説明

光ファイバセンサ

【課題】従来よりも測定感度が高い、導波音響波型ブリユアン散乱光を用いた光ファイバセンサを提供すること。
【解決手段】試験光を出力する光源と、石英系ガラスからなり、コア部と該コア部の外周に形成された外径が90μm以下のクラッド部とを有し、前記試験光を少なくとも一方の端部において受け付け、前記試験光によって発生する導波音響波型ブリユアン散乱光を他方の端部から出力する少なくとも1つの測定用光ファイバと、前記測定用光ファイバから出力する前記導波音響波型ブリユアン散乱光を受け付け、該導波音響波型ブリユアン散乱光の周波数スペクトル上のピーク周波数を測定し、該測定したピーク周波数に基づいて前記測定用光ファイバの周囲温度または該測定用光ファイバにかかる応力を検出する検出手段と、を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバを用いて温度や被測定物の歪みを測定する光ファイバセンサに関するものである。
【背景技術】
【0002】
従来より、光ファイバを用いて電気的な接触なく温度や被測定物の歪みを測定する光ファイバセンサが開示されている。光ファイバセンサの方式には様々なものがあるが、たとえば、光ファイバに試験光を入力し、光ファイバ中の熱エネルギーにより発生している縦波音響波と試験光の光波との相互作用によってブリユアン散乱光を発生させ、このブリユアン散乱光の周波数シフト量を測定する方式がある。なお、このようなブリユアン散乱光は、光の伝播方向に対して後方に散乱されるので、以下では後方ブリユアン散乱光と称する。後方ブリユアン散乱光の周波数シフト量は、光ファイバの温度や印加される応力に応じて変化する。したがって、周波数シフト量の測定によって、光ファイバの周囲温度や光ファイバが取り付けられた被測定物の歪みが測定できるのである。この後方ブリユアン散乱光の周波数シフト量を測定する方式は、通常伝送線路に用いられている光ファイバを用いて、長距離に渡って温度や歪の分布状態を測定できる利点がある(たとえば、特許文献1参照)。
【0003】
しかしながら、後方ブリユアン散乱光の周波数シフト量を測定する方式は、上記利点を有する反面、以下のような問題点がある。すなわち、
・後方散乱光を検出するため、OTDR装置(Optical Time Domain Reflectometer)を用いる構成が必要となる。その結果、装置構成が複雑である。
・通常の石英系ガラスからなる光ファイバの場合、後方ブリユアン散乱光の周波数シフト量は、10GHz前後である。したがって、この周波数シフト量を測定するためには、測定可能周波数帯域が10GHz以上の受光素子を必要とし、さらに対応する電気回路も同様の高周波回路が求められるため、測定装置が高価になってしまう。
【0004】
一方、光ファイバ中の熱エネルギーにより発生している横波音響波と光波との相互作用によって、散乱効率が10−10−1と非常に小さいブリユアン散乱光が発生する導波音響波型ブリユアン散乱(Guided Acoustic Wave Brillouin Scattering、GAWBS)という散乱現象が知られている(たとえば、非特許文献1〜3参照)。この導波音響波型ブリユアン散乱による散乱光(導波音響波型ブリユアン散乱光)は、試験光の伝播方向と同じ方向に進行するため、前方ブリユアン散乱光とも呼ばれている。
【0005】
この導波音響波型ブリユアン散乱光は、横波音響波によって変調を受けたものであるが、この変調周波数は、光ファイバの温度や印加される応力に応じて変化するので、温度や歪みを測定する光ファイバセンサに応用できる(たとえは、非特許文献4、5参照)。また、導波音響波型ブリユアン散乱光を用いる方式は、後方ブリユアン散乱光を用いる方式と比較して、以下のような特徴を有する。すなわち、
・前方散乱光を検出するため、OTDR装置が不要である。その結果、装置構成が簡易になる。
・散乱光の変調周波数には、複数のピークが存在する。ピーク周波数は20〜800MHz付近に発生するため、受光素子の周波数帯域特性としては1GHz程度で十分である。したがって、測定装置がより安価になる。
【0006】
【特許文献1】特開2007−178346号公報
【非特許文献1】西澤、森、後藤、宮内 “定偏波ファイバにおけるGAWBSの特性” 信学技報LQE95−103(1995−11)
【非特許文献2】K.Shiraki and M.Ohashi “Sound velocity measurement based on guided acoustic-wave brillouin scattering” IEEE Photn.Technol.Lett.Vol.4,pp.1177-1180,1992
【非特許文献3】A.Melloni, M.Martinelli and A.Fellegara “Frequency characterization of the nonlinear refractive index in optical Fiber” Fiber and Integrated Optics,18,pp1-13,1999
【非特許文献4】田中、小楠 “GAWBSを利用した光ファイバ温度センサ” 電子情報通信学会総合大会 1997、C−3−142
【非特許文献5】田中、布川、小楠 “GAWBSを利用した光ファイバ引っ張り歪センサ” 電子情報通信学会エレクトロニクスソサエティ大会 1997、C−3−4
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかしながら、従来の導波音響波型ブリユアン散乱光を用いた光ファイバセンサは、導波音響波型ブリユアン散乱光の散乱効率が小さいために、測定感度が低いという問題があった。
【0008】
本発明は、上記に鑑みてなされたものであって、従来よりも測定感度が高い、導波音響波型ブリユアン散乱光を用いた光ファイバセンサを提供することを目的とする。
【課題を解決するための手段】
【0009】
上述した課題を解決し、目的を達成するために、本発明に係る光ファイバセンサは、試験光を出力する光源と、石英系ガラスからなり、コア部と該コア部の外周に形成された外径が90μm以下のクラッド部とを有し、前記試験光を少なくとも一方の端部において受け付け、前記試験光によって発生する導波音響波型ブリユアン散乱光を他方の端部から出力する少なくとも1つの測定用光ファイバと、前記測定用光ファイバから出力する前記導波音響波型ブリユアン散乱光を受け付け、該導波音響波型ブリユアン散乱光の周波数スペクトル上のピーク周波数を測定し、該測定したピーク周波数に基づいて前記測定用光ファイバの周囲温度または該測定用光ファイバにかかる応力を検出する検出手段と、を備えたことを特徴とする。
【0010】
また、本発明に係る光ファイバセンサは、上記発明において、前記測定用光ファイバは、前記コア部の前記クラッド部に対する比屈折率差の最大値が1.0%以上であることを特徴とする。
【0011】
また、本発明に係る光ファイバセンサは、上記発明において、複数の測定用光ファイバを備え、該複数の測定用光ファイバは、互いに異なるピーク周波数を有する導波音響波型ブリユアン散乱光を発生するとともに、該複数の測定用光ファイバよりもクラッド径の大きい接続用光ファイバを介して接続していることを特徴とする。
【0012】
また、本発明に係る光ファイバセンサは、上記発明において、前記複数の測定用光ファイバは、前記クラッド部の外径が互いに異なることを特徴とする。
【0013】
また、本発明に係る光ファイバセンサは、上記発明において、前記複数の測定用光ファイバは、前記コア部の前記クラッド部に対する比屈折率差の最大値が互いに異なることを特徴とする。
【0014】
また、本発明に係る光ファイバセンサは、上記発明において、前記測定用光ファイバを巻回した状態で表面に保持する板状部材をさらに備えたことを特徴とする。
【0015】
また、本発明に係る光ファイバセンサは、上記発明において、前記板状部材は可撓性を有することを特徴とする。
【0016】
また、本発明に係る光ファイバセンサは、上記発明において、前記測定用光ファイバは、偏波保持型光ファイバであることを特徴とする。
【発明の効果】
【0017】
本発明によれば、従来よりも測定感度が高い、導波音響波型ブリユアン散乱光を用いた光ファイバセンサを実現できるという効果を奏する。
【発明を実施するための最良の形態】
【0018】
以下に、図面を参照して本発明に係る光ファイバセンサの実施の形態を詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下の図面において、同一または対応する要素には適宜同一符号を付している。また、適宜に導波音響波型ブリユアン散乱をGAWBSと略記する。
【0019】
(実施の形態1)
図1は、本発明の実施の形態1に係る光ファイバセンサの構成を示したブロック図である。図1に示すように、この光ファイバセンサ100は、光源装置1と、光源装置1に接続した測定用光ファイバ2と、測定用光ファイバ2に接続した検出装置3とを備える。なお、測定用光ファイバ2は、温度を測定したい場所に置かれたり、温度または歪みを測定したい被測定物に取り付けられたりする。
【0020】
光源装置1は、たとえば分布帰還型の半導体レーザダイオードを備えており、試験光として連続光であるレーザ光を出力する。このレーザ光の波長はたとえば光ファイバ通信用に使用される1500〜1600nmであるが、石英ガラス系光ファイバを過度の損失なく伝播する波長であれば特に限定されない。
【0021】
図2は、図1に示す測定用光ファイバ2の模式的な断面および対応する屈折率プロファイルを示した図である。図2に示すように、この測定用光ファイバ2は、中心コア部211と、中心コア部211の外周に形成された外側コア部212と、外側コア部212の外周に形成されたクラッド部213とからなるガラス部21と、クラッド部213の外周に形成された樹脂被覆部22とを有する。
【0022】
ガラス部21は石英系ガラスからなり、中心コア部211にはゲルマニウム(Ge)が添加されており、外側コア部212にはフッ素(F)が添加されている。また、クラッド部213は屈折率調整用のドーパントを含まない純石英ガラスからなる。その結果、この測定用光ファイバ2は、ガラス部21において、プロファイルPのような形状の屈折率プロファイルを有している。また、中心コア部211のクラッド部213に対する比屈折率差の最大値はΔ1であり、外側コア部212のクラッド部213に対する比屈折率差はΔ2である。また、クラッド部213の外径すなわちクラッド径は90μm以下である。
【0023】
図3は、図2に示す測定用光ファイバ2の特性の一例を示した図である。なお、図3において、「外径」とは樹脂被覆部22の外径を意味し、「MFD」はモードフィールド径を意味する。図3に示すように、この測定用光ファイバ2は、たとえばクラッド径60μmであり、外径が125μmである。また、Δ1、Δ2は、それぞれ2.0%、−0.6%である。
【0024】
図4は、図1に示す検出装置3の構成を示したブロック図である。図4に示すように、この検出装置3は、偏光子31と、受光素子としてのフォトダイオード(PD)32と、電気信号増幅器33と、スペクトラムアナライザ34と、制御表示器35とが順次接続した構成を有する。なお、図4において、各構成要素を接続する線については、実線のものはレンズや光ファイバ等を適宜用いた光学的接続を意味し、破線のものは電気的接続を意味している。
【0025】
つぎに、この光ファイバセンサ100の動作について説明する。光源装置1から試験光が出力されると、測定用光ファイバ2はこの試験光を一方の端部において受け付け、試験光は測定用光ファイバ2中を伝播する。
【0026】
ここで、測定用光ファイバ2のガラス部21には、その熱エネルギーによって横波音響波が発生している。図5は、図2に示す測定用光ファイバ2のガラス部21に発生している横波音響波の振動方向を矢印で示した図である。図5に示すように、横波音響波には、mを次数を表す整数として、所定の共振周波数で中心対称的に振動するR0mモード(radial mode)と、或る直交するx−y軸の方向において一方は膨張、他方は圧縮するように所定の共振周波数で振動するTR2mモード(torsional/radial mode)と呼ばれる2つのモードが存在する。R0mモードはガラス部21の屈折率を変調するので位相変調を誘起する。このためR0mモードに起因するGAWBSはポラライズドGAWBSと呼ばれる。したがって、ポラライズドGAWBSによって発生したポラライズドGAWBS光は、所定の共振周波数で位相変調されたものとなる。一方、TR2mモードはガラス部21内に複屈折を誘起するため、主に偏波変調を誘起する。このためTR2mモードに起因するGAWBSはデポラライズドGAWBSと呼ばれる。したがって、デポラライズドGAWBSによって発生したデポラライズドGAWBS光は、所定の共振周波数で偏波変調されたものとなる。
【0027】
このように、測定用光ファイバ2中では、各モードの横波音響波と試験光の光波との相互作用によって所定の共振周波数と同じ変調周波数を有するポラライズドGAWBS光とデポラライズドGAWBS光が発生する。発生した各GAWBS光は、試験光と同一の方向に伝播し、測定用光ファイバ2の他方の端部から出力する。
【0028】
つぎに、検出装置3は、測定用光ファイバ2から出力した各GAWBS光を受け付ける。検出装置3において、各GAWBS光は偏光子31、PD32に順次入力し、PD32によって電気信号に変換される。変換された電気信号は、電気信号増幅器33によって増幅され、スペクトラムアナライザ34に入力する。ここで、GAWBS光のうち、デポラライズドGAWBS光については、偏光子31を透過することによって、その偏波変調が強度変調に変換される。その結果、スペクトラムアナライザ34においては、強度変調されたデポラライズドGAWBS光の変調周波数が、モードの次数に応じた複数のピークとして検出される。なお、偏光子31の透過偏光方向については、偏光子31を透過するデポラライズドGAWBS光の強度が最大になるように適宜調整する。つぎに、制御表示器35は、スペクトラムアナライザ34が検出したピーク周波数のうち所定の1つのピーク周波数に基づいて、測定用光ファイバ2の周囲温度、あるいは被測定物の歪み等を検出する。なお、この制御表示器35の検出は、予め測定されたピーク周波数と温度または応力との関係式に基づいた演算処理によって行なわれる。また、制御表示器35内部のメモリに記憶されたピーク周波数と温度または応力との対応テーブルに基づいて行なってもよい。制御表示器35はたとえばパーソナルコンピュータによって実現される。
【0029】
ここで、本実施の形態1においては、測定用光ファイバ2のクラッド径が90μm以下なので、デポラライズドGAWBS光の変調周波数のピーク強度が従来のものよりも強くなる。その結果、この光ファイバセンサ100は、測定感度が従来よりも高いものとなる。以下、具体的に説明する。
【0030】
上述したように、従来のGAWBS光を用いた光ファイバセンサは、GAWBS光の散乱効率が小さいために、測定感度が低いという問題があった。そこで、本発明者らは、測定感度を向上させるべく、各GAWBSの共振周波数と光ファイバの特性との関係について精査した。
【0031】
(デポラライズドGAWBSの共振周波数の関係式)
はじめに、光波HE11モードとTR2mモードとから発生するデポラライズドGAWBSの共振周波数を考える。TR2mモードによる共振周波数fTmは、非特許文献2によれば、音響波の横波速度をV、固有値をy、光ファイバのクラッド径をdとして、以下の式(1)で表される。
【0032】
【数1】

【0033】
なお、固有値yは、TR2mモードにおける光ファイバのクラッド部表面での境界条件から、音響波の横波速度Vと縦波速度Vとの比、すなわちV/Vをαとし、2次、3次のベッセル関数をJ、Jとして、以下の式(2)を用いて求められる。
【0034】
【数2】

【0035】
(ポラライズドGAWBSの共振周波数の関係式)
つぎに、光波HE11モードとR0mモードとから発生するポラライズドGAWBSの共振周波数を考える。R0mモードによる共振周波数fRmは、非特許文献3によれば、固有値をμとして、以下の式(3)で表される。
【0036】
【数3】

【0037】
なお、固有値μは、光ファイバのクラッド部と樹脂被覆部との境界条件を無視すると、0次のベッセル関数をJとして、以下の式(4)を用いて求められる。
【0038】
【数4】

【0039】
式(1)及び式(3)から、二種類の光ファイバにおいて、同じモード次数に対して異なる周波数fが発生するには、a)クラッド直径dが異なる、b)VまたはVが異なる、の二つの条件が考えられる。
【0040】
また、音響波速度V及びVと添加されるGeの濃度との関係について、Geの濃度をw(質量%)とすると、次の式(5)、(6)が成立する。
【0041】
=5944(1−7.2×10−3) ・・・ (5)
=3749(1−6.4×10−3) ・・・ (6)
【0042】
(なお、上記式(5)、(6)は、”Simulating and Designing Brillouin Gain Spectrum In Single-Mode Fibers” Y.Koyamada, S.Sato, S.Nakamura, H.Sotobayashi and W.Chujo, Journal of Lightwave Technology Vol.22 No.2 2004を参照)。式(1)及び式(3)で表されるGAWBSは光ファイバの径方向での進行波であるので、音響波は光ファイバのコア部及びクラッド部の両者を伝搬する。そのためここで考える音響波速度V及びVは、光ファイバのコア部及びクラッド部の両方における音響波速度である。クラッド部には基本的にはGeは添加しないが、コアのGe濃度が変化すればV及びVが変化するため、結果的にGAWBSピーク周波数が変化することになる。すなわち、式(1)、(3)、(5)、および(6)から明らかなように、ピーク周波数は、はクラッド径および光ファイバの組成に応じて変化する。
【0043】
通常の石英ガラス系光ファイバの場合、温度20℃においてV=3740m/s、V=5910m/sである。すると、たとえばポラライズドGAWBSの1次の共振周波数は29.85MHzとなり、他の高次の共振周波数は、V/(πd)≒48MHz間隔で発生する。また、音響波の速度は光ファイバの温度または印加される応力に応じて変化する。
【0044】
このようにデポラライズドGAWBS、ポラライズドGAWBSのいずれにおいても共振周波数のピークは周期的な周波数間隔で発生する。また、発生する周波数帯域の上限は上述したように800MHz程度であり、更なる高周波帯域ではピーク強度が減衰することが知られている。
【0045】
ここで、光ファイバセンサ100においては、測定用光ファイバ2のクラッド径を、従来の測定用光ファイバのクラッド径である125μmよりも小さい90μm以下としている。その結果、測定用光ファイバ2については、式(1)及び(3)からも明らかなように、従来よりも共振周波数の間隔が広がる。その結果、上限である800MHzまでに含まれる共振周波数の数が減少するため、1つのモードあたりの振幅強度は強くなり、300MHz程度までの周波数領域に存在するモードについては特に強くなる。その結果、スペクトルアナライザ34が検出する周波数ピークの1本あたりの強度も強くなるため、ピークの検出精度が向上するため、この光ファイバセンサ100は、測定感度が従来よりも高いものとなる。
【0046】
なお、図6は、測定用光ファイバ2として図3に示す特性を有するものを用いた場合の、スペクトラムアナライザ34において測定される周波数スペクトルを示した図である。図6において、横軸は周波数を示し、縦軸はベース雑音のレベルを0dBとした相対強度を示している。図6に示すように、スペクトラムアナライザ34においては、TR2mモードによる共振周波数fTmに対応する複数の変調周波数のピークが観測されるが、その上限は800MHz程度となっている。
【0047】
つぎに、図7は、図6において周波数が223MHzであるピークP1と周波数が660MHzであるピークP2とについて、測定用光ファイバ2の周囲の温度と各ピークの周波数との関係について示した図である。なお、図7において、「○」、「●」はそれぞれピークP1、P2についての実測値を示しており、線L1、L2はそれぞれピークP1、P2についての実測値の近似直線を示している。温度をT(℃)、ピークの周波数をf(MHz)とすると、線L1はf=222.83+0.01048Tで表され、線L2はf=658.01+0.05462Tで表される。したがって、制御表示器35は、たとえばスペクトラムアナライザ34が検出したピーク周波数のうちピークP1の周波数から、線L1を表す上記関係式を用いて温度を算出できる。
【0048】
以上説明したように、本実施の形態1に係る光ファイバセンサ100は、検出されるデポラライズドGAWBS光の変調周波数のピーク強度が強くなるため、測定感度が従来よりも高いものとなる。
【0049】
(実施の形態2)
つぎに、本発明の実施の形態2について説明する。本実施の形態2に係る光ファイバセンサは、複数の測定用光ファイバを備えるものである。
【0050】
図8は、本実施の形態2に係る光ファイバセンサの構成を示したブロック図である。図8に示すように、この光ファイバセンサ200は、図1に示すものと同様の光源装置1及び検出装置3と、2つの測定用光ファイバ2a、2bとを備えている。また、光源装置1と測定用光ファイバ2aとは、接続用光ファイバ4aを介して接続部5aにおいて接続している。同様に、測定用光ファイバ2a、2bと接続用光ファイバ4bとは、それぞれ接続部5b、接続部5cにおいて接続している。すなわち、測定用光ファイバ2aと測定用光ファイバ2bとは、接続用光ファイバ4bを介して接続している。また、検出装置3と測定用光ファイバ2bとは、接続用光ファイバ4cを介して接続部5dにおいて接続している。なお、接続部5a〜5dは、たとえば光コネクタ接続部や融着接続部などである。
【0051】
この光ファイバセンサ200においては、光源装置1から出力した試験光は、接続用光ファイバ4a、測定用光ファイバ2a、接続用光ファイバ4b、測定用光ファイバ2b、接続用光ファイバ4cを順次伝播する。そして、各光ファイバにおいて、デポラライズドGAWBS光が発生し、検出装置3に入力する。
【0052】
ここで、測定用光ファイバ2aと測定用光ファイバ2bとは、図2に示す測定用光ファイバ2と同様の構造および屈折率プロファイルを有し、いずれもクラッド径が90μm以下である。したがって、デポラライズドGAWBS光の変調周波数のピーク強度が強くなるため、測定感度が従来よりも高いものとなる。さらに、測定用光ファイバ2aと測定用光ファイバ2bとは、クラッド径が互いに異なっている。したがって、式(1)に示すように、測定用光ファイバ2aと測定用光ファイバ2bとでは、TR2mモードによる共振周波数fTmは、同一の次数、すなわちmが同じであっても互いに異なる。その結果、光源装置1が出力する試験光によって、各測定用光ファイバ2a、2bにおいて発生するデポラライズドGAWBS光のピーク周波数は、同一の次数のものであっても重ならない。したがって、たとえば各測定用光ファイバ2a、2bを異なる被測定物に取り付け、各測定用光ファイバ2a、2bにおいて発生するデポラライズドGAWBS光のピーク周波数のそれぞれを測定することによって、簡易な構成でありながら、2つの被測定物の温度や歪みを同時に高感度で測定することができる。
【0053】
なお、接続用光ファイバ4a〜4cについては、測定用光ファイバ2a、2bよりもクラッド径の大きい光ファイバを用いている。その結果、接続用光ファイバ4a〜4cにおいて発生するデポラライズドGAWBS光は、そのピーク周波数が測定用光ファイバ2a、2bのものと重ならないとともに、ピーク強度が測定用光ファイバ2a、2bのものよりも小さくなるので、温度測定に悪影響を及ぼさない。なお、接続用光ファイバ4a〜4cとしては、たとえばITU−T(国際電気通信連合)G.652で定義するクラッド径が125μmでありコア部のクラッド部に対する比屈折率差が約0.3%である標準のシングルモード光ファイバ(SMF)を用いることができる。
【0054】
図9は、図8に示す測定用光ファイバ2a、2bの特性の一例を示した図である。また、図10は、図9に示す特性を有する測定用光ファイバ2a、2bを用いた場合の、スペクトラムアナライザ34において測定される周波数スペクトルを示した図である。図10において、横軸は周波数を示し、縦軸はベース雑音のレベルを0dBとした相対強度を示している。また、ピークP3は測定用光ファイバ2aによる1次の変調周波数のピークであり、ピークP4は測定用光ファイバ2bによる1次の変調周波数のピークである。図9、10に示すように、測定用光ファイバ2a、2bでは、クラッド径が互いに異なるので、ピークP3、P4は互いに異なっている。また、クラッド径がより小さい測定用光ファイバ2aのピークP3の方が、ピークP4よりも周波数が高くなっている。
【0055】
また、上記最大屈折率差が、従来用いられていた標準のSMFの0.3%よりも十分に大きい1%以上となるようにGeを添加すれば、光ファイバの曲げ径を小さくしてコンパクトに収容した場合でもコア部への光の閉じ込めを高くすることができ、効果的である。たとえばΔ1が1%以上であれば、現行で定められている曲げに対する損失増加の小さな光ファイバの規格(ITU−T G.657.B 半径R=15mmにおいて、波長1550nmで0.03dB/10ターン以下)を十分満たすことができる。
また、全長50mのΔ1が2.8%、カットオフ波長が1400nmの光ファイバを半径R=15mmのファイバシートに布線した場合(約500ターン)の波長1550nmにおける伝送損失の増加は0.08dBであった。これは前述した規格ITU−T G.657.Bと比較しても更に曲げ損失が小さく、コンパクトな収納が可能であることを示している。なお、上記では、光ファイバを所定の半径で1周巻回した状態を1ターンとしている。また、ファイバシートとは、光ファイバを所定のターンだけ巻回して厚さの薄いシート状にしたものである。
【0056】
(実施の形態3)
つぎに、本発明の実施の形態3について説明する。本実施の形態3に係る光ファイバセンサは、実施の形態1に係る光ファイバセンサ100と略同様の構成を備えるが、測定用光ファイバを巻回した状態で表面に保持する板状部材をさらに備えている。
【0057】
図11は、本実施の形態3に係る光ファイバセンサの構成を示したブロック図である。図11に示すように、この光ファイバセンサ300は、図1に示すものと同様の光源装置1と、測定用光ファイバ2と、検出装置3とを備えている。また、光源装置1と測定用光ファイバ2とは、接続用光ファイバ4dを介して接続部5eにおいて接続している。同様に、検出装置3と測定用光ファイバ2とは、接続用光ファイバ4eを介して接続部5fにおいて接続している。なお、接続用光ファイバ4d、4eは、測定用光ファイバ2よりもクラッド径の大きい光ファイバであり、たとえば標準のSMFである。
【0058】
さらに、この光ファイバセンサ300は、板状部材6を備えており、測定用光ファイバ2は、最大巻き付け径D1、最小巻き付け径D2で巻回した状態で板状部材6の表面に接合材等で固着している。このように、板状部材6が測定用光ファイバ2を巻回した状態で表面に保持しているので、光ファイバの収納に通常使用される巻き付け径が一定のボビンに比べ、より小さな巻き付け径で巻かれるため、光ファイバセンサ300全体が小型、薄型になり、狭い場所や小さい被測定物の測定にも適するものとなる。なお、この測定用光ファイバ2は、従来のSMFよりもクラッド径が小さく、樹脂被覆部22を含めた外径も小さいため、測定感度を高くできるだけでなく、より収容性が高いものとなっている。そのため、同じ平面積であっても、より条長の長い測定用光ファイバ2を収容でき、試験光と横波音響波との相互作用長を長くできるので、さらにピーク周波数強度を高めて測定感度を高くできる。
【0059】
なお、板状部材6の材質については特に限定されないが、たとえばポリエチレンテレフタレートなどの可撓性を有する材質を用い、薄いシート状に形成したものとすれば、たとえば曲面形状の外形を有する被測定物にも容易に密着して取り付けることができるので、その温度や歪みをより正確に測定することができる。
【0060】
また、この光ファイバセンサ300の変形例として、測定用光ファイバ2の保護等のために、図11に示す構成において、巻回した測定用光ファイバ2を覆うようにもう一枚の保護用板状部材を用いてもよい。
【0061】
図12は、実施の形態3に係る光ファイバセンサ300の変形例の構成において、保護用板状部材の上から荷重を加えた場合の、荷重とデポラライズドGAWBS光の一次のピーク周波数との関係を示した図である。なお、測定用光ファイバ2の最大巻き付け径D1の値を9.5cm、最小巻き付け径D2の値を3cmとした。また、図12において、「○」は測定データを示し、実線は近似直線を示している。図12に示すように、荷重とピーク周波数とは比例関係を有するので、ピーク周波数から測定用光ファイバ2にかかる応力を算出できる。したがって、この光ファイバセンサ300を用いて、その被測定物の歪みを測定することができる。
【0062】
ところで、光ファイバにおいてクラッド径を小さくすると、コア部から光が漏洩する漏洩損失が発生するおそれがある。この漏洩損失は、特に光ファイバを曲げた場合に問題となる。図13は、光ファイバのクラッド径と漏洩損失との関係を示した図である。なお、図13は、有限要素法(FEM)によるシミュレーション計算の結果に基づくものである(たとえば、K. Saitoh and M. Koshiba, “Full-Vectorial Imaginary-Distance Beam Propagation Method Based on Finite Element Scheme: Application to Photonic Crystal Fibers”, IEEE Journal of Quantum Electronics, vol.38, No.7, July, 2002.参照)。また、図13では、標準のSMFにおいてクラッド径を小さくしていった場合と、図2に示す特性を有する測定用光ファイバ2においてクラッド径を小さくしていった場合とを示している。図13に示すように、いずれの光ファイバについても、クラッド径を小さくするほど漏洩損失が大きくなる。しかしながら、コア部の最大比屈折率差がより大きい測定用光ファイバ2は、コア部への光の閉じ込めが強いため、クラッド径を40μmとしてもクラッド径が125μmのSMFよりも漏洩損失が小さく、実用上問題とならない。
【0063】
また、測定用光ファイバ2の収容部である板状部材6をコンパクトな形状に保つには、測定用光ファイバ2の巻き付け径を小さくすることが有効であるが、巻き付け径を小さくするほど測定用光ファイバ2にかかる曲げ歪みは大きくなってしまう。ここで、光ファイバにかかる曲げ歪みはクラッド径に比例する。したがって、クラッド径を小さくした測定用光ファイバ2は、光ファイバにかかる曲げ歪みを抑制しつつ、小さな巻き付け径で巻くことが可能になるので好ましい。
【0064】
なお、具体的には、クラッド径dと光ファイバにかかる曲げ歪みεとの関係は、Rを光ファイバの曲げ半径、Dを光ファイバの被覆部の外半径として、以下の式(7)で表される。
ε=d/(R+D) ・・・ (7)
【0065】
また、光ファイバにかかる曲げ歪みが小さくなることによって、光ファイバの破断率を低減することができる。図14は、クラッド径が60、90、125μmの光ファイバについて、光ファイバの巻き付け半径すなわち曲げ半径と20年での破断率との関係を示した図である。図14に示すように、巻き付け半径が小さくなるにつれて破断率は大きくなるが、同じ巻き付け半径であればクラッド径が小さいほど破断率は小さい。また、クラッド径が小さいほど、より小さい巻き付け半径で同じ破断率を実現できる。すなわち、この光ファイバセンサ300は、測定用光ファイバ2を用いることによって、従来と同一またはそれ以下の破断率を実現しながら、より収容性が高く小型であり、狭い場所等の測定にも適し、かつ測定感度が高い光ファイバセンサとなる。
【0066】
(実施の形態4)
つぎに、本発明の実施の形態4について説明する。本実施の形態4に係る光ファイバセンサは、実施の形態2に係る光ファイバセンサ200と略同様の構成を備えるが、各測定用光ファイバを巻回した状態で表面に保持する板状部材をさらに備えている。
【0067】
図15は、本実施の形態4に係る光ファイバセンサの構成を示したブロック図である。図15に示すように、この光ファイバセンサ400は、図8に示す光ファイバセンサ200と同様に、光源装置1と、測定用光ファイバ2a、2bと、検出装置3と、接続用光ファイバ4a〜4cと、接続部5a〜5dとを備えており、さらに図11に示す板状部材6と同様の板状部材6a、6bを備えている。そして、測定用光ファイバ2aと測定用光ファイバ2bとは、それぞれ接続用光ファイバ4bを介して接続している。また、板状部材6a、6bは、それぞれ測定用光ファイバ2a、2bを巻回した状態で、接合剤により表面に保持している。その結果、この光ファイバセンサ400は、簡易な構成でありながら、たとえば2つの場所の温度を同時に測定できるとともに、従来と同一またはそれ以下の破断率を実現しながら、より収容性が高く小型であり、狭い場所等の測定にも適し、かつ測定感度が高い光ファイバセンサとなる。
【0068】
(実施の形態5)
つぎに、本発明の実施の形態5について説明する。上記実施の形態1〜4に係る光ファイバセンサ100〜400は、デポラライズドGAWBS光を用いたものであったが、本実施の形態5に係る光ファイバセンサは、ポラライズドGAWBS光を用いたものである。
【0069】
図16は、本実施の形態5に係る光ファイバセンサの構成を示したブロック図である。図16に示すように、この光ファイバセンサ500は、図1に示すものと同様の光源装置1および測定用光ファイバ2と、光カプラ7と、検出装置3aとを備える。
【0070】
光カプラ7は、方向性結合器型であり、4つの入出力ポート71〜74を備えている。この光カプラ7の分岐比は1:1である。すなわち、この光カプラ7は、たとえば入出力ポート71において受け付けた光を、1:1の強度比で分岐して入出力ポート73、74にそれぞれ出力する。そして、入出力ポート71は光源装置1と接続し、入出力ポート72は検出装置3と接続している。また、入出力ポート73、74は測定用光ファイバ2の両端と接続している。したがって、光カプラ7と測定用光ファイバ2とは光ファイバループ干渉計を構成している。
【0071】
一方、検出装置3aは、PD32と、電気信号増幅器33と、スペクトラムアナライザ34と、制御表示器35とが順次接続した構成を有する。すなわち、この検出装置3aは、図4に示す検出装置3から偏光子31を除いた構成を有する。
【0072】
つぎに、この光ファイバセンサ500の動作について説明する。光源装置1から試験光が出力されると、光カプラ7は入出力ポート71において試験光を受け付け、1:1の強度比で分岐して入出力ポート73、74にそれぞれ出力する。つぎに、測定用光ファイバ2は入出力ポート73、74から出力した試験光を各端部において受け付け、各試験光は測定用光ファイバ2中を反対方向に伝播する。
【0073】
つぎに、測定用光ファイバ2中では、各モードの横波音響波と各試験光の光波との相互作用によって所定の変調周波数を有するポラライズドGAWBS光が発生し、各試験光と同一方向に伝播する。入出力ポート73、74にそれぞれ到達した各ポラライズドGAWBS光は、光カプラ7において結合する。このとき、ポラライズドGAWBS光は、位相変調されているために、光カプラ7の干渉効果によって強度変調に変換され、一部が入出力ポート72から出力される。
【0074】
つぎに、検出装置3aは、光カプラ7の入出力ポート72から出力したポラライズドGAWBS光を受け付ける。そして、ポラライズドGAWBS光はPD32に入力し、PD32によって電気信号に変換される。その後は、スペクトラムアナライザ34と制御表示器35によって、実施の形態1で説明したものと同様にして、測定用光ファイバ2の周囲温度、あるいは被測定物の歪みを検出する。この光ファイバセンサ500においても、測定用光ファイバ2は、そのクラッド径が90μm以下なので、上記各実施の形態に係る光ファイバセンサと同様に、測定感度が従来よりも高いものとなる。
【0075】
なお、このポラライズドGAWBS光を用いた光ファイバセンサ500についても、その変形例として、実施の形態2に係る光ファイバセンサ200のように複数の測定用光ファイバを備える構成としてもよいし、実施の形態3、4に係る光ファイバセンサ300、400のように、測定用光ファイバを巻回した状態で保持する板状部材をさらに備える構成としてもよい。
【0076】
なお、上記実施の形態1〜4に係るデポラライズドGAWBS光を用いた光ファイバセンサにおいて、測定用光ファイバ2、2a、2bは通常構造の光ファイバであったが、偏波保持型光ファイバを用いてもよい。
【0077】
図17は、偏波保持型の測定用光ファイバの一例の模式的な断面図である。図17に示すように、この測定用光ファイバ2cは、応力付与型の偏波保持光ファイバであり、図2に示すものと同様の中心コア部211および外側コア部212と、外側コア部212の外周に形成されたクラッド部214と、クラッド部214の内部に位置する応力付与部材215、215とからなるガラス部21cと、図2に示すものと同様の樹脂被覆部22とを有する。なお、クラッド部214は、内部に応力付与部材215、215を含む点以外は図2に示すクラッド部213と同様である。応力付与部材215、215はたとえばボロン(B)が添加された石英系ガラスからなり、それらの中心軸を結ぶ直線上に、ほぼ中心コア部211および外側コア部212の中心軸が位置するように配置されている。その結果、測定用光ファイバ2cには上記中心軸を結ぶ方向とこれと直交する方向とを偏波軸とする複屈折が生じる。
【0078】
測定用光ファイバ2、2a、2bに換えてこの測定用光ファイバ2cを用いる際には、光源装置1の試験光の直線偏光の偏波方向と、測定用光ファイバ2cのいずれかの偏波軸と、検出装置3の偏光子31の透過偏光方向とを一致させるようにする。すると、試験光はその偏波方向が維持されたまま測定用光ファイバ2cを伝播するため、TR2mモードの横波音響波との相互作用が測定用光ファイバ2cの長手方向にわたって強く安定した状態に維持される。その結果、発生するデポラライズドGAWBS光の光強度が強くなるため、周波数スペクトル上のピーク強度も強くなるので、さらに測定感度が高く安定したものとなる。
【0079】
また、上記実施の形態1〜4に係るデポラライズドGAWBS光を用いた光ファイバセンサにおいて、検出装置3に換えて以下の構成の検出装置を用いてもよい。
【0080】
図18は、実施の形態1〜4に係る光ファイバセンサにおいて用いることができる検出装置の別の一例の構成を示したブロック図である。図18に示すように、この検出装置3bは、偏光子31a、31bと、PD32a、32bと、電気信号増幅器33と、スペクトラムアナライザ34と、制御表示器35と、半波長板36a、36bと、偏波ビームスプリッタ37と、合波器38とを備えている。
【0081】
つぎに、この検出装置3bの動作について説明する。はじめに、この検出装置3bは、たとえば測定用光ファイバ2から出力したデポラライズドGAWBS光を受け付ける。検出装置3bにおいて、デポラライズドGAWBS光は半波長板36aによってその偏波状態が調整され、偏波ビームスプリッタ37によって偏波方向が互いに直交する2つの直線偏波の光に分離される。分離された直線偏波光は、その一方はさらに半波長板36bによってその偏波状態が調整され、偏光子31a、PD32a、または偏光子31b、PD32bに順次入力し、PD32aまたはPD32bによって電気信号に変換される。PD32aまたはPD32bによって変換された各電気信号は合波器38で合波され、電気信号増幅器33に入力して増幅され、スペクトラムアナライザ34に入力する。このようにすることで、測定用光ファイバ2から出力される光の偏波状態が変動してもスペクトラムアナライザ34に入力される電気信号のパワーを一定にできる。スペクトラムアナライザ34においては、偏波方向によって分離されたうち一方のデポラライズドGAWBS光の変調周波数が複数のピークとして検出される。つぎに、制御表示器35は、スペクトラムアナライザ34が検出したピーク周波数のうち所定の1つのピーク周波数に基づいて、測定用光ファイバ2の周囲温度、あるいは被測定物の歪み等を検出する。
【0082】
すなわち、測定用光ファイバ2は通常構造の光ファイバなので、測定用光ファイバ2を伝播中の試験光の偏波状態は経時的に変動するおそれがある。したがって、発生するデポラライズドGAWBS光の偏波状態も変動するおそれがある。
【0083】
これに対して、この検出装置3bにおいては、デポラライズドGAWBS光を偏波ビームスプリッタ37によって2つの直線偏波の光に分離している。そして、スペクトラムアナライザ34は、分離した光を電気信号に変換したものを足し合わせてピークを検出するようにしている。したがって、この検出装置3bを用いることによって、測定用光ファイバ2を伝播中の試験光の偏波状態の変動にかかわらず、より確実で安定した測定が実現される。
【0084】
なお、上記各実施の形態では、光源装置1は試験光として連続光を出力するものであるが、試験光としてパルス光を出力するものでもよい。また、実施の形態2、4では、測定用光ファイバは2本であったが、3本以上の測定用光ファイバを備えていてもよい。
【0085】
また、測定用光ファイバの構造としては、コア部が2層構造であるものに限らず、中心コア部のみ、またはさらなる多層構造を有するものでもよい。また、クラッド部に空孔が形成されたものでもよい。また、偏波保持型の測定用光ファイバとしては、応力付与型のものに限られず、他の偏波保持型の光ファイバ、たとえばコア部の断面が楕円形状である楕円コア型のものを用いてもよい。
【図面の簡単な説明】
【0086】
【図1】本発明の実施の形態1に係る光ファイバセンサの構成を示したブロック図である。
【図2】図1に示す測定用光ファイバの模式的な断面および対応する屈折率プロファイルを示した図である。
【図3】図2に示す測定用光ファイバの特性の一例を示した図である。
【図4】図1に示す検出装置の構成を示したブロック図である。
【図5】図2に示す測定用光ファイバのガラス部に発生している横波音響波の振動方向を矢印で示した図である。
【図6】測定用光ファイバとして図3に示す特性を有するものを用いた場合の、スペクトラムアナライザにおいて測定される周波数スペクトルを示した図である。
【図7】図6において周波数が223MHzであるピークと周波数が660MHzであるピークとについて、測定用光ファイバの周囲の温度と各ピークの周波数との関係について示した図である。
【図8】本発明の実施の形態2に係る光ファイバセンサの構成を示したブロック図である。
【図9】図8に示す測定用光ファイバの特性の一例を示した図である。
【図10】図9に示す特性を有する測定用光ファイバを用いた場合の、スペクトラムアナライザにおいて測定される周波数スペクトルを示した図である。
【図11】本発明の実施の形態3に係る光ファイバセンサの構成を示したブロック図である。
【図12】実施の形態3に係る光ファイバセンサの変形例の構成において、保護用板状部材の上から荷重を加えた場合の、荷重とデポラライズドGAWBS光の一次のピーク周波数との関係を示した図である。
【図13】光ファイバのクラッド径と漏洩損失との関係を示した図である。
【図14】クラッド径が60、90、125μmの光ファイバについて、光ファイバの巻き付け半径と20年での破断率との関係を示した図である。
【図15】本発明の実施の形態4に係る光ファイバセンサの構成を示したブロック図である。
【図16】本発明の実施の形態5に係る光ファイバセンサの構成を示したブロック図である。
【図17】偏波保持型の測定用光ファイバの一例の模式的な断面図である。
【図18】実施の形態1〜4に係る光ファイバセンサにおいて用いることができる検出装置の別の一例の構成を示したブロック図である。
【符号の説明】
【0087】
1 光源装置
2、2a〜2c 測定用光ファイバ
3、3a、3b 検出装置
4a〜4e 接続用光ファイバ
5a〜5f 接続部
6、6a、6b 板状部材
7 光カプラ
21、21c ガラス部
22 樹脂被覆部
31、31a、31b 偏光子
32、32a、32b PD
33 電気信号増幅器
34 スペクトラムアナライザ
35 制御表示器
36a、36b 半波長板
37 偏波ビームスプリッタ
38 合波器
71〜74 入出力ポート
100〜500 光ファイバセンサ
211 中心コア部
212 外側コア部
213、214 クラッド部
215 応力付与部材
D1 最大巻き付け径
D2 最小巻き付け径
L1、L2 線
P プロファイル
P1〜P4 ピーク

【特許請求の範囲】
【請求項1】
試験光を出力する光源と、
石英系ガラスからなり、コア部と該コア部の外周に形成された外径が90μm以下のクラッド部とを有し、前記試験光を少なくとも一方の端部において受け付け、前記試験光によって発生する導波音響波型ブリユアン散乱光を他方の端部から出力する少なくとも1つの測定用光ファイバと、
前記測定用光ファイバから出力する前記導波音響波型ブリユアン散乱光を受け付け、該導波音響波型ブリユアン散乱光の周波数スペクトル上のピーク周波数を測定し、該測定したピーク周波数に基づいて前記測定用光ファイバの周囲温度または該測定用光ファイバにかかる応力を検出する検出手段と、
を備えたことを特徴とする光ファイバセンサ。
【請求項2】
前記測定用光ファイバは、前記コア部の前記クラッド部に対する比屈折率差の最大値が1.0%以上であることを特徴とする請求項1に記載の光ファイバセンサ。
【請求項3】
複数の測定用光ファイバを備え、該複数の測定用光ファイバは、互いに異なるピーク周波数を有する導波音響波型ブリユアン散乱光を発生するとともに、該複数の測定用光ファイバよりもクラッド径の大きい接続用光ファイバを介して接続していることを特徴とする請求項1または2記載の光ファイバセンサ。
【請求項4】
前記複数の測定用光ファイバは、前記クラッド部の外径が互いに異なることを特徴とする請求項3に記載の光ファイバセンサ。
【請求項5】
前記複数の測定用光ファイバは、前記コア部の前記クラッド部に対する比屈折率差の最大値が互いに異なることを特徴とする請求項3または4に記載の光ファイバセンサ。
【請求項6】
前記測定用光ファイバを巻回した状態で表面に保持する板状部材をさらに備えたことを特徴とする請求項1〜5のいずれか一つに記載の光ファイバセンサ。
【請求項7】
前記板状部材は可撓性を有することを特徴とする請求項6に記載の光ファイバセンサ。
【請求項8】
前記測定用光ファイバは、偏波保持型光ファイバであることを特徴とする請求項1〜7のいずれか一つに記載の光ファイバセンサ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate


【公開番号】特開2010−19605(P2010−19605A)
【公開日】平成22年1月28日(2010.1.28)
【国際特許分類】
【出願番号】特願2008−178322(P2008−178322)
【出願日】平成20年7月8日(2008.7.8)
【出願人】(000005290)古河電気工業株式会社 (4,457)
【Fターム(参考)】