説明

偏波ダイバーシティ光学系装置、復調器及び送受信機

【課題】偏波ダイバーシティ検出において、出力される干渉光に含まれる漏れ光を低減する。
【解決手段】偏波ダイバーシティ光学系装置は、局発光(L0)をp偏光成分である第1分離光(L11)及びs偏光成分である第2分離光(L12)に分離すると共に、信号光(S0)をp偏光成分である第3分離光(S11)及びs偏光成分である第4分離光(S12)に分離する偏光分離部(111)と、偏光分離部(111)で分離された第1分離光(L11)を、第3分離光(S11)及び第4分離光(S12)のいずれか一方と合波し、第2分離光(L12)を第3分離光(S11)及び第4分離光(S12)のいずれか他方と合波する光合波部(111)と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏波ダイバーシティ光学系装置、復調器及び送受信機に関し、より詳しくは、コヒーレント光通信システムにおける偏波ダイバーシティ光学系装置、復調器及び送受信機に関する。
【背景技術】
【0002】
近年のネットワークの大容量化の要求に伴い、コヒーレント光通信が注目されている。これは情報を光の位相や周波数に重畳して送信し、受信機側に備えられた局部発振器からの光(以下、「局発光」という。)と干渉させることにより信号を復調する通信方式である。
【0003】
コヒーレント通信方式において、光ファイバを伝搬してきた信号光は偏光方向が変動しているため、局発光と信号光の干渉効率が低下し、受信感度が時間的に変動してしまうという課題がある。これを解決する手段として、偏波ダイバーシティ検出方式がある。これは、任意の偏光状態となった信号光を2つの直交する偏光成分に分離し、それぞれに偏光方向を合わせた局発光を重ね合わせて干渉光を生成し、安定した受信感度を実現するという方法である。
【0004】
特許文献1には、偏波ダイバーシティ検出を実施する方法として、信号光と局発光を偏光分離し、同じ偏光成分同士をハーフビームスプリッタ等を用いて合波することにより、干渉光を生成するというものが開示されている。
【0005】
特許文献2は、信号光と参照光を偏光分離すると同時に直交する偏光成分同士を合波した後、偏光子等を用いて偏光方向を一致させ、干渉光を生成するものを開示している。
【0006】
特許文献3は、光90度ハイブリッドを用いて合成光から干渉光を生成し、位相ダイバーシティ検出を行うことについて開示している。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平3−251827号公報
【特許文献2】特開平1−209431号公報
【特許文献3】特開2008−92484号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
図9は、特許文献2に開示された信号光と参照光を偏光分離すると同時に、直交する偏光成分同士を合波する偏波ダイバーシティ光学系装置900について説明するための図である。任意の偏光状態の信号光S0(p偏光成分S0、s偏光成分S0)と45度の直線偏光の局発光L0(p偏光成分L0、s偏光成分L0)は偏光ビームスプリッタ930へ入射し、各々の光のp偏光成分S0及びL0は透過し、s偏光成分S0及びL0は反射される。この際、信号光のs偏光成分S0とp偏光成分L0とが合波されC91となり、信号光のp偏光成分S0と局発光のs偏光成分L0とが合波され合成光C92となる。生成された合成光C91及びC92は干渉光生成部940及び950により干渉光I91〜I98となり出力される。
【0009】
ここで、偏光ビームスプリッタ930等の偏光分離素子は不完全であることから、本来全て反射すべきs偏光の一部が透過、あるいは全て透過すべきp偏光成分の一部が反射することにより、漏れ光が生じている。漏れ光は信号光と干渉することにより、出力信号の誤差となり、信号を正確に復調できなくなる恐れがある。
【0010】
本発明は上述の事情を鑑みてされたものであり、偏波ダイバーシティ検出において、出力される干渉光に含まれる漏れ光を低減することを目的とする。
【課題を解決するための手段】
【0011】
本発明の偏波ダイバーシティ光学系装置は、第1のコヒーレント光を互いに直交する2つの偏光成分の第1分離光及び第2分離光に分離すると共に、第2のコヒーレント光を互いに直交する2つの偏光成分である第3分離光及び第4分離光に分離する偏光分離部と、前記第1分離光を、前記第3分離光及び前記第4分離光のいずれか一方と合波させ、前記第2分離光を、前記第3分離光及び前記第4分離光いずれか他方と合波させる光合波部を備え、前記光合波部は偏光分離機能を有している、偏波ダイバーシティ光学系装置である。
【0012】
また、本発明の偏波ダイバーシティ光学系装置において、前記第1〜第4分離光のうち、いずれか2つの分離光の偏光を90度回転する、λ/2板等の偏光回転手段を更に備えることができる。
【0013】
また、本発明の偏波ダイバーシティ光学系装置において、前記第1のコヒーレント光及び前記第2のコヒーレント光のいずれか一方は、局部発振器から発振された局部発振光であり、前記第1のコヒーレント光及び前記第2のコヒーレント光のいずれか他方は、情報が重畳された信号光である、とすることができる。
【0014】
また、本発明の偏波ダイバーシティ光学系装置において、前記偏光分離部及び前記光合波部は、1つの合成光生成部により実現され、前記合成光生成部は、一つの偏光ビームスプリッタを有している、とすることができる。
【0015】
また、本発明の偏波ダイバーシティ光学系装置において、前記偏光分離部は、ビームディスプレイサであり、前記光合波部は、偏光ビームスプリッタである、とすることができる。
【0016】
また、本発明の偏波ダイバーシティ光学系装置において、前記偏光分離部及び前記光合波部は、それぞれ異なるビームディスプレイサである、とすることができる。
【0017】
また、本発明の偏波ダイバーシティ光学系装置において、合波された光を干渉光に変換する干渉光生成部を更に備えることができる。
【0018】
本発明の復調器は、上述したいずれかの偏波ダイバーシティ光学系装置と、前記偏波ダイバーシティ光学系装置から出射された光を検出して電気信号を出力する光検出器と、を備える復調器である。
【0019】
本発明の光送受信機は、送信部と受信部を備える光送受信機であって、前記受信部は、上述の復調器を有し、前記送信部は、コヒーレント光に信号を重畳させる位相変調部を有する、ことを特徴とする光送受信機である。
【発明の効果】
【0020】
本発明によれば、発生する漏れ光をより小さくすることができるため、出力信号の誤差が小さくなり、信号を正確に復調することができる。
【図面の簡単な説明】
【0021】
【図1】本発明の第1実施形態に係る偏波ダイバーシティ光学系装置を概略的に示す図である。
【図2】図1の偏波ダイバーシティ光学系装置の合成光生成部をより詳細に示す図である。
【図3】図1の偏波ダイバーシティ光学系装置の光90度ハイブリッドをより詳細に示す図である。
【図4】本発明の第2実施形態に係る偏波ダイバーシティ光学系装置を概略的に示す図である。
【図5】本発明の第3実施形態に係る偏波ダイバーシティ光学系装置を概略的に示す図である。
【図6】本発明の第4実施形態に係る偏波ダイバーシティ光学系装置を概略的に示す図である。
【図7】本発明の第5実施形態に係る光通信用の復調器について概略的に示す図である。
【図8】本発明の第6実施形態に係る光通信用の送受信機について概略的に示す図である。
【図9】従来の偏波ダイバーシティ光学系装置について説明するための図である。
【発明を実施するための形態】
【0022】
以下、本発明の実施形態について、図面を参照しつつ説明する。なお、図面において、同一又は同等の要素には同一の符号を付し、重複する説明を省略する。
【0023】
[第1実施形態]
図1は、本発明の第1実施形態に係る偏波ダイバーシティ光学系装置100を概略的に示す図である。この図1に示すように、偏波ダイバーシティ光学系装置100は、外部の局部発振器から出射された局発光L0、及び信号が重畳された信号光S0から合成光C11及びC12を出力する合成光生成部110と、合成光C11から干渉光I11〜I14を生成する光90度ハイブリッド130と、合成光C12から干渉光I15〜I18を生成する光90度ハイブリッド140と、から構成されている。
【0024】
図2には、合成光生成部110がより詳細に示されている。図2に示されるように、合成光生成部110は、局発光L0及び信号光S0の分離及び分離された光の合成を行う偏光ビームスプリッタ111と、分離された光の偏光を90°回転させるλ/2板115と、偏光ビームスプリッタ111に光を入射させるために光を反射させるプリズム112、113、114、116及び117と、を備えている。
【0025】
図3には、光90度ハイブリッド130がより詳細に示されている。図3に示されるように、干渉光を生成する光90度ハイブリッド130は、入射した光を強度1:1で分岐させる無偏光ビームスプリッタ131と、偏光を45°回転させるλ/2板132及び135と、90度の位相差を生じさせるλ/4板134と、偏光ビームスプリッタ133及び136により構成されている。なお、光90度ハイブリッド140も同様の構成であるため、説明を省略する。
【0026】
図2に戻り、合成光生成部110における光の経路について詳細に説明する。光ファイバを伝搬し、任意の偏光状態となっている信号光S0は、プリズム117で反射された後、偏光ビームスプリッタ111で偏光分離され、分岐信号光S11及びS12が生成される。分岐信号光S11は、プリズム114で反射した後、再び、偏光ビームスプリッタ111に入射する。分岐信号光S12は、λ/2板115(進相軸方向はs偏光に対して45度)を通過し偏光が90度回転され、分岐信号光S13とされた後、プリズム116で反射され、再び、偏光ビームスプリッタ111に入射する。
【0027】
一方、45度の直線偏光となっている局発光L0はプリズム112で反射されたのち偏光ビームスプリッタ111で偏光分離され、分岐局発光L11及びL12が生成される。分岐局発光L11はプリズム116で反射した後、λ/2板115を通過し偏光が90度回転され、分岐局発光L13とされ、再び、偏光ビームスプリッタ111へ入射する。分岐局発光L12は、プリズム113で反射した後、再び、偏光ビームスプリッタ111に入射する。
【0028】
偏光ビームスプリッタ111に入射した分岐信号光S13と分岐局発光L12は偏光ビームスプリッタ111によって合波され、合成光C11が生成される。同様に分岐信号光S11と分岐局発光L13は偏光ビームスプリッタ111によって合波され、合成光C12が生成される。合成光C11及びC12はそれぞれ干渉光生成手段である光90度ハイブリッド130及び140へ入射する。
【0029】
図3を用い、光90度ハイブリッド130における光の経路について詳細に説明する。光90度ハイブリッド130へ入射した合成光C11は無偏光ビームスプリッタ131によって強度比1対1で分岐され、2つの分岐合成光が生成される。一方の分岐合成光はλ/2板132(進相軸方向はs偏光に対して22.5度)によって偏光を45度回転され、第1分岐合成光C16とされた後、偏光ビームスプリッタ133で偏光分離されることにより、第1分岐合成光C16に含まれている信号光と局発光の偏光方向が一致させられ、干渉光I11及びI12が生成される。
【0030】
これらの干渉光I11及びI12を検出器で検出し、検出された2つの干渉光の強度差に比例する信号を出力させることにより、位相ダイバーシティ検出における、信号光のs偏光成分に対する第1の出力信号(I信号)を取得することができる。
【0031】
また、他方の分岐合成光はまずλ/4板134(進相軸方向はs偏光方向に平行)によって、この分岐合成光に含まれている信号光と局発光の間に90度の位相差を与えられ、次に、その後、λ/2板135(進相軸方向はs偏光に対して22.5度)によって偏光を45度回転され、第2分岐合成光C17とされる。その後、偏光ビームスプリッタ136によって偏光分離されることにより、第2分岐合成光C17に含まれている信号光と局発光の偏光方向が一致させられ、干渉光I13及びI14が生成される。
【0032】
これらの干渉光を検出器で検出し、検出された2つの干渉光の強度差に比例する信号を出力させることにより、信号光のs偏光成分に対する位相ダイバーシティ検出における、第2の出力信号(Q信号)を取得することができる。
【0033】
同様にして光90度ハイブリッド140によっても干渉光I15〜I18が生成され、これらの干渉光を検出することにより、信号光のp偏光成分に対するI信号及びQ信号を取得することができる。
【0034】
以下、偏波ダイバーシティ光学系装置100の機能について式を用いて詳しく説明する。信号光S0と局発光L0の電場をそれぞれ次のようなベクトルで表すこととする。
【0035】
【数1】

【0036】
上記式(1)及び(2)の各々のベクトルの成分はそれぞれ電場のp偏光成分,s偏光成分を表している。ここで、偏光ビームスプリッタ111の不完全性を考慮し、偏光ビームスプリッタ111に電場振幅Eを持つs偏光の光が入射したときには、δEの電場を持つ光が透過して漏れ光となり、同様に電場振幅Epを持つp偏光の光が入射したときにはδEの電場を持つ光が反射して漏れ光となるとする。すなわち、δは偏光ビームスプリッタの不完全性によって生じる漏れ光の大きさを表すパラメータである。一般的な偏光ビームスプリッタの消光比は30dB程度で、これに対応するδの値は0.03程度である。この仮定のもとで、偏光ビームスプリッタ111によって偏光分離された直後の分岐信号光S11及びS12及び分岐局発光L11及びL12の電場はそれぞれ近似的に式(3)〜式(6)のように表わすことができる。
【0037】
【数2】

【0038】
λ/2板115はp偏光成分とs偏光成分を入れ替える作用を持つので、λ/2板115通過直後の分岐信号光S13と分岐局発光L13の電場はそれぞれ式(7)及び(8)のようになる。
【0039】
【数3】

【0040】
分岐信号光S11及びS13と分岐局発光L12及びL13は偏光ビームスプリッタ111を透過、あるいは反射する際に、各々に含まれる不要光の電場がδ倍されるため、偏光ビームスプリッタ111から出射された直後のこれらの光の電場はそれぞれ式(9)〜(12)のようになる。
【0041】
【数4】

【0042】
従って、合成光C11及びC12の電場はそれぞれ式(13)及び(14)のように表される。
【0043】
【数5】

【0044】
合成光C11及びC12は、それぞれ同じ機能を持つ光90度ハイブリッド130及び140に入射する。次に、光90度ハイブリッド130における、合成光C11から干渉光I11〜I14が生成される過程ついて説明する。無偏光ビームスプリッタ131は合成光C11を強度比1対1で分岐するので、分岐合成光の電場はどちらも合成光C11の電場の1/√2倍となる。また、λ/2板132及び135とλ/4板134の作用はそれぞれ行列(15)及び(16)によって表される。
【0045】
【数6】

【0046】
したがって、偏光ビームスプリッタ133及び136へ入射する分岐合成光C16及びC17の電場はそれぞれ下式(17)及び(18)により表される。
【0047】
【数7】

【0048】
これらの電場を持つ分岐合成光C16及びC17が偏光分離されることにより、干渉光I11〜I14が生成されるので、これらの干渉光の電場はそれぞれ以下のように表わされる。
【0049】
【数8】

【0050】
δを含む項が漏れ光の電場を表しており、漏れ光の電場の振幅はδのオーダーとなっている。ここで、比較のために図9に示す従来の偏波ダイバーシティ光学系装置900で生成される干渉光I91〜I94の電場を求める。偏光分離と合波が同時に行われるため、生成される合成光C91の電場は、式(3)と式(6)の和で与えられ、式(23)で表される。
【0051】
【数9】

【0052】
干渉光生成部940として光90度ハイブリッド130を用いた場合について、合成光から生成される干渉光I91〜I94の電場を同様の計算により求めると、それぞれ式(24)〜(27)のようになる。
【0053】
【数10】

【0054】
δを含む項が漏れ光の電場を表しており、漏れ光の電場の振幅はδの1次オーダーとなっている。つまり、本実施形態の偏波ダイバーシティ光学系装置100で生成される干渉光に含まれる漏れ光の電場の大きさは、従来の偏波ダイバーシティ光学系装置900の場合のδ倍となっている。
【0055】
したがって、本実施形態においては、信号光S0と局発光L0を偏光分離した後、偏光ビームスプリッタ111で合波しているため、漏れ光を減少させることができる。
【0056】
なお、本実施形態は干渉光生成手段として4つの干渉光を生成する光90度ハイブリッドを用いたが、生成される干渉光が4つ未満や5つ以上の場合であっても、本発明の機能は有効である。
【0057】
[第2実施形態]
図4は、本発明の第2実施形態に係る偏波ダイバーシティ光学系装置200を概略的に示す図である。この図4に示されるように、偏波ダイバーシティ光学系装置200は、外部の局部発振部から出射された局発光L0、及び信号が重畳された信号光S0から合成光C21及びC22を出力する合成光生成部210と、合成光C21から干渉光I21〜I24を生成する光90度ハイブリッド130と、合成光C22から干渉光I25〜I28を生成する、光90度ハイブリッド130と同一の光90度ハイブリッド140と、から構成されている。
【0058】
ここで、合成光生成部210は、局発光L0及び信号光S0の分離を行うビームディスプレイサ211と、分離された光の偏光を90°回転させるλ/2板212と、分離された光の合成を行う偏光ビームスプリッタ214と、偏光ビームスプリッタ214に光を入射させるために光を反射させるプリズム213と、を備えている。なお、光90度ハイブリッド130及び140の構成は、第1実施形態のものと同一であるため、説明を省略する。
【0059】
信号光S0と局発光L0をビームディスプレイサ211を用いて偏光分離し、分岐局発光L21及びL22の偏光方向をλ/2板212(進相軸方向はs偏光に対して45度)を用いて、それぞれ90度回転させ分岐局発光L23及びL24とした後、偏光ビームスプリッタ214により、分岐信号光S21と分岐局発光L23とが合波され、合成光C21になると共に、分岐信号光S22と分岐局発光L24とが合波され、合成光C22となる。光90度ハイブリッド130及び140での光の処理は、第1実施形態と同様であるため、説明を省略する。
【0060】
したがって、本実施形態においても、第1実施形態と同じく、信号光S0と局発光L0を偏光分離した後、偏光ビームスプリッタ214で合波しているため、漏れ光を減少させることができる。
【0061】
一般に、ビームディスプレイサを用いて偏光分離した場合に発生する漏れ光の電場の振幅は、偏光ビームスプリッタを用いる場合の0.1倍程度であるため、本実施形態の偏波ダイバーシティ光学系装置200は、第1実施形態の偏波ダイバーシティ光学系装置100よりも漏れ光を小さくすることができる。
【0062】
また、本実施形態では信号光S0と局発光L0の偏光分離を同一のディスプレイサで行っているため、分岐信号光S21とS22の光軸間の距離と、分岐局発光L21とL22の光軸間の距離は等しい。さらにビームディスプレイサで分岐されたs偏光成分とp偏光成分は平行に出射されることから、例えば分岐信号光S21と分岐局発光L23の光軸を合わせた時点で、分岐信号光S22と分岐局発光L24の光軸は自動的に一致する。
【0063】
すなわち、2つの合成光C21及びC22を生成する際に、必要となる光軸合わせの調整箇所は1箇所だけである。なお、信号光S0の偏光分離と局発光L0の偏光分離を異なるビームディスプレイサで行う場合に、1箇所の光軸調整で2つの合成光C21及びC22を生成するには、光の伝搬方向の厚さが高い精度で等しいビームディスプレイサを用いる必要がある。
【0064】
[第3実施形態]
図5は、本発明の第3実施形態に係る偏波ダイバーシティ光学系装置300を概略的に示す図である。この図5に示されるように、偏波ダイバーシティ光学系装置300は、外部の局部発振器から出射された局発光L0、及び信号が重畳された信号光S0から合成光C31及びC32を出力する合成光生成部310と、合成光C31から干渉光I31〜I34を生成する光90度ハイブリッド130と、合成光C32から干渉光I35〜I38を生成する、光90度ハイブリッド140と、から構成されている。
【0065】
ここで、合成光生成部310は、局発光L0及び信号光S0の分離を行うビームディスプレイサ311と、分離された光の偏光を90°回転させるλ/2板312及び313と、分離された光の合成を行うビームディスプレイサ314と、光を反射させるためのプリズム315と、を備えている。なお、光90度ハイブリッド130及び140の構成は、第1実施形態のものと同一であるため、説明を省略する。
【0066】
本実施形態の合成光生成部310では、信号光S0と局発光L0をビームディスプレイサ311を用いて偏光分離し、分岐信号光S32及び分岐局発光L31の偏光方向をλ/2板312と313を用いて、90度回転させて分岐信号光S33及び分岐局発光L33とした後、分岐信号光S33と分岐局発光L32及び分岐信号光S31と分岐局発光L33を、ビームディスプレイサ314で合波する構成としている。光90度ハイブリッド130及び140での光の処理は、第1実施形態と同様であるため、説明を省略する。
【0067】
したがって、本実施形態の偏波ダイバーシティ光学系装置300では、漏れ光の生じにくいビームディスプレイサを偏光分離と合波の両方に用いているため、第1実施形態の偏波ダイバーシティ光学系装置100よりも漏れ光を小さくすることができる。さらに、第2実施形態の場合と同様に、信号光S0と局発光L0の偏光分離を同一のビームディスプレイサで行っているため、合成光L11及びL21を生成するにあたり必要となる光軸合わせの調整は1箇所のみでよい。
【0068】
[第4実施形態]
図6は、本発明の第4実施形態に係る偏波ダイバーシティ光学系装置400を概略的に示す図である。この図6に示されるように、偏波ダイバーシティ光学系装置400は、外部の局部発振器から出射された局発光L0、及び信号が重畳された信号光S0から合成光C41及びC42を出力する合成光生成部410と、合成光C41から干渉光I41〜I44を生成する光90度ハイブリッド130と、合成光C42から干渉光I45〜I48を生成する、光90度ハイブリッド140と、から構成されている。
【0069】
ここで、合成光生成部410は、局発光L0及び信号光S0の分離を行う偏光ビームスプリッタ411と、分離された光の合波を行う偏光ビームスプリッタ414及び415と、光を反射させるためのプリズム412及び413と、を備えている。なお、光90度ハイブリッド130及び140の構成は、第1実施形態のものと同一であるため、説明を省略する。
【0070】
本実施形態の合成光生成部410では、信号光S0と局発光L0を偏光ビームスプリッタ411を用いて偏光分離し、分岐信号光S41と分岐局発光L42を偏光ビームスプリッタ414で、分岐信号光S42と分岐局発光L41を偏光ビームスプリッタ415で合波する構成としている。光90度ハイブリッド130及び140での光の処理は、第1実施形態と同様であるため、説明を省略する。
【0071】
したがって、本実施形態においても、第1実施形態と同じく、信号光S0と局発光L0を偏光分離した後、偏光ビームスプリッタ414及び415で合波しているため、漏れ光を減少させることができる。なお、本実施形態では、分離された光の偏光を回転させずに合波しているため、λ/2板等の偏光回転手段は不要である。
【0072】
[第5実施形態]
図7は、本発明の第5実施形態に係る光通信用の復調器500について概略的に示す図である。この図7に示されるように、復調器500は、第1実施形態に係る偏波ダイバーシティ光学系装置100と、光ファイバーを伝搬してきた光を出射するコリメータ505と、局部発振器510と、偏波ダイバーシティ光学系装置100から出射された干渉光I11〜I18のそれぞれを検出する光検出器521〜528と、干渉光の強度差に比例する出力信号を出力するトランスインピーダンスアンプ531〜534と、から構成されている。
【0073】
コリメータ505より出射された信号光S0及び局部発振器510より出射された局発光L0は、偏波ダイバーシティ光学系装置100に入射し、干渉光I11〜I18が生成される。干渉光I11〜I18は光検出器521〜528で検出され、それぞれの干渉光の強度差に比例する出力信号EI1、EQ1、EI2及びEQ2がトランスインピーダンスアンプ531〜534より出力される。
【0074】
ここで、式を用いて説明すると、干渉光I11及びI12の強度差に比例した電気信号が信号光のs偏光成分に対するI信号、干渉光I13及びI14の強度差に比例した電気信号が信号光のs偏光成分に対するQ信号となり、これらは近似的にそれぞれ以下の式(28)及び(29)のように表わされる。
【0075】
【数11】

【0076】
ここで、θs及びθpはそれぞれE及びEの位相、θはEの位相、ηは検出される光の強度から電圧への変換効率である。また、出力信号のDC成分はACカップリングにより消失させることとした。漏れ光によって生じる出力信号の誤差をΔIs,ΔQsとすると、これらはIs、Qsと各々のδ=0のときの値Is0,Qs0との差で与えられるので、以下の式(30)及び(31)のようになる。
【0077】
【数12】

【0078】
ここで、比較のために図9に示す従来の干渉計を使用した場合の出力信号の誤差ΔIs’及びΔQs’を、式(24)〜(27)で与えられる干渉光の電場をもとに計算すると、式(32)及び(33)のようになる。
【0079】
【数13】

【0080】
式(30)〜(33)から明らかなように、本実施形態の偏波ダイバーシティ光学系装置100を採用することにより、漏れ光によって生じる出力信号の誤差をδ倍小さくすることができる。
【0081】
次に、本実施形態の偏波ダイバーシティ光学系装置100を用いた復調器500で位相変調信号を復調する際に、出力信号の誤差によって生じる復調信号の誤差を見積もる。局発光L0の位相を基準にした信号光のs偏光成分の位相は、δ=0の場合はarctan(Q/I)という演算により求められるが、δ≠0のときには真の値からずれ、位相誤差Δθが生じてしまう。Δθは以下の式(34)のように表わされる。
【0082】
【数14】

【0083】
式(34)をΔI、ΔQに関して一次まで展開し、式(28)〜(31)を用いて整理すると式(35)のようになる。
【0084】
【数15】

【0085】
一方、図9の従来の偏波ダイバーシティ光学系装置900を用いた復調器において生じる位相誤差Δθ’を式(32)及び(33)から同様の計算により求めると式(36)のようになる。
【0086】
【数16】

【0087】
上述の式(35)及び(36)より、δ=0.03、|E|/|E|=0.5のとき、従来の位相誤差Δθ’は、最大で約0.86度であるのに対し、本実施形態の位相誤差Δθは、最大で約0.026度であり、本実施形態の偏波ダイバーシティ光学系装置100を用いた場合に生じる位相誤差は従来の偏波ダイバーシティ光学系装置900の場合よりも小さくなっている。
【0088】
したがって、本実施形態の復調器500では、偏波ダイバーシティ光学系装置100を用いているため、従来の偏波ダイバーシティ光学系装置900を用いた場合よりも漏れ光によって生じる出力信号の誤差が小さく、正確に位相変調信号を復調することが可能である。なお、ここでは位相変調信号の復調について説明したが、振幅変調信号、周波数変調信号や直交振幅変調信号の復調も可能である。
【0089】
[第6実施形態]
図8は、本発明の第6実施形態に係る光通信用の送受信機600について概略的に示す図である。図8に示されるように、送受信機600は、送信部610と受信部620とから構成されている。送信部610は、制御部690から受信した送信すべきデータD61を変調する信号処理部612と、信号処理部612が出力したデータを増幅する増幅器613及び614と、光源615と、光源615から出射された光を増幅器613及び614で増幅されたデータで変調する位相変調部616と、を備えている。
【0090】
受信部620は、第4実施形態に係る復調器500と、復調器500から出力された信号をデータ信号に変換する信号処理部622と、により構成されている。
【0091】
送信部610では、信号処理部612に入力されたデータ信号D61が2つに分離され、分離された2つのデータ変調信号が生成される。これらのデータ変調信号はそれぞれ増幅器613及び614で増幅された後、位相変調部616に出力される。光源615から出射された光は位相変調部616に入射し、位相変調部616は入射された光を、増幅器613及び614から出力された2つのデータ変調信号で変調し、非変調光S110を出力する。
【0092】
受信部620では、光ファイバを伝搬してきた信号光が、第5実施形態の復調器500へ入射し、そこで4つの出力信号EI1、EQ1、EI2及びEQ2が生成される。4つの出力信号EI1、EQ1、EI2及びEQ2は信号処理部622に入力され、そこでデータ信号D62が復元される。
【0093】
したがって、本実施形態の送受信機600では、第5実施形態に係る復調器500と同様に、偏波ダイバーシティ光学系装置100を用いているため、従来の偏波ダイバーシティ光学系装置900を用いた場合よりも漏れ光によって生じる出力信号の誤差が小さく、正確に信号を復調することが可能である。
【符号の説明】
【0094】
100 偏波ダイバーシティ光学系装置、110 合成光生成部、111 偏光ビームスプリッタ、112 プリズム、113 プリズム、114 プリズム、115 λ/2板、116 プリズム、117 プリズム、130 光90度ハイブリッド、131 無偏光ビームスプリッタ、132 λ/2板、133 偏光ビームスプリッタ、134 λ/4板、135 λ/2板、136 偏光ビームスプリッタ、140 光90度ハイブリッド、900 偏波ダイバーシティ光学系装置、930 偏光ビームスプリッタ、940 干渉光生成部。

【特許請求の範囲】
【請求項1】
第1のコヒーレント光を互いに直交する2つの偏光成分の第1分離光及び第2分離光に分離すると共に、第2のコヒーレント光を互いに直交する2つの偏光成分である第3分離光及び第4分離光に分離する偏光分離部と、
前記第1分離光を、前記第3分離光及び前記第4分離光のいずれか一方と合波させ、前記第2分離光を、前記第3分離光及び前記第4分離光いずれか他方と合波させる光合波部を備え、
前記光合波部は偏光分離機能を有する、ことを特徴とする偏波ダイバーシティ光学系装置。
【請求項2】
前記第1〜第4分離光のうち、いずれか2つの分離光の偏光を90度回転させる偏光回転手段を有する、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項3】
前記第1のコヒーレント光及び前記第2のコヒーレント光のいずれか一方は、局部発振器から発振された局部発振光であり、
前記第1のコヒーレント光及び前記第2のコヒーレント光のいずれか他方は、情報が重畳された信号光である、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項4】
前記偏光分離部及び前記光合波部は、1つの合成光生成部により実現され、
前記合成光生成部は、一つの偏光ビームスプリッタを有している、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項5】
前記偏光分離部は、ビームディスプレイサであり、
前記光合波部は、偏光ビームスプリッタである、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項6】
前記偏光分離部及び前記光合波部は、それぞれ異なるビームディスプレイサである、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項7】
合波された光を干渉光に変換する干渉光生成部を更に備える、ことを特徴とする請求項1に記載の偏波ダイバーシティ光学系装置。
【請求項8】
請求項1〜7のいずれか一項に記載の偏波ダイバーシティ光学系装置と、
前記偏波ダイバーシティ光学系装置から出射された光を検出して電気信号を出力する光検出器と、を備える復調器。
【請求項9】
送信部と受信部を備える光送受信機であって、
前記受信部は、請求項8に記載の復調器を有し、
前記送信部は、コヒーレント光に信号を重畳させる位相変調部を有する、ことを特徴とする光送受信機。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−221416(P2011−221416A)
【公開日】平成23年11月4日(2011.11.4)
【国際特許分類】
【出願番号】特願2010−92673(P2010−92673)
【出願日】平成22年4月13日(2010.4.13)
【出願人】(301005371)日本オプネクスト株式会社 (311)
【Fターム(参考)】