説明

余剰汚泥の処理方法及び処理装置

【課題】 活性汚泥法で発生した余剰汚泥を、比較的簡単な設備で効率的に減容化できる汚泥処理方法またはそのための処理装置を提案する
【解決手段】 原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理方法であって、前記余剰汚泥に前記原水の一部を混合し、前記混合により生成された混合水が、微生物を担持した接触材により、少なくとも好気的に生物処理される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、汚濁物質を含む排水等を活性汚泥法等により生物処理した際に、発生する余剰汚泥を処理する処理方法またはそのための処理装置に関する。
【背景技術】
【0002】
汚濁物質を含む工場排水等の原水を、活性汚泥法を用いて生物処理する方法は、広く用いられている排水の処理方法であるが、その際に発生する多量の余剰汚泥の処理が問題となっていた。余剰汚泥は含水率が高い産業廃棄物であり、通常は、多量の凝集剤を用いた凝集処理と、機械的な脱水処理と、焼却処理とが必要であり、これらの処理に一定のコストがかかる。そのため、より簡便に処理できる生物を用いた処理方法が各種提案されている。
【0003】
まず、物理化学的方法により、余剰汚泥の細胞壁を破壊して細胞質を溶出させて溶菌することで余剰汚泥をBOD成分となし、これを活性汚泥槽へ返送して好気的に分解することで、余剰汚泥を減容化させる技術が提案されている。このような装置の例を図5に示す。原水1は貯留槽10を経由して、活性汚泥槽である曝気槽20に送られ、ここで散気管21から供給される空気と活性汚泥とにより好気的に分解処理される。続いて沈澱槽30で沈澱汚泥と処理水とが固液分離され、沈澱汚泥は、一部がそのまま活性汚泥槽20に戻されるが、他の一部は、何らかの方法を用いた可溶化装置110によって可溶化処理され、溶菌してBOD成分として活性汚泥槽20に戻される。残りの沈澱汚泥は余剰汚泥112として通常の凝集処理等がなされる。
【0004】
具体的には、可溶化装置110で余剰汚泥を可溶化する物理化学的方法としてオゾン処理を用いる方法が、例えば、特許文献1または2に開示されている。しかし、この方法では、オゾン発生設備と廃オゾン設備とを必要とするし、運転コストも高い。さらには、溶菌に伴うBOD負荷の増加に対応するため、曝気槽の容量を大きくする必要がある。また、水質上は脱窒が不十分となりやすい。
【0005】
また、余剰汚泥を可溶化する物理化学的方法として、余剰汚泥を50℃に加熱し、フェントン酸化法によるヒドロキシラジカルで細胞壁を破壊して処理する方法が、例えば、特許文献3に開示されている。しかし、この方法では、フェントン酸化法による鉄酸化物が発生するし、余剰汚泥の20%程度が残存してしまって完全には消滅しない。さらには、この方法でもBOD負荷量の増加に対応して曝気槽の容量を大きくする必要がある。
【0006】
また、余剰汚泥を可溶化する物理化学的方法として、余剰汚泥を数ミリ径のセラミックビーズ等を用いたミルで機械的に破壊して溶菌させてから処理する方法が、例えば、特許文献4に開示されている。しかし、これも上記の方法と同様に曝気槽の容量を大きくする必要がある。また、破細・溶菌された余剰汚泥が、曝気槽での分解残による処理水質の不良化をもたらしやすいうえ、余剰汚泥の20%程度は、沈降槽から引き抜いて系外に排出する処理をしなければならない。
【0007】
また、上記のごとき物理化学的方法に生物処理を加えて、余剰汚泥を溶菌してから好気処理する方法が、特許文献5に開示されている。この方法では、余剰汚泥を60〜70℃の高温好気反応により溶菌させる。余剰汚泥の20%程度は、沈降槽から引き抜いて従来通りの凝集、脱水、焼却処理を行うことが必要となる。
【0008】
また、余剰汚泥に何らかの処理を加えて再び活性汚泥装置に戻すのではなく、余剰汚泥を別途用意された汚泥処理装置に投入し、その汚泥処理装置の接触曝気槽内に設けられた多数の接触材上の高級微生物を利用して余剰汚泥を連続的に分解消化する方法が特許文献6に開示されている。しかし、この方法では、高級微生物の活性が低くて余剰汚泥の処理効率が低い。例えば、活性汚泥装置で1日で発生した余剰汚泥を、同じ大きさの汚泥処理装置で全量消滅させるには、計算上11日間にわたる生物反応時間が必要になる。つまり、発生した分を全部同じ時間内で処理しようとすると、余剰汚泥が発生した活性汚泥装置の10倍以上の容量の汚泥処理装置を必要とする。
【特許文献1】特開平6−206088号公報
【特許文献2】特開平7−232184号公報
【特許文献3】特開平10−128376号公報
【特許文献4】特開平11−300393号公報
【特許文献5】特開平9−10791号公報
【特許文献6】特開2002−143895号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明は、活性汚泥法で発生した余剰汚泥を、比較的簡単な設備で効率的に減容化できる汚泥処理方法またはそのための処理装置を提案することを課題とする。
【課題を解決するための手段】
【0010】
本発明の第1は、原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理方法であって、前記余剰汚泥に前記原水の一部を混合し、前記混合により生成された混合水が、接触材に担持された微生物により、少なくとも好気的に生物処理されることを特徴とする余剰汚泥の生物処理方法である。
【0011】
ここで、前記混合水における前記余剰汚泥と前記原水との混合比率が、1対9から7対3の範囲内であるのは好ましい。また、前記の好気的な生物処理が、微生物、原生動物、後生動物からなる微小動物捕食機構を用いたものであることは好ましい。また、さらに、通性嫌気性雰囲気における脱窒処理を含むことは好ましい。また、前記の生物処理後に、沈澱物の分離処理がなされることは好ましい。また、前記分離処理が、膜分離によりなされるものであることは好ましい。また、さらに、前記沈澱物が分離された上澄み水に、脱リン処理がなされることは好ましい。また、前記接触材が、螺旋状の芯材と、前記芯材表面に多数設けられたループ状繊維とからなることは好ましい。また、前記のループ状繊維が、塩化ビニリデン製であることは好ましい。
【0012】
発明の第2は、原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理装置であって、前記余剰汚泥に前記原水の一部を混合して混合水とする混合手段と、微生物を担持した接触材を備え、前記の混合水を少なくとも好気的に生物処理する処理手段とを備えることを特徴とする余剰汚泥の生物処理装置である。
【発明の効果】
【0013】
活性汚泥装置で発生した余剰汚泥を、比較的簡単で小さな設備により効率的に減容化できる。その際の運転コストも低い。また、既設の活性汚泥槽の容量を大きくする必要が無く、逆に一部の原水を汚泥処理装置で処理できるから、活性汚泥槽での処理量が減少する。余剰汚泥を全量処理することも可能となる。
【発明を実施するための最良の形態】
【0014】
本発明の実施の形態例を図面を引用しながら説明する。まず図1は、本発明の汚泥処理方法を実施できるように、従来とほぼ同じ活性汚泥装置に、本発明に係わる汚泥処理装置60が組み込まれた構成例の概念図である。活性汚泥装置は、BOD成分や窒素分、リン等を含む工場排水などの原水1を受け入れる貯留槽10と、原水1をブロア22と散気管21によりもたらされた好気雰囲気下で処理することで、BOD成分を消化して余剰汚泥を生成する活性汚泥槽20と、処理水から沈澱汚泥31を固液分離する沈澱槽30と、沈澱槽30からライン40で抜き出された沈澱汚泥31の一部を活性汚泥槽20に返送するライン41とを備える。
【0015】
生物処理の対象となる原水1は、一般の下水、農業集落排水、コミュニティプラン等の生活排水系、食品工場排水、ホテル等の厨房排水、アミノ酸工業等の発酵液排水、化学工場や水溶性塗装工場の溶剤排水等の生物処理可能な排水であればよく、特に限定されるものではない。原水1は、貯留槽10から活性汚泥槽20に送られ、続いて沈澱槽30に送られて、最後にBOD成分が減少した処理水4として放流される。
【0016】
活性汚泥槽20では、好気性の微生物が、特に担体を用いない浮遊状態で存在し、原水中のBOD成分を栄養源として、散気管から供給された酸素を消費して増殖する。これにより原水に対する生物処理がなされると共に余剰汚泥が発生する。この微生物は、0.5μmから1.0μmていどの大きさの好気性細菌類であり、自ら粘液物質を分泌して集団(フロック)を作っている。微生物集団は、散気管からの空気により攪拌・混合されると共に酸素供給される(曝気)ことで活発に活動して、原水中のBOD成分を消費する。活性汚泥の生物相は、主にこの微生物で構成されており、微生物より上位の原生動物等が共生していることもあるが、微生物からの排出物が多いため活動が抑制される傾向にある。つまり、活性汚泥は、ほぼ一様にこの微生物の塊であると言える。
【0017】
このような活性汚泥が沈澱槽30に送られると、静置状態に置かれることで微生物が沈降し、沈澱汚泥31となる。この沈澱汚泥31は、随時、沈澱槽30から抜き出されて、一部が活性汚泥槽20に返送されて、活性汚泥槽の維持のために用いられるが、それ以外は余剰汚泥となる。この余剰汚泥は、ライン42から汚泥処理装置60に送られて処理される。
【0018】
汚泥処理装置60には、余剰汚泥以外に、貯留槽10に貯められた原水1の一部が、貯留槽10からライン51で送られる。この原水1と余剰汚泥とが汚泥処理装置60で合わせて生物処理されることにより、処理水7が生成される。つまり、汚泥処理装置60では、原水のBOD成分の消化という水処理と、余剰汚泥の分解処理との両方の生物処理を同時に行う。これにより、意外にも余剰汚泥の処理効率が著しく向上する。
【0019】
効率が向上する原因は不明であるが、汚泥処理装置60内における生物相の活性化が原因ではないかと推測している。一般に、生物処理では分解すべき対象によって生物相の生物種が変化する。例えば、余剰汚泥にはBOD成分が少なく、微生物の活動は不活発である。そのため、余剰汚泥だけを分解しようとすると、この不活発な微生物に対応した原生動物や後生動物のみが現れることになる。ところが、これだけでは必ずしも活発な生物活動がなされないのが実情であり、余剰汚泥の分解効率は低い状態に留まる。
【0020】
しかし、この余剰汚泥に対し、原水に含まれるごときBOD成分を混合すれば、余剰汚泥の微生物が活発に活動を開始し、その結果、汚泥処理装置60内における微生物、原生動物、後生動物からなる生物相が活性化して、これらの間の微小動物捕食機構が活発に働くことになる。この結果、生物分解の対象物が増加したにもかかわらず、意外にも余剰汚泥の分解効率が著しく向上するのではないかと考えられる。
【0021】
図2は、そのような生物相を育成できる汚泥処理装置60の構成例を示した概念図である。この装置のプロセスは循環式二段脱窒法であり、好気性処理と通性嫌気性処理の両方が行われるように構成されている。これにより、炭化水素のみならず窒素化合物も分解対象としている。特に通性嫌気性処理では窒素に対する脱窒処理が行われる。
【0022】
ここで、好気性とは、水中の酸素濃度(DO)が0.3ppm以上の状態をいい、通性嫌気性とはDOが0.3ppm未満であるがゼロではない状態をいう。さらにDOがゼロの状態を偏性嫌気性という。このDOがゼロとは、生物が利用できる溶存酸素が実質的にゼロであることを意味する。何らかの原因により偏性嫌気性域が部分的にでも発生すると、予定した生物相が崩れてしまい、微生物や原生動物等からなるコロニーが、接触材からはがれ落ちたりする。また、その部分が黒化し、空気中に取り出した場合には特有の腐敗臭が感じられる。
【0023】
バイオマス有機物が、(CNOなる一般式で表されていることからわかるように、余剰汚泥は、炭酸ガス、水と窒素ガスにまで分解することが望ましい。特に、微生物体内の窒素化合物の窒素原子は、NHからNOへと分解するだけではなく、窒素ガスまで分解することが望ましい。これは、特に閉鎖性水域・海域に処理水を放流する場合に、NH、NO等の全窒素が赤潮を発生させる原因物質となり、通常の規制値への上乗せ値の設定や総量規制がなされているからである。つまり、余剰汚泥を消滅させるということは、余剰汚泥を、炭酸ガス、水と窒素ガスにまで分解することを通常意味する。なお、脱窒処理が特に必要ない場合は、好気性処理だけとすることもできる。
【0024】
汚泥処理装置60における好気性処理では、微生物のみならず、微生物より食物連鎖上の上位生物である原生動物や、さらに上位である後生動物から構成される微小動物捕食機構を利用して処理がなされる。そのため、原生動物や後生動物の活動が、微生物の排出物によって抑制されないようにする必要がある。そこで、好気性処理がなされる曝気槽は2槽〜4槽の複数とし、それぞれで棲息する生物種の棲み分けができるようにするのが好ましい。このようにすることで、前段の槽で有機物(BOD成分)を分解して微生物が活性化し、後段では、より上位の原生動物や後生動物を生棲増殖して、前段の微生物を効率良く捕食できるようになる。
【0025】
また、汚泥処理装置60における脱窒処理では、微生物を構成するタンパク質が分解されて生成されたNHが、曝気槽で硝化菌により窒素の数倍量の酸素を用いて酸化され、NOやNO等のNOに転換される。なお、活性汚泥中では硝化菌の勢力は弱いため、大きい曝気槽が(つまり大きい滞留時間が)必要である。通常、余剰汚泥のMLSSはおよそ数千から2万の範囲であり、生成するNO濃度は高い。一段の脱窒処理では80%レベルの分解に留まるため、NOを10ppmレベルまで低下させるには、図2に記載したごとき循環式の二段脱窒処理を行うのが望ましい。これらNOは、脱窒素菌により還元されてNガスへ分解される。これにより脱窒が終了する。
【0026】
ここで、図2の汚泥処理装置例の構成を具体的に説明する。汚泥処理装置60は、混合槽70と生物処理槽80と沈降槽100とからなる。混合槽70は、BOD成分を含む原水1と余剰汚泥とを一定比率で受け入れて貯留すると共に攪拌機71でこれらを攪拌して混合する。混合された処理水(以下、混合水という)は、越流水のライン5から続く生物処理槽80に送られる。なお、混合槽10の代わりに単に貯留槽10とし、原水と余剰汚泥の混合は、続く第1嫌気槽81において攪拌機90で行うようにしてもよい。
【0027】
余剰汚泥と原水との混合比率は、1対9から7対3の範囲内とするのが良い。この範囲で、適度に生物相が活性化し、効率的に余剰汚泥を処理できる。つまり、一定量の余剰汚泥を処理する場合に必要な汚泥処理装置の生物処理槽の容量が小さくできる。好ましくは2対8から6対4の範囲内であり、より好ましくは3対7から5対5の範囲内である。
【0028】
例えば、余剰汚泥1に対し原水9の場合、一定量の余剰汚泥を消滅させるのに必要な生物反応槽の大きさは、余剰汚泥量の(1+9)/1=10倍となる。また、余剰汚泥5に対し原水が5の場合は、(5+5)/5=2倍となり、余剰汚泥の2倍量程度の生物反応槽の大きさが必要となる。つまり、混合水中の余剰汚泥の比率が大きい方が、一定量の余剰汚泥を処理するために必要な生物反応槽の容量は小さくなり、設備費及び槽設置面積は大幅に小さくなる。一方で、微生物群の活性が落ち、一定量の余剰汚泥の分解に要する時間は長くなる。端的には、余剰汚泥のみ(つまり、余剰汚泥10に対し原水0)とすると、生物反応槽は1日当たりの排出余剰汚泥量のおよそ10倍もの容量が必要となってしまう。
【0029】
以上のように、一定の余剰汚泥を処理するために必要な生物反応槽の容量には、余剰汚泥混合比率を変化させた場合にある極小値が存在する。つまり、もっとも余剰汚泥の分解効率の良い混合比率と生物反応槽の容量が存在する。この混合比率の最適化には、原水に含まれる基質の生物易分解性の程度も影響する。生物易分解性の基質の方が生物反応槽中の微生物群の活性は高くなり反応槽は小さくできる。
【0030】
生物処理槽80は、複数の隔壁96により、内部が槽81から槽86までの6槽に分かれている。生物処理でBOD処理と脱窒処理の両方を行う場合は、生物処理槽を4段から6段とするのが好ましい。なお、図2で隔壁96は簡略化されているが、隣接する槽と隔壁上部で連通している。槽81から槽86までの6槽は、いずれも同様の隔壁により順次連通している。この隔壁96は、図面左側から右側に、上部が連通した隔壁と下部が連通した隔壁とを順次組み合わせて、越流水が1枚目の隔壁上部から越流し、2枚目の隔壁により槽下部に誘導され、隣接する槽の下部から槽内に流入するようにするのが望ましい。これにより、処理がより均一になされる。
【0031】
生物処理槽80の第1槽は、第1嫌気槽81であり、図示されていない接触材モジュールが内部に設置されている。この槽では、攪拌機90によって内部の液が攪拌されながら混合水中のBOD成分を利用して脱窒素が行われる。これにより硝酸化合物が窒素ガスと水に分解される。ここでは、NO成分の約80%が脱窒される。
【0032】
続く好気性の曝気槽82から84では、内部に接触材モジュール92〜94が設置されており、散気管91から空気が各槽の内部に供給されている。ここでは、原水由来のBOD成分の分解と、曝気槽82〜84、特に槽83や槽84により多く棲息する原生動物や後生動物が、余剰汚泥を食って排出したアンモニア態窒素(NH)の硝化とが行われる。
【0033】
ここで、3番目の曝気槽84から、ライン97により流入量の200%〜400%程度の量を取り出し、第1嫌気槽81に循環させる。曝気槽82〜84で生じた硝酸化合物を第1嫌気槽81に送り込むことで、脱窒素効率を上げるためである。また、アンモニア態窒素もこのラインにより循環される間に硝化されることになる。
【0034】
このようにすることにより、原水由来のBOD成分のために好気性槽内部の生物相が活発化する。特に曝気槽82では、混合水由来の微生物も活性化され、それに伴い、曝気槽83や84の原生動物や後生動物の生息する槽でも生物活動が活性化されて、活発に余剰汚泥が食われる結果となる。
【0035】
3番目の曝気槽84の処理水の残りは、次の槽である第2嫌気性槽85に移動する。この槽には、残存する20%のNOを分解させるため、メタノール等の水素供与体が外部からBOD成分としてライン99により供給されており、これを用いて残りの硝酸化合物が脱窒される。続いて、生物処理槽の最後に、やはり接触材モジュール95と散気管91を備えた好気性槽86に越流水が流入し、残ったBOD成分が分解される。
【0036】
続いて、越流水6が沈降槽100に移動し、水中に浮遊していたMLSSが沈降して沈降汚泥101を形成する。なお、第1槽から第6槽までの活性汚泥浮遊物(MLSS)は、ほぼ同じ程度の濃度である。この沈降汚泥として20%から40%も濃度が高くなった沈降汚泥101としてのMLSSを、ライン98に含まれる図示されないエアリフトポンプ等を用いて、100%〜150%の量を混合水が流入してくる第1嫌気槽81に循環液として戻す。これは、好気処理だけの場合でも、この図2による嫌気処理と好気処理を併用した処理の場合のいずれでも同じである。
【0037】
沈降槽100の上澄液は、炭化水素類と窒素化合物が一定基準以下まで処理されているが、プランクトンの異常発生防止には窒素に続いてリンも厳格に処理されるのが望ましい。リンは原水にも含まれるし、微生物の分解物にも含まれるからである。そのために、沈降槽100の上澄み水に凝集剤(PAC等)を加え、リン化合物を不溶性のリン酸アルミニウム等へ化学反応させて沈降除去することで脱リンを行うのが望ましい。凝集剤を投入するのではなく、ジルコニア系の陰イオン吸着交換体を使用してリン除去するのでも良い。このようにすることにより、好ましい放流水質の処理水が得られる。
【0038】
ところで、混合水に由来する余剰汚泥の分解は、曝気槽82〜84に棲息する原生動物や後生動物による微生物の捕食機構により行っている。そのため、これら原生動物や後生動物を担持して、その上で多量にこれらが繁殖できる担体としての接触材を必要とする。生物接触酸化材は通常の接触材を用いても良いが、腐食防止の被覆処理がなされた単線の銅線のごとき可撓性の芯材を中心にして、その表面にループ状の多数の突起が、芯材表面から長さ1.0cm〜1.5cm突出して花びら状に拡がっているものを用いるのが、余剰汚泥の処理効率が高くなり好ましい。このような接触材の断面図を図3に示す。芯材74の回りに被覆75と基布76が巻かれており、その周囲に花びら形状になるように、ループ状の繊維からなる突起物73が突出していることがわかる。
【0039】
このような接触材の芯材74は、接触材の形状をあらかじめ定めた任意の形状に保ち、重力や液流れの影響で接触材どうしが必要以上に近づいたり、または型崩れや接触を生じたりして、液流れが悪くDOが低下して偏性嫌気性域が生じることを防ぐ役割を果たす。加工の容易さおよび微生物類が担持した後でも重力などに抗する強度を有する点から、芯材には可撓性のある金属線用いるのが好ましい。金属線は複数の細線を寄り合わせたより線であってもよいが、強度と可撓性を合わせ持たせるためには、単一の金属線からなる単線を用いるのが好ましい。金属線の材質は、軟鉄、アルミニウム、銅等、比較的可撓性が大きいものを特に制限無く用いることができるが、水中における耐腐食性の観点から銅が好ましい。
【0040】
金属線は水中で長期に使用するから、腐食防止のための被覆75を施しておくことがよい。被覆は防水塗装等であっても良いが、取扱性および変形に対する被覆の追随性から塩化ビニールやポリエチレンやポリプロピレンのごときプラスチック類による被覆を設けておくのが好ましい。金属線の直径は、材質によって異なるが1mm以上7mm以下であることが好ましい。より好ましくは2mm以上6mm以下である。さらに好ましくは3mm以上5mm以下である。
【0041】
芯材には、上記の被覆に加え、さらに基布76を巻き付けてあることが好ましい。この基布に微生物を担持するためのループ状繊維73をあらかじめ織り込むことで、安定して微生物を担持でき、長期の使用に耐える接触材を得ることができる。基布の材質は、水中での強度維持と寸法安定性、微生物により分解されにくいことから、ポリアミド系繊維、ポリエステル系繊維、ポリウレタン系繊維、ポリ塩化ビニル系繊維、ポリ塩化ビニリデン系繊維、ポリアクリル系繊維等の合成繊維製であることが好ましい。基布も含めた芯材の直径は、3mm以上8mm以下であることが好ましい。このような直径とすることにより、ループ状繊維を植え込む基布の面積を稼ぐことも可能となる。
【0042】
芯材の表面には、微生物や後生動物等を担持するための、突起状の多数のループ状繊維73を設ける。ループ状繊維は、一定長さの繊維状物の両端だけが芯材表面に固定され、繊維状物の両端以外は、芯材表面から離れるように突出している。接触材を繊維状とすることにより、接触材の単位体積あたりの表面積を著しく大きくして、微生物等の棲息密度を上昇せしめると共に、水処理装置の単位体積あたりの処理能力を増大せしめることができる。ここで、繊維の太さは50dtex以上150dtex以下が好ましい。50dtex以上で、増殖した微生物等が重力や旋回流により接触材から脱落しにくくなり、150dtex以下で、接触材の単位体積あたりの表面積が大きくなる。また、繊維はループ状として芯材に固定する。ループ状とすることにより、繊維表面に付着して増殖した微生物や巨大微生物が、重力や酸素供給のための旋回流により、繊維から脱落する現象が生じにくくなる。
【0043】
ループ状繊維の長さ(芯材表面に固定した一方の端から、ループに沿って長さを測定して、芯材表面に固定したもう一方の端に到達するまでの長さをいう。)は、10mm以上50mm以下であることが好ましい。ループ状繊維の長さが50mm以下で、ループの根元付近が偏性嫌気性域になりにくく、偏性嫌気性域から生成される物質により、その周辺の通性嫌気性域やさらにその外周の好気性域において微生物等の活動が低下したり、または微生物等自体が死滅してしまうような事態が生じにくい。好ましくは20mm以上45mm以下であり、より好ましくは30mm以上45mm以下であり、さらに好ましくは30mm以上40mm以下である。このような長さになるようにループ状繊維をリボン状の基布に植え込み、この基布を芯材の表面上にラセン状に巻きつけることで接触材が構成される。
【0044】
ループ状繊維は、3以上20本以下の繊維を束ねた繊維束とし、この繊維束を単位として芯材表面に設けることが好ましい。ループ状繊維1本1本が離ればなれの独立ループとなっている形状では、ループの腰が弱くなり、繊維に付着した微生物等の重量に抗しにくく、旋回流によるループの揺れが激しくなりがちである。しかし、繊維束とした形状では、微生物等の重量や旋回流に抗してループが元の形状を保ちやすく、そのため液流れが確保しやすく、偏性嫌気性域が生じにくい。また微生物等も補足しやすい。好ましくは5本以上15本以下であり、さらに好ましくは7本以上12本以下である。
【0045】
芯材表面に繊維束を設ける密度は、芯材表面1cmあたり25束以上81束以下となるようにするのが好ましい。81束以下で偏性嫌気性域が生じにくく、25束以上で曝気に伴う気泡とそれによる旋回硫による攪拌に抗して、汚泥をしっかり捕捉できる。また、原生動物や構成動物も脱落しにくくなるため、これらの棲息と増殖が生じやすくなる。より好ましくは36束以上64束以下である。
【0046】
ループ状繊維の材質としては、溶存酸素へ耐性があって水中での強度維持と寸法安定性を確保でき、微生物等により分解されにくく、かつ繊維状に容易に成型できることから合成樹脂製であることが好ましい。中でも、繊維の製造の容易さから熱可塑性樹脂を用いることが好ましい。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、ポリエステル、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデンやポリフッ化ビニリデン等が挙げられる。比重が大きく、かつ繊維がある程度の剛性を保持できループの形状を保ちやすいことからポリ塩化ビニリデンを用いることが好ましい。ループ状繊維の製法は、発明の効果が発揮する範囲で常法に従って紡糸すればよく特に制限されない。
【0047】
ループ状繊維表面のゼータ電位はpH5から9の範囲内で正であることが望ましく、さらにこの範囲内で安定していることが望ましい。正のゼータ電位の大きさは1mV以上30mV以下である。この範囲内で、微生物のみならず原生動物や後生生物の脱落防止の効果が発揮でき、ひいては水処理において余剰汚泥を大幅に減少できる優れた効果が発揮される。より好ましくは1mV以上24mV以下であり、さらに好ましくは1mV以上20mV以下であり、さらには2mV以上10mV以下が好ましい。このようなゼータ電位は通常の流動電位法等により測定することができる。
【0048】
このような接触材72は、生物処理槽内で微生物等と溶存酸素との接触効率を稼ぐため、図4に記載のようなラセン形に整形するのが好ましい。図4(b)は、接触材72をラセン回転の中心軸78に対して垂直方向から見た場合の概念図であり、図4(a)は、同じ中心軸78に対して平行方向から接触材72を見た場合の概念図である。このような形状とすることで、生物密度を高く維持し、かつ曝気に伴う攪拌効果を得ることができる。ラセン形の中心軸78方向からみた回転円の外径rは、60mm以上90mm以下とするのが好ましい。また、回転円を一周するに伴い回転軸方向に進む距離であるラセンのピッチdとしては、5cm以上20cm以下であることが好ましい。この範囲で、水処理槽の空間の利用効率を高く維持しながら、偏性嫌気性域が生じにくい状態にすることができる。より好ましくは7cm以上13cm以下である。
【0049】
このような接触材は、多数本が垂直方向に並列になるように、金属製の枠体に固定されて接触材モジュールを構成する。各接触材の上下端は、金属製の枠または架台に固定されている。接触材の外周間の距離は、できるだけ小さくすることが槽体積の利用効率の観点から好ましいが、一方で小さすぎると接触材の外周間の攪拌が不十分となり、外周間に汚泥が詰まりやすくなる。仮に汚泥が詰まった場合は偏性嫌気性域が生じてしまう。これを防ぐためには、接触材の外周間の距離は15mm以上となるように接触材を配列するのが好ましい。槽の内壁または枠と、接触材の外周間との距離に関しても同様である。
【0050】
ところで、図2の沈降槽100の代わりに膜濾過を用いることもできる。沈降槽は比較的大きな設置面積を要するが、膜濾過ではより省スペース化できる。また、沈降槽では、生物反応の変動によって十分に汚泥が沈降しなかったり、泡がキャリーオーバーすることもあるが、膜濾過の場合はそのようなおそれがない。さらに、膜分離装置を用いると、MLSSのみならず、処理水中の微生物類やSS物質やコロイド物質も分離・除去されることから、良好な回収水が得られる利点がある。
【0051】
膜分離装置に用いることができる膜種は、UF膜またはMF膜である。膜の形状は、中空糸膜、平膜、管状膜のいずれも用いることができる。膜濾過装置は、最終段の生物処理槽内に膜モジュールを浸漬し、膜モジュール内を陰圧にすることで濾過するMBR法(膜分離活性汚泥法)とすることができる。または、最終段の生物処理槽から活性汚泥液をポンプアップして、膜分離装置に加圧送液して濾過する方法としてもよい。いずれの方式も適用可能である。生物処理槽のMLSS濃度が高い場合は、エネルギー効率の点から、浸漬型が有利である。
【0052】
膜分離装置から分離された濃縮液は、前段の生物処理槽の先頭の処理槽に戻す。また、膜分離装置で濾過された水は、SS=0であり上述のように回収して再利用するか、または放流する。再利用のためにより純度の高い処理水が必要な場合、例えば、工場等の生産工程用の水に使用するなどの場合は、UFまたはMFを用いた膜分離装置の後に、さらにRO膜を用いた膜分離装置を連結するのが良い。このように処理された処理水は、電気抵抗が1MΩ以上の純水とすることもでき、特に問題なく再利用することができる。以下、実施例をもって本発明を具体的に説明する。
【実施例1】
【0053】
2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、SFグリーン、クエン酸の各々を、ポリ塩化ビニリデン樹脂に対して0.3wt%、0.5wt%、0.5wt%となるように、ポリ塩化ビニリデン樹脂と混合してから混錬し、しかるのち紡糸して太さが105dtexの繊維を得た。続いて、この繊維の表面を飽和濃度の塩化カルシウム水溶液で処理したあと水洗した。この繊維のpH9、7、5におけるゼータ電位は、各々、+2.1mV、+2.5mV、+2.6mVであった。
【0054】
幅5mmで長尺のポリエステル織布のリボンを基布として用い、上で得た繊維を基布の片面でループ状となるように織り込んだパイル織物を作成した。その際、1本のリボンには、繊維10本を一束とし、長さが35mmとなるように繊維の長さが調節されたループ状繊維の束が、1cmあたり72束となるように基布に織り込んだパイル織物を作成した。
【0055】
次に、可撓性の単線である銅線にポリ塩化ビニルが被覆された直径4.3mmで所定長さの金属線に、ループ状繊維が外側に出るようにして、上記のリボンをすきまなく巻きつけ、金属線の両端部分でリボンが解けないように固定して繊維製接触材を製作した。これにより、接触材の長さ方向と円周方向のいずれについてもループ状繊維が設けられた接触材が得られた。この繊維型接触材を、外周部の外直径がおよそ85mmで内直径がおよそ21mmであり、さらにラセンの回転軸回りの一回転に伴うピッチがおよそ11cmとなるラセン形に加工した。
【0056】
この接触材複数を、高さ2.3m、長さ0.5m、幅1.6mのステンレス製フレームの上下に渡して上端と下端とを固定し、モジュールを製作した。その際、ラセン状繊維接触材の設置間隔が、ループ状繊維の先端間の間隔が30mmとなるように配列した。なお、モジュールの下部に、高さが0.3mの架台フレームを取り付けた。同様なモジュールをさらに3台製作した。
【0057】
次に、図2に示したものに類似した汚泥処理装置を用意した。汚泥処理装置は、生物処理槽の全容量が12mで、沈降槽が3mの循環2段脱窒方式であり、混合槽→第1嫌気槽→第1曝気槽→第2曝気槽→第2嫌気槽→第3曝気槽→沈澱槽という構成をとっている。また、第2曝気槽から流入量の4倍量を第1嫌気槽へ返送させ、沈澱槽の沈澱汚泥は第1嫌気槽へ流入量の1〜2倍量を返送循環させる方式である。
【0058】
上記で得られた接触材モジュールを、第1、第2、第3曝気槽に設置した。第1曝気槽には、上で製作したモジュールが2台水流れに対して並列に沈められており、第2曝気槽と第3曝気槽には、上記のモジュールが各1台ずつ沈められている。
【0059】
次に、BOD成分の濃度が平均1500ppmの大豆食品工場の排水を用意した。この工場に備えられた図1に示したごとき標準的な活性汚泥槽でこの排水の生物処理が行われており、MLSS濃度が11000ppm〜15000ppmの余剰汚泥が発生している。
【0060】
まず、余剰汚泥を導入せずに、上記の工場排水だけを上記で準備した汚泥処理装置の混合槽に導入して運転を開始した。約1ヶ月の馴養運転を経て、MLSSがほぼ7000ppm〜1000ppm0で安定し、安定運転に至った。5ヶ月後の水質はBOD10ppm以下、全窒素(T−N)10ppm以下、SS15ppm以下であった。また、余剰汚泥が発生しておらず、沈降槽からの沈降汚泥の引き抜きは全く実施しなかった。この状態で、第3曝気槽の生物接触材を引き上げ観察したところ、多くの糸ミミズが付着しているのが見られ、部分的には接触材が赤色に見えるほどであった。
【0061】
続いて、上記の工場排水が10m/日、余剰汚泥が2m/日となるように両者を混合槽に導入し(余剰汚泥/原水=2/10)、続いて生物処理槽に越流させた。この状態で運転を行い、第三曝気槽のMLSSと汚泥量を随時測定した。また、処理水質は、沈降槽の上澄水を測定して評価した。工場原水と余剰汚泥の滞留時間(HRT)は24時間である。
【0062】
運転開始後5日、10日、1ヶ月及び2ヶ月後の第三曝気槽のMLSSは、各々13600ppm、11000ppm、10000ppm、8000ppm、8500ppmであった。余剰汚泥を2m/日で毎日流入させたにもかかわらず、MLSSは8000〜9000ppmの値で安定していた。また、汚泥処理装置の沈降槽の沈降汚泥は増加しなかった。つまり、余剰汚泥が新たに混合されたにもかかわらず、それらが消滅して沈降汚泥も増加しなかった。2ヶ月間で1440kgのMLSSが負荷されたことになるが、その段階での第三曝気槽中のMLSSは8500ppmであり、工場原水中のBOD成分量を加えると約2000kgの汚泥が消滅したことになる。
【0063】
なお、処理水の水質はBOD15ppm、T−N18ppm、SS18ppmであり、放流できる値であった。
【比較例1】
【0064】
実施例1において、汚泥処理装置が運転開始後の馴養運転から安定運転に至った状態で、原水を混合せずに、工場の活性汚泥槽から発生する余剰汚泥12mだけを混合槽から生物処理槽に導入し、それ以降は、余剰汚泥も工場排水も導入せずに運転を続けた以外は、実施例1と同一にして試験を行った。なお、工場の活性汚泥槽からの余剰汚泥のMLSSは12500ppmであった。第三曝気槽から適宜サンプリングしてMLSSを測定し、余剰汚泥の消滅の程度を観察した。
【0065】
余剰汚泥導入から二日後のMLSSは10300ppmであった。DOを管理しながら運転を続行した。導入から5日後のMLSSは5500ppmまで低減していた。導入から10日目で曝気槽を上から観察すると、MLSSが低減して浸漬している生物接触材が見えるほどになっていた。この段階で、第三曝気槽からサンプリングしてMLSSを測定すると100ppm以下まで余剰汚泥が減少していたので、余剰汚泥がほぼ消滅するには10日間を要した。余剰汚泥は一日当たり約10%ずつ消滅していたことになる。
【実施例2】
【0066】
余剰汚泥と工場排水との比率(余剰汚泥/工場排水)を、下記表1に記載の値に調整して混合槽に投入したこと、工場排水が汚泥処理装置に滞留する時間(HRT)を表1記載の値となるように設定したこと、比率が異なる各試験の間に馴養期間を取らずに、順次、前記の比率を切り換えて各々の比率で60日間の運転を行ったこと以外は、実施例1と同様にして処理運転を行った。それぞれの運転で、第三曝気槽からサンプリングしてMLSSを測定した。60日めの各々のMLSS及び処理水質の測定結果を表2に示す。いずれの比率でも、処理水へのMLSSの流出はなく、余剰汚泥が分解消滅していることがわかる。処理水も十分放流できるまでの水質を示している。
【0067】
上記の結果、及び実施例1、比較例1も含めて、各比率で処理原水を10m/日を処理するための生物処理槽の大きさを換算計算した結果を表3に示す。余剰汚泥10m/日をBOD平均1500ppmの大豆食品工場排水と混合して処理する条件で余剰汚泥の消滅をはかる場合には、余剰汚泥と排水とを1:1の組合せで混合して処理すると、生物処理槽が30mとなり、最小となる結果を得た。
【0068】
【表1】

【0069】
【表2】

【0070】
【表3】

【図面の簡単な説明】
【0071】
【図1】活性汚泥装置に汚泥処理装置が組み込まれた状態を示した概略模式図である。
【図2】汚泥処理装置の概略構造を示した模式図である。
【図3】接触材の芯材方向に平行方向から見た、接触材断面の概略を示した模式図である。
【図4】ラセン形に加工された接触材の一部の模式図である。
【図5】従来の活性汚泥の減容化装置の例を示した概略模式図である。
【符号の説明】
【0072】
1 原水
2、3 処理水ライン
4 処理水
5 混合水ライン
6 越流ライン
7 処理水
10 貯留槽
20 活性汚泥槽
21 散気管
22 ブロア
30 沈澱槽
31 沈澱汚泥
40 沈澱汚泥抜き出しライン
41 汚泥返送ライン
42 余剰汚泥移送ライン
51 原水ライン
60 汚泥処理装置
70 混合槽
71 攪拌機
72 接触材
73 ループ状繊維
74 芯材
75 被覆
76 基布
78 中心軸
80 生物処理槽
81 第1嫌気槽
82-84 曝気槽
85 第2嫌気性槽
86 曝気槽
90 攪拌機
91 散気管
92-95 接触材モジュール
96 隔壁
97 循環ライン
98 返送ライン
99 メタノール添加ライン
100 沈降槽
101 沈降汚泥
110 可溶化装置
111 返送ライン
112 排出余剰汚泥

【特許請求の範囲】
【請求項1】
原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理方法であって、前記余剰汚泥に前記原水の一部を混合し、前記混合により生成された混合水が、接触材に担持された微生物により、少なくとも好気的に生物処理されることを特徴とする余剰汚泥の生物処理方法。
【請求項2】
前記混合水における前記余剰汚泥と前記原水との混合比率が、1対9から7対3の範囲内であることを特徴とする請求項1に記載の余剰汚泥の生物処理方法。
【請求項3】
前記の好気的な生物処理が、微生物、原生動物、後生動物からなる微小動物捕食機構を用いたものであることを特徴とする請求項1に記載の余剰汚泥の生物処理方法。
【請求項4】
さらに、通性嫌気性雰囲気における脱窒処理を含むことを特徴とする請求項1に記載の余剰汚濁の処理方法。
【請求項5】
前記の生物処理後に、沈澱物の分離処理がなされることを特徴とする請求項1または4に記載の余剰汚濁の処理方法。
【請求項6】
前記分離処理が、膜分離によりなされるものであることを特徴とする請求項5に記載の余剰汚濁の処理方法
【請求項7】
さらに、前記沈澱物が分離された上澄み水に、脱リン処理がなされることを特徴とする請求項5に記載の余剰汚濁の処理方法。
【請求項8】
前記接触材が、螺旋状の芯材と、前記芯材表面に多数設けられたループ状繊維とからなることを特徴とする請求項1に記載の余剰汚泥の処理方法。
【請求項9】
前記のループ状繊維が、塩化ビニリデン製であることを特徴とする請求項8に記載の余剰汚泥の処理方法。
【請求項10】
原水の活性汚泥処理に伴い生じた余剰汚泥の生物処理装置であって、前記余剰汚泥に前記原水の一部を混合して混合水とする混合手段と、微生物を担持した接触材を備え、前記の混合水を少なくとも好気的に生物処理する処理手段とを備えることを特徴とする余剰汚泥の生物処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2006−61743(P2006−61743A)
【公開日】平成18年3月9日(2006.3.9)
【国際特許分類】
【出願番号】特願2004−243482(P2004−243482)
【出願日】平成16年8月24日(2004.8.24)
【出願人】(592008859)旭化成クリーン化学株式会社 (8)
【出願人】(303046314)旭化成ケミカルズ株式会社 (2,513)
【Fターム(参考)】