリンカー/切断部位を規定するために改変された。一例において、9個のさらなるDNA残基(塩基)が、D2A21ペプチドのアミノ端における隣接するアスパラギン酸−プロリン配列と、C末端における1個のグリシンとを付加するために、コアD2A21DNA配列の両端に付加された。下記の配列番号4を参照のこと。配列番号3は、配列番号4をコードするために使用されたDNA配列である。グリシン残基が、切断反応時の何らかの潜在的な「隣接基」作用を低下させるためにAsp−Pro配列のN末端に付加された。コアAMP+3個のさらなるアミノ酸残基のアミノ酸配列は下記の通りである:
【0145】
【化2】

その後、多数コピーのこれらのサブユニットは互いに結合させることができる。その後、弱酸を、アスパラギン酸残基とプロリン残基との間で、隣接配列内を切断するために使用することができる。
【0146】
下記(配列番号6)は、Gly−Asp−Pro切断配列によって接続され、かつ関連性のないペプチドの短い配列が隣接する2つのD2A21抗菌性ペプチド(2コピーの配列番号3が結合されている)を有する例示的なダイマー(「4Aダイマー」)である。(例えば、下記に示されるような6個のヒスチジン残基が、固定化Niでのマルチマーのアフィニティー精製を可能にするためにマルチマーのC末端に含まれた。例えば、下記の実施例5を参照のこと)。下記のマルチマーをコードするために使用されたDNA配列が配列番号5に示される。
【0147】
【化3】

【0148】
Asp−Pro切断部位が、残基13&14、残基39&40および残基65&66の間で認めることができる。従って、上記マルチマーの酸処理により、それぞれがD2A21’と呼ばれる2つのAMPモノマー(アミノ酸14から39およびアミノ酸40から65)が得られた。得られたD2A21’モノマーの配列は下記の通りである:
【0149】
【化4】

【0150】
配列番号1のD2A21コアペプチドと比較した場合、D2A21’は1個のさらなるプロリンをN末端に含有し、グリシン−アスパラギン酸ジペプチドをそのC末端に含有する。D2A21’は、驚くべきことに、D2A21コア/元ペプチドと比較した場合、等価な抗菌活性を有することが見出された。
【0151】
アスパラギン酸およびグルタミン酸は酸性(負荷電)アミノ酸残基であり、リシン、アルギニンおよびヒスチジンは塩基性(正荷電)アミノ酸残基であるので、配列番号6のマルチマーにおける荷電アミノ酸の下記の配置が明らかである:
・リーダー配列(配列番号6における最初の13アミノ酸)における1個のアルギニン(正荷電;配列番号6における残基12)および1個のアスパラギン酸(負荷電;配列番号における残基13)、
・1個のアスパラギン酸(負荷電;残基39)で終わる最初のD2A21サブユニット(配列番号6のアミノ酸14から39)における9個のリシン(正荷電)、
・1個のアスパラギン酸(残基65)で終わる2番目のD2A21ペプチド(アミノ酸40から65)における9個のリシン、ならびに
・トレーラー配列(アミノ酸65から85)における1個のアスパラギン酸および1個のグルタミン酸(それぞれが負荷電)ならびに6個のヒスチジン(正荷電)。
【0152】
配列番号6の85アミノ酸の電荷は下記のように例示することができ、この場合、「O」は中性のアミノ酸残基を表し、「+」は正荷電/塩基性アミノ酸残基を表し、「−」は酸性/負荷電残基を表す;
【0153】
【化5】

【0154】
従って、25個の正荷電残基および5個だけの負荷電残基が配列番号6のマルチマーに存在することを明瞭に認めることができる。2つのAMPにおける18個のリシン残基(それぞれのAMPにおける9個のリシン)から生じる正荷電は、リーダー配列およびリンカー配列の3個のアスパラギン酸と、トレーラー部の1個のグルタミン酸残基およびアスパラギン酸残基とによって相殺されない。リーダー配列が正荷電残基(アルギニン)を含むこと、そして、トレーラー配列が6個のヒスチジン(これらは正に荷電している)を含むことは、さらに驚くべきことである。この分野ではこれまで、正荷電を有する重要でないさらなるアミノ酸を有するマルチマーの使用について反することが教示されていた。D2A21’の3つのさらなる残基(そのうちの1つは酸性である)が、コアD2A21ペプチドと比較した場合、D2A21’の活性に悪影響を及ぼさなかったことはなおさらに驚くべきことである。
【実施例2】
【0155】
多数コピーの正しく配向したAMPユニットを有する構築物の合成
ペプチド生成物の製造費用は、ペプチド合成およびペプチド精製の両方の費用にある。ペプチドポリマーの大規模な化学合成は時間集約的かつ労働集約的である。固相ペプチド合成の場合、完了させるために合計で2時間から19時間を要求する13工程から18工程が、各残基を合成時のポリマーに付加するために必要とされる(Mergler&Durieux、2000)。さらに、これらの工程の多くは完結しないことがあり、または副反応を受けやすく、そのため、(より長いペプチドの場合には特に)数多くの様々な副生成物が反応混合物中に蓄積する。その結果、合成費用は非常に大きくなり得る(ほぼ$1,000,000/kg)。また、精製費用は、要求される純度レベルに依存して、この額またはそれ以上になり得る。明らかに、そのような費用は、多くの場合、大量適用のための受け入れられ得る費用限界を大きく超えている。
【0156】
AMPは、通常、周期的に配置された疎水性側鎖および正荷電(塩基性)側鎖から構成される(関連する総説については、HancockおよびLehrer(1998)、またはBlondelle他(1999)を参照のこと)。AMPは両親媒性分子である。残基の周期的な配置により、ペプチドが、構造化された(らせんまたはβ−シート)立体配置を取るとき、疎水性側鎖および荷電側鎖の空間的な隔離がもたらされる。電荷および疎水性のこの隔離により、AMPは微生物の外膜に結合することができる。結合すると、ペプチドは膜の脂質二重層の中に入り込み、溶解性の細孔に自己会合することができ(Hancock他、1995)、溶解性の細孔は細胞の内容物を流出させることができ、これにより、数分で微生物の死を生じさせる。AMP分子は、微生物の膜に入り込み、その後、膜の構造的一体性を破壊する細孔に会合することによって微生物を殺すことが提案されている。詳細な作用機構は完全には理解されていないが、これらのペプチドの予測可能な構造的特徴により、活性なAMP分子を新たに設計することが可能になっている。
【0157】
オリゴマー化/会合プロセスを阻害する試みにおいて、また、生成物の溶解性を低下させる試みにおいて、本発明者らは、今、AMP生成物が「頭−尾」連結ポリマー(コンカテマー)として発現される発現構築物を設計し、作製した。そのようなAMPコンカテマーは、AMPコンカテマーが膜の中に入り込み、かつ、微生物宿主細胞を殺すために要求されるAMPの溶解性および立体的/構造的柔軟性を低下させるために設計された。この不溶性コンカテマーポリペプチドは不溶性の封入体として細胞内に蓄積した。産生後、コンカテマーは、細胞を溶解し、可溶性の宿主関連の不純物を洗い流すことによって集めることができた。
【0158】
すべての遺伝子は、正しい(「センス」)発現を規定する5’から3’への極性を有する。同一DNA分子をコンカテマー遺伝子に連結するためには、すべてのサブユニットが(DNA分子の5’から3’への極性に関して)「頭−尾」配向で連結されることが必要である。正しく配向されていないそれぞれのサブユニットは、正しく産生されない(「アンチセンス発現」)だけでなく、隣接サブユニットの本来の発現をも破壊する。コンカテマーにおけるサブユニットの数が増大するに従い、正しい配向を有する、すべてがランダムに連結されたサブユニットの確率は、無視できるほど小さくなる。多くの場合、連結時における適正な配向は、2つの異なる制限エンドヌクレアーゼまたは任意のクラスIISエンドヌクレアーゼのいずれかを用いる「強制された」クローニング技術を使用して効率的に達成することができる(Lee,J.H.他、1996;Kim&Szybalski、1988)。しかしながら、これらの従来の方法論は、最小限に改変された切断可能なペプチドコンカテマーを製造するためには有用でない。これは、そのようなコンカテマーでは、比較的多数のアミノ酸がペプチドの両端に付加されるからである(このことは、その活性を低下させるとこれまで予想されていた)。本発明の連結法では、短い切断可能なアミノ酸配列をコードするDNA末端が可能になる。
【0159】
本発明はまた、AMPサブユニットを連結するために「シュードパリンドロームスペーサー」を使用するコンカテマー構築方法を開示しており、そのような構築方法を都合良く利用している。この選択的な方法により、正しく配向されたサブユニットを有するコンカテマーの製造、すなわち、(実用的でない配置を有するクローンを除くために)頭−尾配置でのコンカテマーの製造が可能になる。図1、図2、および図3Aから図3Cを参照のこと。AMPモノマーをコードする合成DNAは、正しくない末端が連結されたときにだけ、パリンドローム状ヘキサヌクレオチドのエンドヌクレアーゼ切断部位を形成するさらなる不連続な配列を含有する。DNAサブユニットの連結後(または連結時)において、正しく組み立てられていないコンカテマーは、DNAを適切なエンドヌクレアーゼで消化することによって都合良く分解することができる。図2および図3に示されるように、PvuIにより、所望されないB−B極性が認識され、BamHIにより、所望されないA−A極性が認識される。
【0160】
これらのコンカテマーは、「シュードパリンドローム」配列(5’GATCCG3’)に基づく逆極性かつ自己相補性のDNA配列の重なりを使用するオリゴヌクレオチド融合によって作製された。この配列は、AMPモノマーユニットの接合部で使用される、酸に不安定な切断部位(Gly−Asp−Pro)を構成する可能なコード配列の1つのコアを形成する。これを達成するために具体的に使用された配列が図3(AからC)に示される。これらの配列末端は、自己相補性であるので、自身または相互に連結することができる。この場合、配列末端が自身に連結する場合、連結により、PvuI制限エンドヌクレアーゼ部位またはBamHI制限エンドヌクレアーゼ部位のいずれかが接合部で形成される。配列末端が相互に連結する場合、制限部位は形成されない。この後者の場合はまた、所望する極性のコンカテマー生成物をもたらす。実際、エンドヌクレアーゼ切断部位が、3つの可能な連結生成物のうちの2つに対する連結(第3に対してではない)によって形成されることを生じさせる2つの自己相補性オリゴヌクレオチドの間での何らかの連結は、所望する極性を含有する生成物を組み立てるために一般に有用である。優先的に連結を所望する生成物は、形成されたエンドヌクレアーゼ切断部位を連結点において含有しないということである。
【0161】
連結プロセスおよび消化プロセスが完了した後、残存しているコンカテマーは正しく組み立てられているはずである(均一なセンス配向)。次いで、所望するサイズのコンカテマーを精製し、発現プラスミドに挿入することができる。適切なヘキサヌクレオチド配列が選ばれた場合(GATCCG(配列番号8))、ヘキサヌクレオチド配列は、AMPサブユニットを接続する切断可能なペプチドリンカー(例えば、Asp−Proの切断可能なジペプチドリンカー)をコードする。
【0162】
この方法を使用して、D2A21’コンカテマーが合成され、大腸菌発現プラスミドpET21bにマルチクローニング部位領域内のBamHI部位において挿入された。大腸菌への形質転換の後、2つのクローンが得られた(2つのD2A21’モノマーおよび3つのD2A21’モノマーをそれぞれ含有するクローン4Aおよびクローン4B)。4Aダイマーに対する配列は上記に示されている。AB4トリマー、およびAB4トリマーをコードするために使用されたDNAが、配列番号9および配列番号10にそれぞれ示される。より大きいD2A21’コンカテマー(コンカテマーあたり6個、7個および8個のサブユニット)が精製され、発現プラスミドに連結されたが、本発明者らは、これらのダイマーおよびトリマーの使用についてさらなる例示的な研究を集中した。
【実施例3】
【0163】
大腸菌におけるAMPコンカテマーポリペプチドの発現
4AダイマープラスミドおよびAB4トリマープラスミドを大腸菌BL21(DE3)株に形質転換した。形質転換体クローン(抗生物質耐性コロニー)が、液体増殖培地に接種するために使用された。得られた培養物は37℃で振とうされた。培養密度が1のA600に達したとき、遺伝子誘導を、IPTG(イソプロピルチオガラクトシド)を培養物に1mMの最終濃度に加えることによって行い、培養物を37℃で3時間インキュベーションした。誘導後、細胞を集め、溶解し、遠心分離して、可溶性/細胞質成分および不溶性の細胞成分を分離した。これらの抽出物をSDS−PAGEによって分析した。顕著な誘導されたタンパク質バンドが、ダイマーD2A21’構築物(4A)またはトリマーD2A21’構築物(AB4)を発現する誘導された培養物から得られたサンプルにおいて観測された。予想されたように、これらのバンドは、AMP遺伝子を含有しなかった培養物から得られたサンプルのSDS−PAGE分析では観測されていない。
【0164】
D2A21’ペプチドは、リシン、フェニルアラニンおよびアラニンのアミノ酸が非常に多い。D2A21’コンカテマーの産生レベルが、さらなるアミノ酸を増殖培地に加えることによって増大し得るかどうかを明らかにするために、本発明者らは、フェニルアラニンおよびリシンのそれぞれ0.5g/lを誘導直後の培養物に加えた。この補充工程は、大腸菌におけるD2A21’ダイマーの産生レベルを著しく改善するようであった。
【実施例4】
【0165】
大腸菌からのAB4の精製および分配
AB4遺伝子をコードするプラスミドを大腸菌発現宿主BL21(DE3)に形質転換し、得られた抗生物質耐性コロニーを使用して、富化誘導培地を含有するフラスコに接種した。得られた培養物を37℃で1のA600にまで増殖させ、1mMのIPTGで37℃で3時間誘導した。誘導後、培養物を遠心分離によって集め、溶解し、遠心分離して、可溶性の細胞成分(細胞質など)を不溶性の細胞成分(細胞膜またはタンパク質性封入体など)から分離した。AB4のD2A21’トリマーは大腸菌において良く発現され、不溶性の亜細胞画分に分配される。
【0166】
AB4タンパク質が封入体を形成するか、または細胞膜と会合しているかを明らかにするために、不溶性画分を緩衝液の界面活性剤溶液で洗浄した。AB4タンパク質は1%トリトンX−100(非変性性の界面活性剤)で抽出することができなかった。この界面活性剤溶液は、膜の脂質およびタンパク質を可溶化することが予想される。SDSなどのアニオン性界面活性剤はAB4タンパク質を非常に良く可溶化する。この結果は、強い好都合な相互作用がアニオン性界面活性剤とカチオン性ペプチドとの間で予想され得るので、驚くべきものではない。逆に、AB4トリマーはカチオン性界面活性剤によって可溶化されない。カチオン性界面活性剤は、宿主関連の不純物をAB4タンパク質から選択的に可溶化するために有用であり得る。
【0167】
AB4タンパク質がトリトンX−100などの非イオン性界面活性剤によって可溶化され得ないという観測結果は、このタンパク質が膜に結合していないことを示唆している。むしろ、本発明者らの総合したデータは、AB4タンパク質が細胞内で封入体を形成していることを示唆している。このことはまた、プロセス開発の観点から好都合である。封入体生成物は、遠心分離またはろ過などの安価な物理的技術を使用して多くの混入物から精製することができるからである。
【実施例5】
【0168】
可溶性ポリペプチドの精製
細菌により発現されたコンカテマーを特徴づけるために、4A(D2A21)ダイマーを、固定化Ni++クロマトグラフィーを使用して精製した。不溶性画分に分配される実施例4で議論されたトリマーとは異なり、ダイマーの大部分が可溶性の細胞質画分に分配される。4AダイマーD2A21’コンカテマーを発現する細胞から得られた大腸菌溶解物を調製し、固定化Niカラムに通した。カラムを緩衝液で洗浄して、非結合物を除いた後、コンカテマーを、0.5Mイミダゾール(pH7.8)を使用して特異的に溶出した。Ni++精製されたダイマーは、約13kDaの見かけMWを有する単一バンドとして現れる。精製されたダイマーのこの大きい分子量は、このポリペプチドの大きいカチオン性から生じていると考えられる。Niカラムからの生成物収量は、おそらくは、両親媒性ペプチドと固体支持体との間での強固な非特異的な相互作用により、または、支持体に対するマルチマーの結合が不良であるために、予想されたよりも低かった。精製されたタンパク質は、機能的分析および生化学的分析の前にイミダゾールを除くために透析された。
【0169】
精製されたダイマーのMALDI質量分析による分析は、N末端メチオニンが除去されていることを示している(予想MW=9,497.1;精製ダイマーの実測MW=9,499.4)。この修飾はこのタンパク質発現システムについては一般に観測されている。下記の実施例7で議論されているプロトコルを使用した場合、透析されたD2A21ダイマーが検出可能な抗菌活性を全く有しないことが明らかにされた。このことは、ペプチドの抗菌活性がコンカテマー化によって弱められていることを示していた。
【実施例6】
【0170】
マルチマーからのペプチドモノマーの作製
D2A21’を例示されたコンカテマーから得ることができるかどうかを明らかにするために、精製された(不活性な)前駆体を50%ギ酸(またはコントロールとして水)で処理して、混合物を70℃に24時間加熱した。切断期間後、サンプルを、スピードバッックを使用して真空乾燥し、サンプルをTrisCl/NaOHで中和し、その後、分析した。サンプルをSDS PAGE分析によって分析した。分析により、予想されたように、前駆体ポリペプチドがギ酸によって切断されたことが示された(水では切断されなかった)。これらの切断中間体および非切断物の不連続なラダーが、ギ酸処理サンプルについて、より初期の時点(6時間)で観測された。他の酸処理は本明細書中の他のところで議論されている。ペプチドを切断するための鍵は、pHを低下させることである(このことは、本発明の開示に照らして、当業者によって認識される)。
【実施例7】
【0171】
マルチマーの切断から得られるモノマーの活性
切断されたペプチド(実施例5および実施例6から得られた同じサンプル)の抗菌活性を、大腸菌生育の用量依存的な阻害を測定することによって決定した。サンプルは、大腸菌BL21(DE3)株が接種された一晩培養物の生育を阻害するその能力について試験された。
【0172】
AMPサンプルを96ウエルプレートにおいて水に連続希釈した。大腸菌BL21(DE3)細胞の一晩培養物をLB培養液に1:50希釈し、250μl量を96ウエルプレートに移した。プレートを37℃で1時間インキュベーションし、その後、50μlの希釈されたペプチド(または水)を各ウエルに加えた。プレートを37℃で一晩インキュベーションして、培養密度を、Spectromax Plusプレートリーダーを使用して、600nmにおける見かけの吸光度を測定することによって決定した。
【0173】
ギ酸処理から得られたダイマーサンプルは、著しい抗菌活性を有することが見出されたが、水で処理されたダイマーは活性を有していなかった。
【0174】
これらの実験は、抗菌性ペプチドがD2A21’コンカテマー前駆体の酸切断によって製造されることを明瞭に示している。しかしながら、予想されるD2A21’ペプチドが、実際に、反応から得られた生成物であることをさらに明らかにするために、本発明者らは、分析RP−HPLC、LC/MSおよびMALDI質量分析の各技術を使用して切断生成物を分析した。これらの実験は、まぎれなくD2A21’が細菌発現のダイマーおよびトリマーの切断から得られていることを示している。本発明者らはまた、D2A21’生成物が不溶性のAB4トリマーの酸処理から得られることを明らかにするためにこれらの分析技術を使用した。
【実施例8】
【0175】
シュードモナス・フルオレセンスにおけるAMPコンカテマーポリペプチドの発現
コンカテマーD2A21’遺伝子(ダイマーおよびトリマー)をシュードモナス・フルオレセンス発現プラスミドpMYC1803にサブクローン化した。プラスミドpMYC1803は、調節されたテトラサイクリン耐性マーカーと、RSF1010プラスミドに由来する複製および転移性遺伝子座とを有するpTJS260の誘導体である(米国特許第5,169,760号(Wilcox)を参照のこと)。「TF3」トリマーは本質的には「AB4」トリマーと同じであるが、異なる発現ベクターが産生のために使用された。配列番号11および配列番号12を参照のこと。さらに、本発明者らはまた、「JP2」ダイマー、「16A」トリマー、「21A」トリマーおよび「21B」トリマーを使用した。16Aトリマーについては配列番号36および配列番号37を参照のこと。21Aトリマーについては配列番号38および配列番号39を参照のこと。21Bトリマーについては配列番号40および配列番号41を参照のこと。JP2ダイマーについては配列番号42および配列番号43を参照のこと。AMP発現プラスミドを保有するシュードモナス・フルオレセンス細胞を使用して、規定された培地に接種し、得られた培養物を生育させ、0.3mMのIPTGを添加した後48時間にわたって誘導した。培養物の一部を誘導前および誘導後の様々な時点で集めた。これらの培養物サンプルは、細胞生育、タンパク質産生、封入体形成およびプラスミド安定性を特徴づけるためにもっぱら分析された。
【0176】
実質的な量のトリマーD2A21’の発現が、誘導されたシュードモナス・フルオレセンス培養物において、特にTF3トリマークローンから観測された。しかし、シュードモナス・フルオレセンスにおけるこれらの構築物の発現レベルは、一般に、エンシェリヒア・コリで観測されたレベルよりも低かった。ダイマーD2A21’構築物のより低い発現が、シュードモナス・フルオレセンスにおいてより明らかであった。
【0177】
誘導された培養物から得られた抽出物の免疫ブロット分析によれば、ダイマーのある程度の分解(およびトリマーD2A21’前駆体のいくらかの限定された分解)がシュードモナス・フルオレセンスサンプル中に生じていた。ダイマーのいくらかの分解(およびトリマーの限定された分解)はまた大腸菌抽出物においても観測された。コンカテマー前駆体の分解のあるものは、(分解がAsp−Pro連結点またはその付近で生じた場合)、いくらかの成熟型の殺生物性D2A21’の産生をもたらし得る。これにより、コンカテマーのさらなる発現が制限され得る。大腸菌BL21(DE3)発現システムに対する誘導時間(3時間)が、シュードモナス・フルオレセンスに対する誘導間隔(48時間)よりもはるかに短いことに留意すると、シュードモナス・フルオレセンスシステムに対するこのより長い誘導期間は、このシステムを、毒性D2A21’フラグメントのゆっくりした組立てに対しより感受性にし得る。
【実施例9】
【0178】
D2A21コンカテマー融合体
上記実施例は、D2A21’AMPのコンカテマー化がペプチドの毒性を低下させることを明瞭に示している。大腸菌およびシュードモナス・フルオレセンスにおいて、遺伝子中のD2A21’サブユニットの数が1個から2個に、2個から3個に増大するに従って、D2A21’前駆体の改善された発現が観測された。トリマーD2A21’ポリペプチドは、大腸菌およびシュードモナス・フルオレセンスの両方において非常に著しいレベルで発現される。産生レベルをなおさらに増大させるために、本発明者らは、様々なタンパク質配列のD2A21’トリマーへの融合の、コンカテマー発現に対する影響を調べた。
【0179】
特に、本発明者らは2つの融合パートナーに焦点を合せた(大腸菌に由来するジヒドロ葉酸レダクターゼ(DHFR)およびロドコッカス・ロドクロウス(R.rhodocrous)に由来するハロアルカンデハロゲナーゼ)。例えば、デハロゲナーゼタンパク質は、シュードモナス・フルオレセンスにおいて極めて高いレベルに(シュードモナス・フルオレセンス自身により)発現されることから選択された。DHFRキャリアポリペプチドは4.77のpIおよび−10.77の(中性pH7での)電荷を有する。全長のデハロゲナーゼキャリアタンパク質は4.95のpIおよび−17.25の(中性pH7での)電荷を有する。短縮化されたデハロゲナーゼキャリアペプチド(これは下記で議論される)は5.31のpIおよび−7.53の(中性pH7での)電荷を有する。これらの値は、Vector NTiソフトウエアを使用して計算された。
【0180】
(a)DHFR
DHFR遺伝子(配列番号20および配列番号21を参照のこと)をTF3(配列番号11)のN末端に融合させた。配列番号22および配列番号23を参照のこと。これは図4に例示される。N末端融合体はまた、DHFR/D4E1トリマー(配列番号24および配列番号25を参照のこと)、DHFR/D4E1テトラマー(配列番号26および配列番号27参照のこと)およびDHFR/D4E1ペンタマー(配列番号28および配列番号29参照のこと)について構築された。
【0181】
有意な量の誘導されたタンパク質バンドはSDS−PAGE分析において観測されなかったが、誘導されたタンパク質バンドが、これらの融合体を発現するシュードモナス・フルオレセンス細胞から得られた誘導後の抽出物の免疫ブロットにおいて、特にDHFR−トリマーD2A21’融合体(MW:DHFR−D2A21コンカテマー構築物について34から36kDa)について観測された。
【0182】
(b)デハロゲナーゼ
下記で議論される3I融合体および4C融合体が図4に例示される。
【0183】
本発明者らは、「3I」融合体(配列番号32および配列番号33を参照のこと)を形成させるために、D2A21’トリマーコンカテマー(AB4)のN末端に翻訳可能に融合されたデハロゲナーゼ(Newman他、1999)タンパク質(配列番号30および配列番号31を参照のこと)をコードする遺伝子融合体を作製した。AMP対デハロゲナーゼ配列の比率を増大させるために、別の融合体が、このタンパク質の最初の123残基のみを含有する短縮化体のデハロゲナーゼタンパク質をAB4トリマーのN末端に融合させることにより、構築された。ところで、DHFRタンパク質およびデハロゲナーゼタンパク質はともに非常に弱いアニオン性であり、デハロゲナーゼの荷電残基はタンパク質全体に一様に分布している。従って、123aaフラグメントもまたほんの少し弱いアニオン性であった。この構築物は「4C」と呼ばれた。配列番号34および配列番号35を参照のこと。両方の場合において、キャリアのC末端がマルチマーのN末端に融合された。
【0184】
デハロゲナーゼ−D2A21’融合体を、ベクターpET24−bを使用して大腸菌において先ず発現させた。誘導後、誘導された細胞を溶解し、封入体を遠心分離によって(細胞膜などの他の不溶性成分と一緒に)集めた。デハロゲナーゼ−D2A21’コンカテマー融合体は大腸菌において非常に良く発現した。これは、振とうフラスコにおいて培養液1リットルあたり300mgのレベルに蓄積した全長デハロゲナーゼ−D2A21’融合体について、特にそのように言えた。デハロゲナーゼ−D2A21’タンパク質は可溶性溶解物(細胞質)画分では全く検出されず、すべてが、不溶性画分に存在することが見出された。
【実施例10】
【0185】
シュードモナス・フルオレセンスにおける融合体
本発明者らは、デハロゲナーゼ/トリマーD2A21’融合体両者(3Iおよび4C)を、シュードモナス・フルオレセンスにおける発現のために使用するpMYC1803プラスミドにサブクローン化した。これらの発現プラスミドはシュードモナス・フルオレセンスにエレクトロポレーション導入され、得られた形質転換体クローンを使用して、規定された最少培地を含有する振とうフラスコ培養に接種された。培養物を32℃で生育させ、IPTGで誘導した。その後の48時間の誘導期間の間に、一部を様々な時点でそれぞれの培養物から取り出し、細胞を遠心分離によって培地から集めた。細胞を再懸濁して、溶解緩衝液中で溶解し、可溶性(細胞質)画分および不溶性画分を遠心分離によって分離し、その後、別のチューブにデカントした。可溶性画分および不溶性画分を、SDS−PAGEを使用して分析した。
【0186】
AB4トリマークローンの十分な発現が達成された。他方、3I(全長デハロゲナーゼ/AB4トリマー)融合タンパク質が、AB4トリマー単独の場合よりもはるかに大きいレベルで、大腸菌およびP.fluotrescensにおいて発現した。適切な分子量の強い、誘導されたタンパク質のバンドが、短縮型デハロゲナーゼ/D2A21’トリマー(4C)を発現するP.fluotrescens培養物の不溶性画分において観測された。極めて少量だけの誘導されたタンパク質が、これらの細胞から得られた対応する可溶性画分において観測された。このことは、これらのタンパク質がP.fluotrescensにおいて封入体を効率よく形成していることを示唆している。相当量のタンパク質が誘導の最初の15時間の間に蓄積し、さらなる蓄積はその後の33時間の間に生じなかった。
【0187】
P.fluotrescensにおいて、エシェリヒア・コリと比較して、より低いレベルの誘導されたタンパク質が、全長デハロゲナーゼ−D2A21’トリマーを発現する培養物(クローン3I)から得られた不溶性画分において観測された。誘導されたバンドが、予想されたよりも幾分低い分子量(約37kDa)ではあるが、これらの培養物から得られた可溶性サンプルにおいて観測された。極めて大きいレベルの4C(トリマー/短縮型の融合体)がP.fluotrescensによって産生された。これらのレベルは20リットルの発酵で1リットルあたり1グラムを超えていた。
【実施例11】
【0188】
産生後のさらなる処理
溶解および当初の封入体洗浄の後、デハロゲナーゼ−D2A21’トリマーの産生後の処理における次の工程は、誘導されたエシェリヒア・コリBL21(DE3)細胞から調製された封入体から融合タンパク質を可溶化することであった。本発明者らは、カオトロピック剤(8MグアニジンHClまたはウレアなど)および有機溶媒混合物(10%ブタノール、40%HOAc/40%メタノール/20%水、50%HOAc、50%HOAC/2%ピリジンなど)を含む広範囲の様々な化学剤を試験した。これらの溶液を封入体調製物に加えて、懸濁物を激しく混合した。液相および固相を遠心分離によって分離し、液相中の可溶性タンパク質濃度を測定した。表3を参照のこと。デハロゲナーゼ−D2A2’トリマー融合体は、グアニジンHCl、ウレア、酢酸、および酢酸/アセトニトリル混合物によって最も効率的に可溶化された。酢酸による融合タンパク質の可溶化は、少量のピリジンによって大きく妨げられた。全長デハロゲナーゼ融合体および短縮型デハロゲナーゼ融合体に対する抽出プロフィルは、2つの構築物の間には著しい分子量の差があるにもかかわらず、非常に類似していた。融合タンパク質を効果的に可溶化する溶液は、タンパク質を変性させる(ウレアおよびグアニジンHCl)ものか、またはペプチドの溶解性を促進させるもの(酢酸およびアセトニトリル/酢酸)か、いずれかであるようであった。
【0189】
【表3】

【0190】
表3に報告された結果は、粗製の不溶性デハロゲナーゼ−D2A21’を含有するサンプルを各溶液で処理し、激しく混合して、遠心分離したものである。上清をデカンテーションして、タンパク質濃度を測定した。
【実施例12】
【0191】
コンカテマーからのAMP生成物の製造および特徴づけ
グアニジンHClまたはウレアで可溶化されたタンパク質を、HCl、ギ酸または酢酸でpH1から1.5に酸性化した。サンプルを60℃に24時間から48時間にわたって加熱した。24時間毎に、一部を取り出し、pHをTrisCl/NaOHで中和した。酸切断された生成物を、逆相HPLCを使用して分析した。10.2分の保持時間を有する大きいピークが、HCl処理を60℃で24時間行った後に観測された。この保持時間は、合成されたD2A21’の保持時間と同一であった。12.2分におけるペプチドピークは3,044.7の分子量を有しており、これは、D2A21’について予想される分子量と本質的に同一であった。10.6分の保持時間でのより小さいピークもまた、9.1分における主要なピーク(このピークはHCl処理サンプルでは観測されなかった)と同様に、観測された。これらのピークは経時的に蓄積し続けた。このことは、これらが、関連した生成物であり得ることを示唆している。ウレアによる可溶化から得られたサンプルについてはピークが観測されなかった。これは、移動相に希釈されたときの、観測されたサンプルの沈殿によると考えられた。酸切断による生成物は相当のAMP活性を含有していた。まとめると、これらの結果は、マルチマーの加水分解により、生物学的に活性なAMPモノマーの産生がもたらされたことを示している。
【0192】
類似する結果が、精製されたAMPトリマーをギ酸で60℃で消化したときに観測された。切断されたトリマーは強力な抗菌活性を有していた。HPLC分析により、(9.1分および10.6分で溶出する化学種に加えて)多数の化学種が存在することが明らかにされた。本発明者らは、これらのピークの一部またはすべてがD2A21’生成物の誘導体であり得ることを仮定した。このことを調べるために、本発明者らは、D2A21’トリマーのギ酸消化の生成物を、MALDI−TOF質量分析を使用して分析した。強いピークが、3,045.1の質量を伴って質量スペクトルにおいて観測された。この質量は、所望するD2A21’生成物に対する3,044.7の予想される質量と非常に近かった。このピークに加えて、他の付加物ピークが観測された。小さいピークが、2,929.8の質量値で観測された。このピークは、おそらくは、C末端のアスパラギン酸残基が失われたD2A21’誘導体から生じたと考えられる(この化学種(D2A21”)の予想される分子量は2,929.6であった)。D2A21”化学種はこのサンプルでは比較的少量で存在し、より多量のD2A21”が、切断反応がより長時間にわたって行われたとき、または切断反応がより高い温度で行われたとき、生成物において観測された。
【0193】
規則的な間隔で現れるいくつかの他のピークもまた、質量スペクトルにおいて観測された。切断生成物のその後のLC−MS分析により、D2A21”ピークは、親のD2A21’よりもわずかに大きい保持時間を有することが明らかにされた。これらのピークは、D2A21’ピークおよびD2A21”ピークの近くにクラスター化していた。これらの付加物ピークと親ピークとの質量差は28amuであった。この質量はホルミル付加物の分子量に対応するので、本発明者らのデータは、ペプチドが切断反応時にギ酸によってホルミル化されたことを示唆していた。この結論は、D2A21’トリマーが、酢酸または希HClを使用して切断されたときには、+28amuの付加物が観測されないという観測結果によって裏付けられた。
【実施例13】
【0194】
活性に対する酸切断の副生成物の影響
C末端のアスパラギン酸残基の喪失、またはペプチド生成物のホルミル化がその抗菌活性に影響するかどうかを明らかにするために、高純度の合成D2A21’を、ギ酸、希HClまたは水のいずれかで60℃において24時間にわたって処理した。サンプルを真空乾燥によって濃縮して、Tris/水酸化ナトリウムで中和し、その後、MALDI−TOF質量分析によって分析した。コンカテマーD2A21’前駆体の場合と同様に、ギ酸による処理はD2A21”およびホルミル化同時生成物の両方の形成を生じさせ、その一方で、後者の生成物の形成は、希HClで処理されたサンプルでは観測されなかった。予想されたように、いかなる種類の副生成物も、水において24時間加熱されたサンプルでは観測されなかった。興味深いことに、MALDI質量分析およびHPLCを使用した、ギ酸および塩酸による切断の比較により、D2A21’生成物対D2A21”副生成物の比率が、HClによる切断反応生成物については、ギ酸による生成物よりも大きいことが示唆された。この改善された生成物対副生成物比はまた、10%酢酸を使用する切断反応についても観測された。
【0195】
C末端切断反応およびホルミル化反応はともに、D2A21”またはホルミル化ペプチド生成物のいずれも、より低い温度(4℃)で酸とインキュベーションされたサンプルにおいては観測されなかったので、非常に温度依存的であった。
【0196】
ペプチド活性に対するこれらの処理の影響を測定するために、これらのサンプルのそれぞれの抗菌活性を、標準的な生育阻害アッセイを使用して二連で測定した。抗菌活性の著しい差は、酸処理サンプルまたは水処理サンプルのいずれについても観測されなかった。この結果は、D2A21”またはホルミル化生成物の形成はペプチドの抗菌活性に影響しないことを示唆していた。一方、薄いHClまたは酢酸で切断されたペプチド生成物は、望ましいことに、ペプチドのギ酸(および他の)加水分解から生じ得る天然に存在しない副生成物をもたらさない。
【実施例14】
【0197】
D4E1コンカテマー/他のAMP:その融合体
D4E1として知られている別の抗菌性ペプチドが、本発明のマルチマー/コンカテマー化方法論をさらに評価するために選択された。D4E1は構造がβ−シートである。コアD4E1 AMPは下記の17残基のアミノ酸配列を含む:
【0198】
【化6】

【0199】
DNA配列を化学合成して、細菌における発現のためにD4E1のマルチマーを構築した(配列番号13を参照のこと)。D4E1’を、最初の取組みにおいて、D2A21’コンカテマーのために開発された方法を使用してpET24bにクローン化した。さらなる残基が、D2A21’と同様に、コアD4E1配列の両側に配置された。実際、この構築では、余分なAsp−Proジペプチドの付加がD4E1配列のN末端に含まれる。従って、DNA配列は、コアD4E1 AMPを、コアAMPのN末端およびC末端の両方におけるAsp−Proと一緒に含む21アミノ酸のペプチドをコードする。しかしながら、D2A21’構築物がまさにそうであるように、コンカテマー化されたD4E1’ペプチドの酸加水分解は、1個のn末端pro残基およびc末端gly−asp残基を含有することが予想される。
【0200】
【化7】

【0201】
2個、3個、4個および5個のマルチマーが達成されたが、過剰発現は、大腸菌BL21(DE3)に形質転換されたとき、成功しなかった。トリマーおよびテトラマーの配列については配列番号14から配列番号17を参照のこと。前駆体の細菌生成物は、6XHisタグを有する21アミノ酸の配列がC末端に配置され、T7タグを含有する12アミノ酸のリーダー配列がN末端に配置された。D4E1ペンタマーのアミノ酸配列を下記に示す:
【0202】
【化8】

このタンパク質をコードするDNA配列が配列番号19に示される。
【0203】
電荷分布が下記に示される。この場合、Oは、非極性、極性、疎水性または非荷電であり、+は正荷電残基を表し、−は負荷電残基を表す。
【0204】
【化9】

【0205】
D4E1のコンカテマーが、D2A21コンカテマーを組み立てるための上記の方法を使用して作製された。
【0206】
コンカテマーの方向性分析が、エンドヌクレアーゼによる消化によって試験され、アガロースゲル電気泳動によって確認された。コンカテマーを表すバンドがゲル精製された。DNAは、続いて、T4リガーゼを使用して、pET24b(大腸菌)発現プラスミドのBamHI部位で連結された。連結混合物を大腸菌菌株のDH5αライブラリーに適した細胞に形質転換して、カナマイシン耐性について選択した。カナマイシン耐性株を単一コロニー単離した。その後、個々のコロニーをLB/Kan培地に接種し、37℃で一晩生育させた。DNAを細胞から抽出し、制限消化によって分析した。適正なプラスミドを含有するプラスミドはまた、DNA配列決定によって分析された。
【0207】
D4E1のトリマー、テトラマーおよびペンタマーが、その後、一般的なPCR技術を使用してシュードモナス・フルオレセンス発現ベクターpMYC1803に導入された。D4E1の配列確認されたコンカテマーを、コード配列のN末端およびC末端に対するプライマーを使用するPCRによってpMYC1803発現プラスミドにサブクローン化した。
【0208】
PCR産物をアガロースゲル電気泳動によって確認し、その後、pMYC1803発現プラスミドにそのSpeI部位およびKpnI部位の間で連結するためにそれぞれの酵素で消化した。発現ベクターを細菌菌株JM109コンピテント細胞に形質転換し、LBおよびテトラサイクリン含有(Tet)寒天平板に播いた。続いて、個々のコロニーをLB/Tet培地に接種し、一晩生育させた。その後、細胞を集め、DNAを抽出し、配列決定した。発現レベルをSDS−PAGEによって測定した。さらにより大きい発現レベルが所望された。pMYC1803におけるD4E1のトリマー、テトラマーおよびペンタマーが、その後、DHFRをコードするN末端キャリア配列に融合された。
【0209】
(a)pmyc1803におけるD4E1−DHFR融合体
確認されたD4E1のpMYC1803組換えプラスミドをNheIおよびKpnIのエンドヌクレアーゼで消化して、D4E1コンカテマーを取り出した。トリマー融合体については配列番号24および配列番号25を参照のこと。テトラマー融合体については配列番号27および配列番号27を参照のこと。DNAフラグメントを、アガロースゲル電形動によって確認し、定量した。DNAを、DHFR(ジヒドロ葉酸レダクターゼ)をコードする存在する上流配列をそのSpeI部位およびNheI部位の間に含有する発現ベクターpMYC1803のNheI部位およびKpnI部位に連結した。連結混合物をJM109コンピテント細胞に形質転換し、LB/tet寒天平板に播いた。続いて、個々のコロニーをLB/Tet培地において37℃で一晩生育させた。細胞を、以前に記載された手順を使用して集めた。DNAを、SpeIおよびNheIの組合せによる制限消化、または、NheIおよびKpnIの組合せによる制限消化に供した。制限消化物をアガロースゲル電気泳動によって分析した。しかしながら、DHFR−D4E1融合体のより大きい発現レベルがさらに所望された。
【0210】
(b)pMYC1803デハロゲナーゼ融合キメラにおけるD4E1
D4E1ペンタマー(配列番号18)を、一般的な増幅(PCR)技術および連結技術を使用して、(配列番号34の4C融合体におけるように)短縮型デハロゲナーゼに融合させた。
【0211】
pMYC1803 DHFR D4E1ペンタマーを、デハロゲナーゼに融合されたpMYC1803 D4E1ペンタマーを構築する際のD4E1に対するモデルテンプレートとして使用した。配列番号44および配列番号45を参照のこと。pMYC1803デハロゲナーゼ4Cプラスミドを、デハロゲナーゼに融合されたpMYC1803 D4E1ペンタマーを構築する際の短縮型デハロゲナーゼ(最初の123アミノ酸)に対するDNAテンプレートとして使用した。C末端デハロゲナーゼおよびN末端T7タグをコードするセンスDNA配列およびアンチセンスDNA配列を合成した。
【0212】
センス5’プライマーおよびC末端3’KpnIプライマーが、D4E1:DHFR(配列番号28および配列番号29)からD4E1ペンタマーを増幅するために使用された。アンチセンス3’プライマーおよびN末端5’SpeIプライマーが、短縮化体のデハロゲナーゼを4C(配列番号34および配列番号35)から増幅するために使用された。
【0213】
両方のPCR産物をアガロースゲル電気泳動によって確認した。PCRフラグメントを定量し、続いて等モル比で一緒にして、NheIエンドヌクレアーゼによる制限切断に供し、使用されたPCRプライマーによってコード化し、続いて連結した。連結反応物を、完全なデハロゲナーゼおよびD4E1の融合配列を増幅するために、5’SpeIプライマーおよび3’KpnIプライマーを用いたPCRのためのテンプレートとして使用した。続いて、PCRをアガロースゲル電気泳動によって確認した。その後、PCR産物をSpeIおよびKpnIの両方の制限酵素で消化した。PCR産物をシュードモナス・フルオレセンス株MB214発現ベクターpMYC1803にそのSpeI部位およびKpnI部位の間で連結した。連結混合物をJM109コンピテント細胞に形質転換し、LB/Tet寒天に置床した。続いて、個々のコロニーをLB/Tet培地において37℃で一晩生育させた。細胞をそれに従って集めた。その後、抽出されたDNAを、D4E1配列に融合されたデハロゲナーゼのPCR増幅のためのテンプレートとして使用した。融合配列を確認するプラスミドDNAが、その後、DNA配列決定に供された。配列番号45を参照のこと。
【0214】
P.fluoresenceにおける発現研究により、高レベルの誘導されたタンパク質およびD4E1モノマーペプチドが酸による処理/切断の後で明らかにされた。この発現プラスミドを含有するP.fluoresence株MB214は、20リットルの発酵槽において生育させたとき、発酵液1リットルあたり少なくとも1グラムの産生をもたらした。
【図面の簡単な説明】
【0215】
【図1】正しい配向でモノマーAMPサブユニットをコードするDNAセグメントのマルチマー構築物への組立て、次いでプラスミド内への組立てを例示する。
【図2】所望する配向でのマルチマーサブユニットの組立てを示す。
【図3A】マルチマー/コンカテマーを形成させるために(Asp−Proジペプチドと連結されたAMPをコードする)正しく配向した遺伝子を組み立てるために使用されたシュードパリンドロームスペーサー方法論を示す。所望する配向での遺伝子の付着末端の連結により、Asp−Proジペプチドをコードする非パリンドローム配列が生じる。
【図3B】PvuIによって切断され得る正しくない「頭−頭」連結または「尾−尾」連結から生じるパリンドローム配列を示す。
【図3C】BamHIによって切断され得る正しくない「頭−頭」連結または「尾−尾」連結から生じるパリンドローム配列を示す。
【図4】実施例9および実施例10で議論される融合体/クローンを例示する。中央の黒色棒は、免疫ブロット検出のためのT7タグエピトープ(AMPマルチマーのリーダーセグメントの一部)を表す。白色棒はマルチマーにおけるトレーラー配列を表す。
【配列表】




























【特許請求の範囲】
【請求項1】
A)1)少なくとも1個の微生物細胞;および
2)前記微生物細胞によって、下記(a)および(b)を含有するキャリア−ペプチド融合ポリペプチドが発現されることができる少なくとも1つの核酸を提供すること:
(a)切断可能なリンカーによって下記(b)に連結された少なくとも1つの高発現キャリアポリペプチド、
(b)少なくとも2つの小ペプチドユニットを直列配置で含有する少なくとも1つのペプチドマルチマー(ただし、それぞれの小ペプチドユニットは、少なくとも1つのAsp−Proジペプチドを含有する切断部位によって少なくとも1つの隣接する小ペプチドユニットに連結されている);
B)前記核酸を前記微生物細胞にトランンスフェクションして、形質転換された微生物細胞を得ること;
C)前記形質転換された微生物細胞を、前記細胞が核酸を発現することができ、前記核酸によりコードされたキャリア−ペプチド融合ポリペプチドを産生することができる条件に置くこと;
D)場合により、前記キャリア−ペプチド融合ポリペプチドを前記形質転換された微生物細胞から回収すること;
E)場合により、切断反応を行って、前記キャリアポリペプチドを前記ペプチドマルチマーから切断すること;
F)切断反応を行って、マルチマーの小ペプチドユニットを互いに切断し、それにより小ペプチドを得ること;および
G)場合により、末端切断反応を行って、小ペプチドの末端に存在する切断部位アミノ酸残基または切断可能なリンカーアミノ酸残基またはそれらの両方を除くこと
を含む、小ペプチドの生合成的製造方法。
【請求項2】
前記微生物細胞が細菌細胞である、請求項1に記載の方法。
【請求項3】
前記細菌細胞がγプロテオバクテリア綱のメンバーである、請求項2に記載の方法。
【請求項4】
前記細菌細胞がシュードモナス属のメンバーである、請求項3に記載の方法。
【請求項5】
前記細菌細胞がシュードモナス・フルオレセンス(Pseudomonas fluorescens)群のメンバーである、請求項4に記載の方法。
【請求項6】
前記細菌細胞がシュードモナス・フルオレセンスである、請求項5に記載の方法。
【請求項7】
前記細菌細胞がシュードモナス・フルオレセンス細分類Aである、請求項6に記載の方法。
【請求項8】
小ペプチドユニットを連結する切断部位のそれぞれが少なくとも1つのGly−Asp−Proトリペプチドを含有する、請求項1に記載の方法。
【請求項9】
小ペプチドユニットを連結する切断部位のそれぞれがGly−Asp−Proトリペプチドである、請求項8に記載の方法。
【請求項10】
ペプチドマルチマーが少なくとも3つのペプチドユニットを直列配置で含有する、請求項1に記載の方法。
【請求項11】
ペプチドユニットのそれぞれが前記ペプチドマルチマー内において同じ配向で発現する、請求項1に記載の方法。
【請求項12】
前記ペプチドマルチマーの小ペプチドユニットが同一のアミノ酸配列を有する、請求項1に記載の方法。
【請求項13】
前記高発現キャリアポリペプチドが、微生物細胞において高度に発現するタンパク質のN末端フラグメントである、請求項1に記載の方法。
【請求項14】
前記N末端フラグメントが長さ約10アミノ酸残基以上である、請求項13に記載の方法。
【請求項15】
前記タンパク質がロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003ハロアルカンデハロゲナーゼ(配列番号30)である、請求項14に記載の方法。
【請求項16】
(a)切断可能なリンカーによって下記(b)に連結された少なくとも1つの高発現キャリアポリペプチドと、
(b)少なくとも2つの小ペプチドユニットを直列配置で含有する少なくとも1つのペプチドマルチマー(ただし、それぞれの小ペプチドユニットは、少なくとも1つのAsp−Proジペプチドを含有する切断部位によって少なくとも1つの隣接する小ペプチドユニットに連結されている)
とを含有するキャリア−ペプチド融合ポリペプチドを発現させることができる核酸。
【請求項17】
ベクターである、請求項16に記載の核酸。
【請求項18】
前記ベクターがプラスミドである、請求項17に記載の核酸。
【請求項19】
シュードパリンドロームオリゴマーを含むオリゴマーのアニーリングおよび連結を行って、ペプチドユニットをコードするオリゴヌクレオチドを直列で含有し、および切断部位をコードするオリゴヌクレオチドによって連結されたマルチマーポリヌクレオチドのプール(前記プールは、ペプチドユニットをコードするオリゴヌクレオチド部分がすべて同じ配向で配置されているマルチマーポリヌクレオチドと、ペプチドユニットをコードするオリゴヌクレオチド部分が異なる配向で配置されているマルチマーポリヌクレオチドとの両方を含有する)を形成すること、次いで適切な制限エンドヌクレアーゼで前記マルチマーポリヌクレオチドを処理して、ペプチドユニットをコードするオリゴヌクレオチド部分が異なる配向で配置されているようなマルチマーポリヌクレオチドのみを加水分解すること
を伴う方法によって調製される、請求16に記載の核酸。
【請求項20】
請求項16に記載された核酸を含有する微生物細胞。
【請求項21】
請求項1に記載される方法によって製造された小ペプチド。
【請求項22】
小ペプチドが抗菌性ペプチド(AMP)である、請求項1から15のいずれかに記載の方法。
【請求項23】
小ペプチドが抗菌性ペプチドである、請求項16から19のいずれかに記載の核酸。
【請求項24】
小ペプチドが抗菌性ペプチドである、請求項20のいずれかに記載の微生物細胞。
【請求項25】
抗菌性ペプチドである、請求項21に記載の小ペプチド。
【特許請求の範囲】
【請求項1】
a.宿主細胞において核酸を発現させること、ここにおいて、前記核酸は、
i.切断可能なリンカーによって下記(ii)に連結された少なくとも1つのキャリアポリペプチド、
ii.少なくとも2つのペプチドユニットを含有する少なくとも1つのペプチドマルチマー(ただし、各ペプチドユニットは切断部位によって互いに直列に連結されている)
を含む融合ポリペプチドをコードする;および
b.マルチマーを切断部位において切断すること;
を含み、
前記宿主細胞がシュードモナス・フルオレセンス(Pseudomonas fluorescens)である、宿主細胞においてペプチドを産生させるための方法。
【請求項2】
マルチマーがカチオン性である、請求項1に記載の方法。
【請求項3】
マルチマーが電荷均衡を欠いている、請求項1に記載の方法。
【請求項4】
ペプチドユニットが抗菌性ペプチドである、請求項1に記載の方法。
【請求項5】
融合ポリペプチドが電荷均衡を欠いている、請求項1に記載の方法。
【請求項6】
キャリアポリペプチドが宿主細胞の総細胞タンパク質の少なくとも2%から25%として発現される、請求項1に記載の方法。
【請求項7】
キャリアポリペプチドが、トレドキシン、マルトース結合タンパク質およびヒドロラーゼからなる群から選択される、請求項6に記載の方法。
【請求項8】
ヒドロラーゼがグリコシダーゼまたはデハロゲナーゼである、請求項7に記載の方法。
【請求項9】
デハロゲナーゼがハロアルカンデハロゲナーゼである、請求項8に記載の方法。
【請求項10】
デハロゲナーゼがロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003に由来する、請求項9に記載の方法。
【請求項11】
キャリアポリペプチドがN末端短縮ペプチドである、請求項6に記載の方法。
【請求項12】
切断部位がAsp−Proジペプチドである、請求項1に記載の方法。
【請求項13】
マルチマーが、有機酸によって切断されて、個々のペプチドユニットが産生されるものである請求項12に記載の方法。
【請求項14】
有機酸が希酸である、請求項13に記載の方法。
【請求項15】
希酸が、0.025N HCLおよび10%酢酸からなる群から選択される、請求項14に記載の方法。
【請求項16】
切断時の個々のペプチドユニットが、このペプチドユニットの最初のN末端アミノ酸としてAspアミノ酸を含有し、および、このペプチドユニットの最後のC末端アミノ酸としてProアミノ酸を含有する、請求項1に記載の方法。
【請求項17】
切断部位がGly−Asp−Proトリペプチドである、請求項1に記載の方法。
【請求項18】
マルチマーが、有機酸によって切断されて、個々のペプチドユニットが産生されるものである請求項17に記載の方法。
【請求項19】
有機酸が希酸である、請求項18に記載の方法。
【請求項20】
希酸が、0.025N HCLおよび10%酢酸からなる群から選択される、請求項19に記載の方法。
【請求項21】
切断時の個々のペプチドユニットが、ペプチドユニットの最初のN末端アミノ酸としてGly−Aspジペプチドを含有し、および、ペプチドユニットの最後のC末端アミノ酸としてProアミノ酸を含有する、請求項17に記載の方法。
【請求項22】
マルチマーが少なくとも3つのペプチドユニットを含有する、請求項1に記載の方法。
【請求項23】
直列に連結されたペプチドユニットが同じ配向を有する、請求項1に記載の方法。
【請求項24】
融合ポリペプチドが不溶性ポリペプチドとして発現される、請求項1に記載の方法。
【請求項25】
融合ポリペプチドが少なくとも1g/Lのレベルで発現される、請求項1に記載の方法。
【請求項26】
a.i.切断可能なリンカーによって下記(ii)に連結された少なくとも1つのキャリアポリペプチド、
ii.少なくとも2つのペプチドユニットを含有する少なくとも1つのペプチドマルチマー(ただし、各ペプチドユニットは切断部位によって別のペプチドユニットに直列に連結されている)
を含む融合ポリペプチドをコードする核酸を含むシュードモナス・フルオレセンス(Pseudomonas fluorescens)細胞。
【請求項27】
マルチマーがカチオン性である、請求項26に記載の細胞。
【請求項28】
マルチマーが電荷均衡を欠いている、請求項26に記載の細胞。
【請求項29】
ペプチドユニットが抗菌性ペプチドである、請求項26に記載の細胞。
【請求項30】
融合ポリペプチドが電荷均衡を欠いている、請求項26に記載の細胞。
【請求項31】
キャリアポリペプチドが宿主細胞の総細胞タンパク質の少なくとも2%から25%として発現される、請求項26に記載の細胞。
【請求項32】
キャリアポリペプチドが、トレドキシン、マルトース結合タンパク質およびヒドロラーゼからなる群から選択される、請求項31に記載の細胞。
【請求項33】
ヒドロラーゼがグリコシダーゼまたはデハロゲナーゼである、請求項32に記載の細胞。
【請求項34】
デハロゲナーゼがハロアルカンデハロゲナーゼである、請求項33に記載の細胞。
【請求項35】
デハロゲナーゼがロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003に由来する、請求項34に記載の細胞。
【請求項36】
キャリアポリペプチドがN末端短縮ペプチドである、請求項31に記載の細胞。
【請求項37】
切断部位がAsp−Proジペプチドである、請求項26に記載の細胞。
【請求項38】
切断部位がGly−Asp−Proトリペプチドである、請求項26に記載の細胞。
【請求項39】
マルチマーが少なくとも3つのペプチドユニットを含有する、請求項26に記載の細胞。
【請求項40】
直列に連結されたペプチドユニットが同じ配向を有する、請求項26に記載の細胞。
【請求項41】
融合ポリペプチドが不溶性ポリペプチドとして発現される、請求項26に記載の細胞。
【請求項42】
融合ポリペプチドが少なくとも1g/Lのレベルで発現される、請求項26に記載の細胞。
【請求項43】
a.宿主細胞において核酸を発現させること、ここにおいて、前記核酸は、
i.切断可能なリンカーによって下記(ii)に連結された少なくとも1つのキャリアポリペプチド、
ii.少なくとも2つのペプチドユニットを含有する少なくとも1つのペプチドマルチマー(ただし、各ペプチドユニットは、少なくとも1つのGly−Asp−Proトリペプチドを含有する切断部位によって別のペプチドユニットに直列に連結されている)
を含む融合ポリペプチドをコードする;および
b.マルチマーを切断部位において切断すること;
を含む、微生物宿主細胞においてペプチドを生産するための方法。
【請求項44】
マルチマーがカチオン性である、請求項43に記載の方法。
【請求項45】
マルチマーが電荷均衡を欠いている、請求項43に記載の方法。
【請求項46】
ペプチドユニットが抗菌性ペプチドである、請求項43に記載の方法。
【請求項47】
融合ポリペプチドが電荷均衡を欠いている、請求項43に記載の方法。
【請求項48】
キャリアポリペプチドが宿主細胞の総細胞タンパク質の少なくとも2%から25%として発現される、請求項43に記載の方法。
【請求項49】
キャリアポリペプチドが、レダクターゼ、トレドキシン、マルトース結合タンパク質およびヒドロラーゼからなる群から選択される、請求項48に記載の方法。
【請求項50】
ヒドロラーゼがグリコシダーゼまたはデハロゲナーゼである、請求項49に記載の方法。
【請求項51】
デハロゲナーゼがハロアルカンデハロゲナーゼである、請求項50に記載の方法。
【請求項52】
デハロゲナーゼがロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003に由来する、請求項51に記載の方法。
【請求項53】
レダクターゼがエシェリヒア・コリ(E.coli)由来のジヒドロ葉酸レダクターゼ(DHFR)である、請求項49に記載の方法。
【請求項54】
キャリアポリペプチドがN末端短縮ペプチドである、請求項48に記載の方法。
【請求項55】
マルチマーが少なくとも3つのペプチドユニットを含有する、請求項43に記載の方法。
【請求項56】
直列に連結されたペプチドユニットが同じ配向を有する、請求項43に記載の方法。
【請求項57】
融合ポリペプチドが不溶性ポリペプチドとして発現される、請求項43に記載の方法。
【請求項58】
融合ポリペプチドが少なくとも300mg/Lのレベルで発現される、請求項43に記載の方法。
【請求項59】
微生物細胞が細菌細胞である、請求項43に記載の方法。
【請求項60】
細菌細胞がグラム陰性細菌である、請求項59に記載の方法。
【請求項61】
グラム陰性細菌がシュードモナス属のメンバーである、請求項60に記載の方法。
【請求項62】
細菌がシュードモナス・フルオレセンス(Pseudomonas fluorescens)である、請求項61に記載の方法。
【請求項63】
細菌細胞がエシェリヒア・コリ(E.coli)である、請求項60に記載の方法。
【請求項64】
マルチマーが、有機酸によって切断されて、個々のペプチドユニットが産生されるものである請求項43に記載の方法。
【請求項65】
有機酸が希酸である、請求項64に記載の方法。
【請求項66】
希酸が、0.025N HCLおよび10%酢酸からなる群から選択される、請求項65に記載の方法。
【請求項67】
切断時の個々のペプチドユニットが、最初のN末端アミノ酸としてGly−Aspジペプチドを含有し、および、最後のC末端アミノ酸としてProアミノ酸を含有する、請求項64に記載の方法。
【請求項68】
a.i.切断可能なリンカーによって下記(ii)に連結された少なくとも1つのキャリアポリペプチド、
ii.少なくとも2つのペプチドユニットを含有する少なくとも1つのペプチドマルチマー(ただし、各ペプチドユニットは、少なくとも1つのGly−Asp−Proトリペプチドを含有する切断部位によって別のペプチドユニットに直列に連結されている)
を含む融合ポリペプチドをコードする核酸を含む宿主細胞。
【請求項69】
マルチマーがカチオン性である、請求項68に記載の細胞。
【請求項70】
マルチマーが電荷均衡を欠いている、請求項68に記載の細胞。
【請求項71】
ペプチドユニットが抗菌性ペプチドである、請求項68に記載の細胞。
【請求項72】
融合ポリペプチドが電荷均衡を欠いている、請求項68に記載の細胞。
【請求項73】
キャリアポリペプチドが宿主細胞の総細胞タンパク質の少なくとも2%から25%として発現される、請求項68に記載の細胞。
【請求項74】
キャリアポリペプチドが、レダクターゼ、トレドキシン、マルトース結合タンパク質およびヒドロラーゼからなる群から選択される、請求項73に記載の細胞。
【請求項75】
ヒドロラーゼがグリコシダーゼまたはデハロゲナーゼである、請求項74に記載の細胞。
【請求項76】
デハロゲナーゼがハロアルカンデハロゲナーゼである、請求項75に記載の細胞。
【請求項77】
デハロゲナーゼがロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003に由来する、請求項76に記載の細胞。
【請求項78】
レダクターゼがエシェリヒア・コリ(E.coli)由来のジヒドロ葉酸レダクターゼ(DHFR)である、請求項74に記載の細胞。
【請求項79】
キャリアポリペプチドがN末端短縮ペプチドである、請求項73に記載の細胞。
【請求項80】
マルチマーが少なくとも3つのペプチドユニットを含有する、請求項68に記載の細胞。
【請求項81】
直列に連結されたペプチドユニットが同じ配向を有する、請求項68に記載の細胞。
【請求項82】
融合ポリペプチドが不溶性ポリペプチドとして発現される、請求項68に記載の細胞。
【請求項83】
融合ポリペプチドが少なくとも300mg/Lのレベルで発現される、請求項68に記載の細胞。
【請求項84】
微生物細胞が細菌細胞である、請求項68に記載の細胞。
【請求項85】
細菌細胞がグラム陰性細菌である、請求項84に記載の細胞。
【請求項86】
グラム陰性細菌がシュードモナス属のメンバーである、請求項85に記載の細胞。
【請求項87】
細菌がシュードモナス・フルオレセンス(Pseudomonas fluorescens)である、請求項86に記載の細胞。
【請求項88】
細菌細胞がエシェリヒア・コリ(E.coli)である、請求項85に記載の細胞。
【請求項89】
a.i.切断可能なリンカーによって下記(ii)に連結された少なくとも1つのキャリアポリペプチド、
ii.少なくとも2つのペプチドユニットを含有する少なくとも1つのペプチドマルチマー(ただし、各ペプチドユニットは、少なくとも1つのGly−Asp−Proトリペプチドを含有する切断部位によって別のペプチドユニットに直列に連結されている)
を含む融合ポリペプチドをコードする核酸
を含む発現ベクター。
【請求項90】
マルチマーがカチオン性である、請求項89に記載のベクター。
【請求項91】
マルチマーが電荷均衡を欠いている、請求項89に記載のベクター。
【請求項92】
ペプチドユニットが抗菌性ペプチドである、請求項89に記載のベクター。
【請求項93】
融合ポリペプチドが電荷均衡を欠いている、請求項89に記載のベクター。
【請求項94】
キャリアポリペプチドが宿主細胞の総細胞タンパク質の少なくとも2%から25%として発現される、請求項89に記載のベクター。
【請求項95】
キャリアポリペプチドが、レダクターゼ、トレドキシン、マルトース結合タンパク質およびヒドロラーゼからなる群から選択される、請求項94に記載のベクター。
【請求項96】
ヒドロラーゼがグリコシダーゼまたはデハロゲナーゼである、請求項95に記載のベクター。
【請求項97】
デハロゲナーゼがハロアルカンデハロゲナーゼである、請求項96に記載のベクター。
【請求項98】
ハロアルカンデハロゲナーゼがロドコッカス・ロドクロウス(Rhodococcus rhodochrous)TDTM−003に由来する、請求項97に記載のベクター。
【請求項99】
レダクターゼがエシェリヒア・コリ(E.coli)由来のジヒドロ葉酸レダクターゼ(DHFR)である、請求項95に記載のベクター。
【請求項100】
キャリアポリペプチドがN末端短縮ペプチドである、請求項94に記載のベクター。
【請求項101】
マルチマーが少なくとも3つのペプチドユニットを含有する、請求項89に記載のベクター。
【請求項102】
直列に連結されたペプチドユニットが同じ配向を有する、請求項89に記載のベクター。
【請求項103】
融合ポリペプチドが不溶性ポリペプチドとして発現される、請求項89に記載のベクター。
【請求項104】
融合ポリペプチドが少なくとも300mg/Lのレベルで発現される、請求項89に記載のベクター。

【図1】
image rotate

【図2】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate


【公表番号】特表2006−504400(P2006−504400A)
【公表日】平成18年2月9日(2006.2.9)
【国際特許分類】
【出願番号】特願2003−586175(P2003−586175)
【出願日】平成15年4月22日(2003.4.22)
【国際出願番号】PCT/US2003/012407
【国際公開番号】WO2003/089455
【国際公開日】平成15年10月30日(2003.10.30)
【出願人】(502141050)ダウ グローバル テクノロジーズ インコーポレイティド (1,383)
【Fターム(参考)】