説明

光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法

【課題】光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法において、光源から光を効率よく取り出すことができ、しかも製造が容易となるようにする。
【解決手段】光学シート21が、光透過性フィルムからなる基材フィルム4と、基材フィルム4の一方の面に放射線硬化性樹脂によって成形された反射層6と、基材フィルム4の他方の面に形成された複数の集光レンズ5とを備え、反射層6により、複数の集光レンズ5の対向位置に開口部30を有する遮光パターンが形成されている構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法に関する。例えば、液晶表示素子への照明光路制御を行うのに好適な光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法に関する。
【背景技術】
【0002】
従来、例えば液晶表示装置(LCD)に代表されるディスプレイ装置は、画像信号に応じて各画素のON/OFFが制御される液晶表示素子の背面側に、バックライトユニットを配置し、このバックライトユニットからの光を表示光として利用している。このようなLCDは、液晶表示素子の消費電力は小さいが、バックライトユニットでの消費電力が大きくなり、例えば、ラップトップコンピュータや携帯電話などの電池式装置に用いられる場合には、光源の光の利用効率を高めることで装置としての消費電力を低減することが求められている。
そのため、バックライトユニットからの拡散光をある程度集光するため、液晶表示素子とバックライトユニットとの間に、複数のレンズやプリズムなどを有する光学シートが配置されている場合が多い。
例えば、特許文献1には、液晶パネルと、この液晶パネルに背面側から光を照射する光源手段とを備え、この光源手段に、光源からの光を液晶パネルへと導くレンズ層が設けられ、該レンズ層焦点面近傍に開口をもつ遮光部または該レンズ層によって液晶層内部で結像する位置関係にあるレンズ層焦点面より外側に開口をもつ遮光部を有する液晶表示装置が記載されている。
特許文献1には、遮光部を反射層とすることによりさらに光の利用効率を向上できることが示唆されている。
【特許文献1】特開2000−284268号公報(図1−3)
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上記の従来の光学シートには以下のような問題があった。
特許文献1に記載の技術では、複数のレンズからなるシート状のレンズ層に、各レンズの焦点位置近傍、すなわちレンズ面の裏面側に遮光部を配置するが、表面側のレンズとの間に位置の不整合が生じた場合、モアレや輝度ムラが発生し、表示光の均一性が低下する。そのため、表裏面でそれぞれ適宜の位置関係に対向して配置すべきレンズと遮光部とのアライメントを正確に取る必要があり、製造の手間がかかるという問題がある。
特許文献1には、遮光部の製造方法、配置方法はまったく記載されていないが、導光板に設ける反射層は、「白色である二酸化チタン(TiO)粉末を透明な接着剤等の溶液に混合した混合物を、所定のパターン、例えばドットパターンにて印刷し乾燥、形成したもの」を採用している。したがって、遮光部もこのような印刷によって形成することが考えられるが、この場合、レンズ層の成形と印刷とが別工程となるため位置合わせが難しいことに加え、複雑な形状のレンズ層は成形後の寸法がばらつきやすいため、印刷の版からのピッチがずれやすくなるものである。
一方、レンズ層と遮光部とを別々に形成して貼り合わせる方法や、レンズ層を形成した後、感光性樹脂層を用いたセルフアライメント法により反射層を形成する方法も考えられるが、前者では貼り合わせ精度の維持が難しく、後者では部材や工程の増加を伴うため、部品コストの増加、歩留まり低下による製造コストの上昇の要因となるという問題がある。
【0004】
本発明は、上記のような問題に鑑みてなされたものであり、光源から光を効率よく取り出すことができ、しかも製造が容易な光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
上記の課題を解決するために、請求項1に記載の発明では、光学シートにおいて、光透過性フィルムからなる基材と、該基材の一方の面に放射線硬化性樹脂によって成形された反射層と、前記基材の他方の面に形成された複数の光学素子とを備え、前記反射層により、前記複数の光学素子の対向位置に光学的な開口を有する遮光パターンが形成されている構成とする。
この発明によれば、光学シートの一方の面に、他方の面に形成された複数の光学素子の対向位置に光学的な開口を有する遮光パターンを形成する反射層を設けるので、光源から入射した拡散光のうち、遮光パターンの範囲に入射する光が反射層に反射され光源で再利用される。そのため、光学素子から出射される拡散透過光の利用効率を向上することができる。
また、反射層は、放射線硬化性樹脂によって成形するので、反射層を形成したシートを貼り付けたり、セルフアライメント法によって形成したりする場合に比べて製造が容易となる。
【0006】
請求項2に記載の発明では、請求項1に記載の光学シートにおいて、前記反射層の層厚さが、10μm以上20μm以下である構成とする。
この発明によれば、反射率が良好な反射層を効率よく形成することができる。
反射層が10μmより薄いと、透過光成分が増えるため、反射率が低下する。また、反射層が20μmより厚いと、放射線が浸透しにくくなるため、成形時間が長くなり、製造効率が低下したり、成形収縮が大きくなって寸法精度が低下する。
【0007】
請求項3に記載の発明では、請求項1または2に記載の光学シートにおいて、前記反射層の透過率が、15%以下である構成とする。
この発明によれば、低透過率となるため、光源の光の利用効率をより向上することができる。
【0008】
請求項4に記載の発明では、バックライトユニットにおいて、請求項1〜3のいずれかに記載の光学シートと、該光学シートの前記反射層を前記光学シートの前記基材との間で挟むように配置された光出射面を有する光源部とを備える構成とする。
この発明によれば、請求項1〜3のいずれかに記載の光学シートを用いるので、請求項1〜3のいずれかに記載の発明と同様の作用効果を備える。
【0009】
請求項5に記載の発明では、ディスプレイ装置において、請求項4に記載のバックライトユニットと、該バックライトユニットからの光を表示光として画像表示を行う液晶表示部とからなる構成とする。
この発明によれば、請求項1〜3のいずれかに記載の光学シートを用いた請求項4のバックライトユニットを用いるので、請求項1〜3のいずれかに記載の発明と同様の作用効果を備える。
【0010】
請求項6に記載の発明では、光学シートの製造方法において、光透過性フィルムからなる基材の一方の面に、第1の放射線硬化性樹脂によって光学的な開口を有する遮光パターンを構成する反射層を成形する第1の成形工程と、前記基材の他方の面に、前記第1の成形工程で形成された前記反射層の前記光学的開口に対向する位置に、第2の放射線硬化性樹脂によって複数の光学素子を成形する第2の成形工程とを備える方法とする。
この発明によれば、第1の成形工程により、光透過性フィルムからなる基材の一方の面に、第1の放射線硬化性樹脂によって光学的な開口を有する遮光パターンを構成する反射層を成形する。次に、第2の成形工程により、基材の他方の面に、第1の成形工程で形成された反射層の光学的開口に対向する位置に、第2の放射線硬化性樹脂によって複数の光学素子を成形する。これにより、請求項1に記載の光学シートを製造することができる。
第1の成形工程では、基材の他方の面に光学素子などの放射線の照射ムラを発生する形状が形成されていないので、第1の放射線硬化性樹脂を迅速かつ均一に硬化させることができる。
そして、第2の成形工程では、基材の他方の面に光学素子を成形する第2の放射線硬化性樹脂を導入する金型を配置し、第1の成形工程で成形された反射層の側から放射線を照射する。放射線は、反射層の光学的開口から入射して第2の放射線硬化性樹脂を硬化させる。このとき、光学素子を成形する金型を、反射層を成形する金型に対して位置合わせして配置することで、光学素子の形成位置を反射層の光学的な開口と良好に位置合わせすることができる。またこのように位置合わせすることで、光学的な開口から入射する放射線が良好に第2の放射線硬化性樹脂内に浸透し、効率的な硬化を促進することができる。
【発明の効果】
【0011】
本発明の光学シート、それを用いたバックライトユニット、ディスプレイ装置、およびその製造方法によれば、放射線硬化性樹脂によって成形された反射層により光学シートに遮光パターンを形成するので、光源からの光を効率よく取り出すことができ、しかも容易に製造することができるという効果を奏する。
【発明を実施するための最良の形態】
【0012】
以下では、本発明の実施形態について添付図面を参照して説明する。
本発明の実施形態に係る光学シートについて、それを用いたバックライトユニット、ディスプレイ装置とともに説明する。
図1は、本発明の実施形態に係るディスプレイ装置の概略構成を示す模式的な部分断面図である。図2は、本発明の実施形態に係る光学シートのA視の様子を示す模式説明図である。なお、各図は模式図のため寸法比などは誇張されている(以下も同じ)。
【0013】
本実施形態のディスプレイ装置100は、図1に示すように、光源部20、光学シート21、拡散板7、液晶表示部22がこの順に積層され、図示上側に向けて、液晶表示部22から、画像信号によって表示制御された表示光を出射することで、平面視矩形状の画像を表示するものである。図1では、端部の約2画素分の構成を示している。
光源部20と光学シート21とは、バックライトユニット23を構成している。
以下では、このような配置に基づいて、図1の上方向を単に表示画面側、下方向を単に背面側と称する場合がある。すなわち、図1の矢印Aは、光学シート21を背面側から見る方向を示す。
【0014】
光源部20は、本実施形態では、表示画面側に液晶表示部22の表示画面の範囲を覆う面積の出射面2b(光出射面)を有し、側面2aから入射された光を延在方向に導光して出射面2bから出射する透明な導光板2と、導光板2の側面2aに隣接して配置され、側面2aから白色光を入射させる光源1と、導光板2の背面側に近接して配置され、導光板2から出射面2bの反対側に出射される光を導光板2側に反射して再入射させる反射フィルム3とからなる。
ただし、光源部20は、光学シート21の背面側に白色光を出射できればこのような構成には限定されず、周知のいかなる構成の光源部を採用してもよい。
【0015】
光学シート21は、導光板2の出射面2bから出射される光の一部を集光して表示画面側に透過させ、他の光を導光板2側に反射して導光板2に再入射させるものである。
本実施形態では、光透過性の基材フィルム4の一方の面に反射層6が、他方の面に集光レンズ5がそれぞれ成形されてなる。そして、反射層6が導光板2の出射面2bに近接して配置されている。
【0016】
基材フィルム4は、光源部20から出射される光の波長に対し光透過性を有する透明材料であって、光学用部材に使用するものを特に制限なく用いることができる。生産効率などを考慮するとプラスチックフィルムを用いることが好ましい。
本実施形態では、取り扱いが容易なポリエチレンテレフタレート(PET)を用いている。基材フィルム4の厚さは、例えば、50μm〜200μmなどの厚さのものを用いることができる。以下では、一例として、75μmのPETフィルム(東洋紡社製A4300)を用いるものとして説明する。
ただし、ポリメタクリル酸メチルなどのアクリル系樹脂、ポリカーボネート、アクリル−スチレン共重合体、スチレン系樹脂、ポリ塩化ビニルなどの他の樹脂も好適に用いることができる。
【0017】
反射層6は、本実施形態では、図1、2に示すように、ピッチP、幅Wのストライプ状の開口部30(光学的な開口)を有する遮光パターンを形成するもので、それぞれ、幅(P−W)、高さHの略矩形断面が、図1の奥行き方向に延ばされてなる。そのため、開口部30では、基材フィルム4と導光板2の出射面2bとの間には、少なくとも厚さHの空気層が形成されている。
ピッチPは、本実施形態では、液晶表示部22の画素領域9a(図2参照)の配列ピッチに一致されている。
反射層6の材料は、良好な反射率が得られれば、適宜の材料で成形することができるが、本実施形態では、放射線硬化性樹脂に白色顔料を混合したものを用いている。
【0018】
放射線硬化型樹脂としては、紫外線硬化型樹脂や電子線硬化型樹脂などが挙げられる。
例えば、ウレタン(メタ)アクリレートおよび/またはエポキシ(メタ)アクリレートオリゴマーに反応希釈剤、光重合開始剤、光増感剤などが添加された組成物などを用いることができる。
ウレタン(メタ)アクリレートオリゴマーとしては、特に限定するものではないが、例えばエチレングリコール、1,4ブタンジオール、ネオペンチルグリコール、ポリカプロラクトンポリオール、ポリエステルポリオール、ポリカーボネートジオール、ポリテトラメチレングリコールなどのポリオール類と、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、トリレンジイソシアネート、キシレンイソシアネートなどのポリイソシアネート類とを反応させて得ることができる。
エポキシ(メタ)アクリレートオリゴマーとしては、特に限定するものではないが、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型プロピレンオキサイド付加物の末端グリシジルエーテル、フルオレンエポキシ樹脂などのエポキシ樹脂類と、(メタ)アクリル酸とを反応させて得ることができる。
【0019】
白色顔料としては、適宜の顔料を採用できるが、例えば、二酸化チタン(TiO)などを採用することができる。
【0020】
集光レンズ5は、開口部30を表示画面側に透過する拡散光を集光するための光学素子である。
本実施形態では、基材フィルム4上の開口部30の中心線32(図2参照)に沿って焦点位置が延びるように配置されたシリンドリカルレンズアレイからなる。
集光レンズ5のレンズ形状は、本実施形態では、集光効率を向上するために、楕円面を基準面とし高次項により補正を加えた非球面形状としている。ただし必要な集光性能に応じて、周知の適宜のレンズ形状、例えば、他の非球面、楕円面、球面などを採用してもよい。
【0021】
このような各集光レンズ5の微細形状は、放射線硬化性樹脂をレンズ金型によって成形することで容易に形成される。集光レンズ5を成形する放射線硬化性樹脂としては、上記に例示したのと同様の樹脂の中から必要な屈折率に応じて適宜選択することができる。ただし、反射層6に用いる樹脂と必ずしも同じである必要はない。
【0022】
拡散板7は、光学シート21から表示画面側に出射される光を拡散させ、表示光の輝度ムラを抑制するとともに、表示光に適宜の視野角を付与するためのものである。例えば、透明材料中に光を散乱させる高屈折率材料を分散させたプラスチック板、プラスチックフィルム、あるいは、表面に光拡散層を形成したガラス板、例えば、フロートガラス、青板ガラス、BK7などを採用することができる。
【0023】
液晶表示部22は、例えば、配向膜、透明電極が形成された2枚の封止基板の間に液晶を封入するなどして構成され、画素領域9aごとに液晶シャッタを形成する液晶パネル9を、2枚の偏光板8、10で挟んだものである。
【0024】
ここで、光学シート21の製造方法について説明する。
図3は、本発明の実施形態に係る光学シートの製造方法を行うための光学シート製造装置の概略構成を説明する模式説明図である。図4(a)は、本発明の実施形態に係る光学シートの製造方法に用いる金型ローラの正面図である。図4(b)、(c)は、図4(a)の拡大部分断面図である。図5は、本発明の実施形態に係る光学シートの反射層の成形工程を説明する工程説明図である。図6は、本発明の実施形態に係る光学シートの光学素子の成形工程を説明する工程説明図である。図7は、本発明の実施形態に係る光学シートの反射層の層厚と透過率との関係を示すグラフである。横軸は層厚(μm)、縦軸は透過率(%)を示す。
【0025】
光学シート21を製造する光学シート製造装置200は、図3に示すように、フィルム巻き出し部40、反射層成形部41、光学素子成形部42、および光学シート巻き取り部43が順次配列され、その間で基材フィルム4を連続搬送し、その過程で、反射層6を成形する第1の成形工程と、集光レンズ5を成形する第2の成形工程とを順次行うことができるようになっている。
【0026】
フィルム巻き出し部40では、基材フィルム4に用いるPETフィルム原反が設置されたフィルムリール44から、ローラ46を介して、基材フィルム4を巻き出し、反射層成形部41に搬送する。
なお、巻き出された基材フィルム4は、フィルム巻き出し部40での搬送過程で、放射線硬化性樹脂の接着性を向上するため、表面改質処理などの適宜の易接着処理を施してもよい。
【0027】
反射層成形部41では、金型ローラ48を用いて、第1の成形工程を行う。
金型ローラ48は、図4(a)、(b)に示すように、ローラ表面に反射層6の凸形状に対応するローラ周方向にわたって形成された溝部48aが、ローラ軸方向にピッチpで必要な条数形成されたもので、反射層成形版を構成するものである。
溝部48aは、図4(b)に示すように、溝深さh、溝底部が幅wで、溝側面が角度θで径方向外側に開いた台形状とされている。このように、溝部48aの溝側面に傾斜を設けることで、成形時の離型性を確保することができる。
【0028】
反射層成形部41に搬送された基材フィルム4は、巻き付けローラ45によって金型ローラ48の外周に巻き付けられ、金型ローラ48の回転に同期して搬送される。
一方、金型ローラ48には、巻き付けローラ45の回転方向上流側において、放射線硬化性樹脂供給部50によって、各溝部48aに白色顔料を混合した放射線硬化性樹脂60(第1の放射線硬化性樹脂)が供給(塗工)されている。そのため、図5に示すように、各溝部48aと基材フィルム4の一方の面との間には、放射線硬化性樹脂60が充填された状態で回転が進行する。放射線硬化性樹脂60の塗工に当たっては、適宜スキージなどを使用すると生産性を向上することができる。
この状態で、金型ローラ48に対向して配置された放射線源47から、放射線硬化性樹脂60を硬化させる放射線Qが照射される。放射線Qは、基材フィルム4を透過して、各溝部48a内の放射線硬化性樹脂60を全面的に照射することができるので、硬化ムラなどを起こすことなく迅速に硬化させることができる。その結果、照射量を必要最低限とすることができ、硬化時の収縮による歪みを最小限に抑えることができる。
【0029】
基材フィルム4は、放射線硬化性樹脂60の硬化が終了した段階で分離ローラ49によって、金型ローラ48から分離され、基材フィルム4とともに硬化した反射層6が金型ローラ48から離型される。
この離型後に、適宜ドライヤーなどを用いて反射層6の樹脂の乾燥を行ってもよい。
【0030】
このようにして、反射層成形部41で、基材フィルム4に反射層6が成形される。
例えば、基材フィルム4の厚さ75μm、反射層6の配列ピッチP=140μmに対して、光学シート21の光学特性上、製造上、好適となる値の一例として、成形収縮を無視すれば、溝部48aの形状を、p=140μm、h=12μm、w=80μm、θ=5°とすることができる。これにより、高さH=12μmの反射層6が、開口部30の幅W=58μmを開けて等ピッチで形成される。
ここで、放射線硬化性樹脂60の成形収縮や、基材フィルム4の収縮などを考慮して、溝部48aの形状を設定しておくことは一般の成形の場合と同様である。
【0031】
なお、溝部48aの角度θは、抜き勾配の機能の他に、開口部30に入射する光の入射角を規制する機能を兼ねることができる。そのため、例えば、離型性などに問題なければ、入射角範囲の必要に応じて、θ=45°程度までの間で設定してもよい。例えば、幅Wを小さくしても、角度θを大きくすれば、集光レンズ5に向けて透過する光量を十分に確保することができる。
【0032】
放射線硬化性樹脂60に対する白色顔料の配合比は、成形性、硬化性、反射率(透過率)を考慮して、適宜設定することができる。例えば、白色顔料が多すぎると、基材フィルム4に定着できず、放射線の浸透も難しくなる。そこで、白色顔料の混合比が適切な状態で、反射層6の厚さを適宜設定することで反射率(透過率)を調整することが好ましい。
【0033】
例えば、TiOからなる白色顔料を、屈折率1.5の放射線硬化性樹脂60に、17%混合したとき、上記のような形状の反射層6の透過率は11%になった。
本発明者が、さらに種々実験したところ、図6のグラフに示すように、透過率の最低値、最大値がそれぞれ曲線300、301で示すような変化を示した。すなわち、層厚が増大するにつれて透過率は減少し、ある程度の層厚で緩やかに減少する。
この結果より、好ましい透過率が15%であるとすると、反射層6の層厚Hは、10μm以上とすればよいことが分かる。
また、層厚の上限は、適宜設定することができるが、さらに厚くしても透過率の減少が緩やかになる。加えて放射線が浸透しにくくなり樹脂量が増えるため、硬化時間が長くなって、製造効率が低下する。また、成形収縮も大きくなって寸法精度が悪くなる。そのため、層厚は20μm以下とすることが好ましい。
【0034】
なお、光の利用効率は、反射率を考慮するべきであるが、反射率は下地層などに影響されるため、測定の便宜上、透過率で検討した。光吸収率は白色顔料や放射線硬化性樹脂60の材質で決まるので、実質的に透過率は反射率を規定しているのと同等である。
【0035】
次に、反射層6が一方の面に形成された基材フィルム4は、光学素子成形部42に搬送される。光学素子成形部42では、金型ローラ51を用いて、第2の成形工程を行う。
金型ローラ51は、図4(a)、(c)に示すように、ローラ表面に集光レンズ5のレンズ形状に対応するローラ周方向にわたって形成された溝部51aが、ローラ軸方向にピッチpで必要な条数形成されたもので、光学素子成形版を構成するものである。
溝部51aは、図4(c)に示すように、溝深さd、非球面曲率半径Rで表される形状に形成されている。ここで、p、d、Rは、成形収縮などを考慮して必要な集光レンズ5の形状、ピッチが得られるように設定する。
金型ローラ51の軸方向の位置は、集光レンズ5が、開口部30に対して所定の対向位置に形成されるように、例えば、金型ローラ51の固定位置などを微調整ネジなどの手段で調整することにより、金型ローラ48との位置関係を位置合わせしておく。
【0036】
基材フィルム4は、反射層6が形成されたのと、反対側の他方の面が、巻き付けローラ45によって金型ローラ51の外周に巻き付けられ、金型ローラ51の回転に同期して搬送される(図3参照)。
一方、金型ローラ51には、巻き付けローラ45の回転方向上流側において、放射線硬化性樹脂供給部53によって、各溝部51aに放射線硬化性樹脂61(第2の放射線硬化性樹脂)が供給(塗工)されている。そのため、図7に示すように、各溝部51aと基材フィルム4の他方の面との間には、放射線硬化性樹脂61が充填された状態で回転が進行する。
この状態で、金型ローラ51に対向して配置された放射線源52から、放射線硬化性樹脂61を硬化させる放射線Qが照射される。放射線Qは、主として開口部30から基材フィルム4に入射し、各溝部51a内の放射線硬化性樹脂61を照射する。このとき、各溝部51aは、開口部30に対向されているので、開口部30から拡散した光によって、放射線硬化性樹脂61が硬化される。放射線硬化性樹脂61は透明な材質のため、開口部30からでも放射線Qが浸透しやすいが、未硬化部が残存しないように、十分な光量を照射する。
【0037】
なお、本工程では、反射層6に対しても放射線Qが照射される。そのため、放射線Qが、放射線硬化性樹脂60、61のそれぞれを硬化させることができる場合には、第1の成形工程での反射層6の硬化を搬送上必要な最低限の硬化段階にとどめ、第2の成形工程において、放射線硬化性樹脂61の硬化とともに、放射線硬化性樹脂60が必要な硬化が完了するようにしてもよい。
この場合、第1の成形工程での硬化進行による成形収縮をさらに低減できるので、第1の成形工程後の寸法変化を抑制でき、より高精度の成形が可能となる。
【0038】
反射層6が形成された基材フィルム4は、放射線硬化性樹脂61の硬化が終了した段階で分離ローラ49によって、金型ローラ51から分離され、基材フィルム4とともに硬化した集光レンズ5が金型ローラ51から離型される。
以上で、第2の成形工程が終了する。
【0039】
こうして成形された光学シート21は、光学シート巻き取り部43に搬送され、巻き取りリール54に巻き取られる。
なお、光学シート21を、拡散板7に接着する場合には、巻き取りリール54に巻き取らず、そのまま拡散板7との貼合/接着を行うラインと接続し、次工程へ進めてもよい。
【0040】
このように、本実施形態の光学シートの製造方法によれば、光学シート製造装置200で、基材フィルム4を搬送しつつ、第1、第2の成形工程を順次行うことにより、光学シート21を連続的に製造することができる。
その際、反射層6、集光レンズ5は、この順に、位置合わせされた金型ローラ48、51を用いて、基材フィルム4上に成形されるので、それぞれを別体のシートとして製作して貼り合わせるなどの手間をかけることなく、しかも高精度の位置合わせ精度で製造することができる。
本実施形態でも金型ローラ48、51の位置関係は調整する必要があるが、反射層6、集光レンズ5の各成形工程が一定条件で連続的に行われるので、位置合わせは初期的に行うのみでよい。
【0041】
次に、ディスプレイ装置100の作用について、光学シート21の作用を中心に説明する。
光源1から出射された光は、導光板2の側面2aに入射し、一部は光線角度に応じて全反射されて導光板2の延在方向に伝搬し、他は出射面2bから光学シート21に向かって出射され、光学シート21の背面側が全面的に照明される。
出射面2bから出射された光は、開口部30の範囲では、基材フィルム4に入射して表示画面側に透過し、反射層6の範囲では、反射層6によって背面側に反射される。反射層6の透過率は15%以下に設定されており、反射層6には白色顔料が分散されているため、若干の吸収成分を除いて例えば80%を超える程度の光が反射される。
背面側に反射された光は、入射角度に応じて出射面2bから導光板2に入射して、照明光として再利用される。出射面2bで表面反射される光は、上記と同様に、透過光と再利用される光とに分かれる。
【0042】
出射面2bから開口部30に向かって出射される光は、種々の方向に広がり角を持って出射されるが、開口部30によって光束の幅がWに規制されるとともに、反射層6の間に形成された空気層からより屈折率が大きい基材フィルム4に入射するため、屈折作用により広がり角は狭められる。
そして、基材フィルム4を進んで、開口部30の対向位置にある集光レンズ5から表示画面側に出射される。このとき、集光レンズ5の焦点位置が、基材フィルム4の開口部30上の中心線32の近傍位置に設定されているので、集光レンズ5から出射される光は、集光レンズ5が屈折力を有する方向(図1の左右方向)では集光され、光軸31に略平行に進む光となる。
この光は、拡散板7で拡散されて、より大きな広がり角を有する光として液晶表示部22に入射し、画像信号に基づいて不図示の駆動部で制御された各画素領域9aの偏光状態に応じて、所定の画素領域9aからの光が表示光として透過され、画像表示が行われる。
【0043】
ここで、開口部30からの光が集光レンズ5のNAより大きい範囲に出射されると、表示光として用いられず、光量損失が生じたり、他の画素領域9aに入射して輝度ムラを起こしたりする。そのため、光の利用効率や表示画質を向上するには、開口部30の幅Wは狭い方がよい。ただし、幅Wが狭すぎると、集光レンズ5から出射される光の平行性が強くなりすぎ、輝度ムラによるモアレや視野角が狭くなりすぎる原因ともなる。したがって、幅Wはこれらを考慮して適宜設定するようにする。
【0044】
このように、本実施形態の光学シート21は、白色顔料を用いた反射層6を設けることで、光源の光に利用効率を向上でき、この反射層6を放射線硬化性樹脂による成形によって形成するので、集光レンズ5に対する位置合わせが容易となり、容易に製造することができる。
また、反射層6を放射線硬化性樹脂による成形で形成することにより、反射層6の配列ピッチが、例えば数十μm程度の細かいピッチであっても精度よく製造することができるので、ディスプレイ装置の画素ピッチの高密度化に好適なものとなる。
【0045】
なお、上記の説明では、拡散板7を液晶表示部22と光学シート21との間に配置した場合の例で説明したが、光学シート21の内部に拡散層を設けてもよい。例えば、基材フィルム4と反射層6との間の位置に、拡散層をコーティングや貼り合わせにより設けてもよいし、基材フィルム4または集光レンズ5に光拡散性材料を分散したりすることによって、拡散層を形成してもよい。
【0046】
また、上記の説明では、光学素子として、集光レンズ5を用いた場合の例で説明したが、例えば、屈折作用により光の進行方向を規制できる光学素子であれば、このようなレンズ素子に限定されるものではない。例えば、プリズムを構成する形状を採用してもよい。
【0047】
また、上記の説明では、集光レンズ5、反射層6をそれぞれ画素領域9aの列方向に沿って配置した場合の例で説明した。これによれば、それぞれを成形する金型ローラの形状が簡素となるが、レンズ形状や反射層形状に対応する凹凸部を格子状に配列した金型ローラを用いて、各画素領域9aに対応した、開口部および集光レンズを形成してもよい。この場合、反射層は、画素領域9aに対応した矩形状の複数の開口部が格子状に配列された1つのスリット構造によって形成されるものとなる。
【0048】
また、上記の説明では、反射層を、白色顔料が混合された放射線硬化性樹脂を用いた例で説明したが、必要な反射率特性が得られれば、白色顔料が混合された構成に限定されない。例えば、白色以外の顔料や粒子を混合してもよい。
【0049】
また、上記の説明では、ディスプレイ装置として、特にカラー表示の構成について説明しなかったが、例えば、液晶表示部22と光学シート21との間などにカラーフィルタを設けるといった周知の構成を付加すれば、カラー表示を行うディスプレイ装置にも適用できることは言うまでもない。
【図面の簡単な説明】
【0050】
【図1】本発明の実施形態に係るディスプレイ装置の概略構成を示す模式的な部分断面図である。
【図2】本発明の実施形態に係る光学シートのA視の様子を示す模式説明図である。
【図3】本発明の実施形態に係る光学シートの製造方法を行うための光学シート製造装置の概略構成を説明する模式説明図である。
【図4】本発明の実施形態に係る光学シートの製造方法に用いる金型ローラの正面図、およびその拡大部分断面図である。
【図5】本発明の実施形態に係る光学シートの反射層の成形工程を説明する工程説明図である。
【図6】本発明の実施形態に係る光学シートの光学素子の成形工程を説明する工程説明図である。
【図7】本発明の実施形態に係る光学シートの反射層の層厚と透過率との関係を示すグラフである。
【符号の説明】
【0051】
2b 出射面(光出射面)
4 基材フィルム(基材)
5 集光レンズ(光学素子)
6 反射層
9a 画素領域
20 光源部
21 光学シート
22 液晶表示部
23 バックライトユニット
30 開口部(光学的な開口)
41 反射層成形部
42 光学素子成形部
47、52 放射線源
48、51 金型ローラ
50、53 放射線硬化性樹脂供給部
60 放射線硬化性樹脂(第1の放射線硬化性樹脂)
61 放射線硬化性樹脂(第2の放射線硬化性樹脂)
100 ディスプレイ装置

【特許請求の範囲】
【請求項1】
光透過性フィルムからなる基材と、
該基材の一方の面に放射線硬化性樹脂によって成形された反射層と、
前記基材の他方の面に形成された複数の光学素子とを備え、
前記反射層により、前記複数の光学素子の対向位置に光学的な開口を有する遮光パターンが形成されていることを特徴とする光学シート。
【請求項2】
前記反射層の層厚さが、10μm以上20μm以下であることを特徴とする請求項1に記載の光学シート。
【請求項3】
前記反射層の透過率が、15%以下であることを特徴とする請求項1または2に記載の光学シート。
【請求項4】
請求項1〜3のいずれかに記載の光学シートと、
該光学シートの前記反射層を前記光学シートの前記基材との間で挟むように配置された光出射面を有する光源部とを備えるバックライトユニット。
【請求項5】
請求項4に記載のバックライトユニットと、
該バックライトユニットからの光を表示光として画像表示を行う液晶表示部とからなるディスプレイ装置。
【請求項6】
光透過性フィルムからなる基材の一方の面に、第1の放射線硬化性樹脂によって光学的な開口を有する遮光パターンを構成する反射層を成形する第1の成形工程と、
前記基材の他方の面に、前記第1の成形工程で形成された前記反射層の前記光学的開口に対向する位置に、第2の放射線硬化性樹脂によって複数の光学素子を成形する第2の成形工程とを備えることを特徴とする光学シートの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2008−159295(P2008−159295A)
【公開日】平成20年7月10日(2008.7.10)
【国際特許分類】
【出願番号】特願2006−344055(P2006−344055)
【出願日】平成18年12月21日(2006.12.21)
【出願人】(000003193)凸版印刷株式会社 (10,630)
【Fターム(参考)】