説明

光学反射フィルム及びそれを用いた光学反射体

【課題】水系の分散スラリーを用いた塗布法により、光反射性に優れ、光散乱が少なく、生産性が高い光学反射フィルムとそれを用いた光学反射体を提供することである。
【解決手段】支持体上に高屈折率層と低屈折率層を交互に積層した少なくとも1つのユニットを含む光学反射フィルムにおいて、該高屈折率層が、(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する、重量平均分子量が3万以下の水溶性高分子、(2)重量平均分子量が5万以上の水溶性高分子、及び(3)金属酸化物を含有することを特徴とする光学反射フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、金属光沢調フィルム、可視光着色フィルム、遮熱フィルムに好適に使用できる光学反射フィルム及びそれを用いた光学反射体に関するものである。
【背景技術】
【0002】
近年、省エネルギー対策への関心が高まり、建物や車両の窓ガラスから、太陽光の中、熱線の透過を遮断する近赤外光反射フィルムの開発が盛んに行われるようになってきている。これにより冷房設備にかかる負荷を減らすことができ、省エネルギー対策として有効だからである。
【0003】
従来、近赤外光反射フィルムとして、高屈折率層と低屈折率層とを交互に積層させた積層膜を蒸着法、スパッタ等のドライ製膜法で作製する提案がされている。また、交互に積層させた積層膜の光学膜厚を調整することで、近赤外光に替えて可視光を反射するように設計できることも知られている。
【0004】
しかし、ドライ製膜法は製造コストが高く、大面積化が困難であり、耐熱性素材に限定される等の課題がある。
【0005】
そこで塗布法で作製する方法として、熱硬化樹脂を用いる方法(特許文献1参照)やUV硬化樹脂を用いる方法(特許文献2参照)が開示されている。これらの方法は製造コストや大面積化等の点で有利であるが、どちらも大量に有機溶媒を用いる方法であり、環境保全上好ましくない。
【0006】
近赤外光反射フィルムの製造において、水溶性ポリマーを用いた水系塗布液を用いる公知例はほとんど無い。強いて挙げるならば、特許文献3の実施例で、低屈折率層を水溶液を用いてスピンコートしたとの記載がある。しかし、この低屈折率層は無機酸化物粒子を添加したものではなく、高屈折率層は、TiO+分散剤+UV硬化樹脂の有機溶媒(PGMEA;Propylene Glycol Monomethyl Ether Acetate)溶液をスピンコートしていて水系塗布ではない。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平8−110401号公報
【特許文献2】特開2004−123766号公報
【特許文献3】特開2009−86659号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、上記課題に鑑みなされたものであり、その目的は、水系の分散スラリーを用いた塗布法により、光反射性に優れ、光散乱が少なく、生産性が高い光学反射フィルムとそれを用いた光学反射体を提供することである。
【課題を解決するための手段】
【0009】
本発明の上記課題は、以下の構成により達成される。
【0010】
1.支持体上に高屈折率層と低屈折率層を交互に積層した少なくとも1つのユニットを含む光学反射フィルムにおいて、該高屈折率層が、(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する、重量平均分子量が3万以下の水溶性高分子、(2)重量平均分子量が5万以上の水溶性高分子、及び(3)金属酸化物を含有することを特徴とする光学反射フィルム。
【0011】
2.前記金属酸化物がルチル型二酸化チタンであることを特徴とする前記1に記載の光学反射フィルム。
【0012】
3.前記(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する重量平均分子量が3万以下の水溶性高分子が、さらに水酸基を有することを特徴とする前記1または2に記載の光学反射フィルム。
【0013】
4.前記1〜3のいずれか1項に記載の光学反射フィルムが、基体の少なくとも一方の面に設けられたことを特徴とする光学反射体。
【発明の効果】
【0014】
本発明により、水系の分散スラリーを用いた塗布法により、光反射性に優れ、光散乱が少なく、生産性が高い光学反射フィルムとそれを用いた光学反射体を提供することができる。
【発明を実施するための形態】
【0015】
本発明者は、大量に有機溶媒を用いることなく、水系塗布液を用いる方法でありながら、塗布液として低温環境での増粘性を確保しつつ、生産において問題となる塗布液の分散安定性を向上させることによって、高生産性でかつ、光反射性が高く、光散乱が少ない光学反射フィルムを検討する中で、本発明は成された。
【0016】
前記した通り、本発明者は上記課題に鑑み鋭意検討を行った結果、支持体上に高屈折率層と低屈折率層を交互に積層した少なくとも1つのユニットを含む光学反射フィルムにおいて、該高屈折率層が、(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する、重量平均分子量が3万以下の水溶性高分子、(2)重量平均分子量が5万以上の水溶性高分子、及び(3)金属酸化物を含有する光学反射フィルムにより、光反射性に優れ、光散乱が少ない光学反射フィルムを実現することができることを見出し、本発明に至った次第である。
【0017】
本発明について、さらに説明する。
【0018】
これまで、ポリマーと金属酸化物粒子(例えば、二酸化チタン粒子)を含む高屈折率層に、水系の塗布液が採用されてこなかった理由としては、バインダーである水溶性高分子に二酸化チタン粒子を併存させた分散液は、高屈折率層塗布液として安定性が低い点を解決できなかったことにあると考えられる。
【0019】
前記した如く近赤外光反射フィルムの製造において、水溶性ポリマーを用いた水系塗布液を用いる公知例はほとんど無い。強いて挙げるならば、特開2009−86659号公報の実施例で低屈折率層を、水溶液を用いてスピンコートしたとの記載がある。しかし、無機酸化物粒子を添加したものではなく、高屈折率層は、TiO+分散剤+UV硬化樹脂の有機溶媒(PGMEA;Propylene Glycol Monomethyl Ether Acetate)溶液を、スピンコートしていて水系塗布ではない。
【0020】
何故公知例がないかは必ずしも明確ではないが、水系の多層塗布は高度な技術であり、特に超薄膜多層塗布は難しいため、塗布技術という点からも達成が困難と予測されたためであろう。
【0021】
さらに、二酸化チタン含有液を安定化させる方法として、分散剤を十分量使うことも考えられる。しかし、光学反射フィルムのように各層の膜厚が薄くそのため添加される粒子の粒径が小さいと、粒子の表面積が相対的に増えてそれだけ分散剤の必要量が多くなる。結果的に二酸化チタン比率が減って塗膜の屈折率が高くできないという問題点も予測されるためであろう。
【0022】
しかしながら、本発明の構成を採ることにより、塗布液の分散安定性が向上し、これらの問題点は克服できることが判明した。
【0023】
以下、本発明を実施するための最良の形態について詳細に説明する。
【0024】
〔水溶性高分子〕
本発明の水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40〜50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものを言う。
【0025】
本発明に係る高屈折率層においては、リン酸基またはその塩を有する重量平均分子量が3万以下の水溶性高分子、もしくはリン酸エステルまたはその塩を有する重量平均分子量が3万以下の水溶性高分子と、重量平均分子量が5万以上の水溶性高分子を併用することを特徴とする。
【0026】
用いられる水溶性高分子の重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)法によって測定することができる。
【0027】
〔重量平均分子量が3万以下の水溶性高分子〕
重量平均分子量が3万以下の水溶性高分子としては、リン酸基またはその塩を有する水溶性高分子、もしくはリン酸エステルまたはその塩を有する水溶性高分子を用いることが必須であるが、リン酸基またはその塩、もしくはリン酸エステルまたはその塩を有しない水溶性高分子をさらに含有してもよい。
【0028】
リン酸基またはその塩、もしくはリン酸エステルまたはその塩を有する水溶性高分子は金属酸化物粒子(例えば、ルチル型の二酸化チタン等)に強く吸着されると考えられる。そのため金属酸化物粒子の表面が水溶性高分子で覆われることになり、塗布液中での金属酸化物の凝集を防ぎ、分散安定性が向上するものと考えられる。
【0029】
重量平均分子量の上限値は3万であるが下限はなく、オリゴマーと呼ばれることもある繰り返し単位が数個の高分子であってもよい。一方、重量平均分子量が3万を超えるものを用いた場合、塗布液の分散安定性が低下して本発明の効果が得られにくくなる。
【0030】
このような化合物の具体例としては、カゼイン、カゼインホスホペプチド等のリン酸化ポリペプチド類、リン酸化でんぷん部分加水分解物、リン酸デキストリン、リン酸オリゴ糖、リン酸化グアーガムの部分加水分解物、リン酸化メチルセルロース等のリン酸化多糖類、リン酸ポリグリセリン、リン酸ポリエチレングリコール、リン酸ポリオキシエチレンアルキルエーテル等のリン酸化ポリエーテル類、及びこれらのナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩等が挙げられ、1種または2種以上を混合して用いてもよい。市販されているものを用いてもよく、リン酸化多糖類としては、例えばリン酸オリゴ糖であるPOs−Ca25、POs−Ca35、POs−Ca45(江崎グリコ(株)製)等、リン酸化ポリペプチド類としてはカゼインホスホペプチドである明治CPP−I、明治CPP−II、明治CPP−III((株)明治フードマテリア製)等、リン酸化ポリエーテル類としては、フォスファノールRS610、フォスファノールRS710(東邦化学工業(株)製)等を用いることができる。
【0031】
塗布液の分散安定性の観点から、リン酸基またはその塩、もしくはリン酸エステルまたはその塩を有する水溶性高分子は、さらに水酸基も有することが好ましく、このような化合物の具体例としては、リン酸化でんぷん部分加水分解物、リン酸デキストリン、リン酸オリゴ糖、リン酸化グアーガムの部分加水分解物、リン酸化メチルセルロース等のリン酸化多糖類、リン酸ポリグリセリン、リン酸ポリエチレングリコール、及びこれらの塩等が挙げられる。
【0032】
〔重量平均分子量が5万以上の水溶性高分子〕
本発明に係る高屈折率層においては、重量平均分子量が3万以下の水溶性高分子と併用して、重量平均分子量が5万以上の水溶性高分子を用いる。同時重層塗布適性を持たせるために、特に低温増粘性を有する水溶性高分子が好ましい。このような水溶性高分子としては、ゼラチン、セルロース類、増粘多糖類及び反応性官能基を有するポリマー類等を挙げることができる。以下にこれらの水溶性高分子について説明する。
【0033】
(ゼラチン)
本発明に適用可能なゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを適用することができ、例えば、酸処理ゼラチン、アルカリ処理ゼラチンの他に、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチン及びゼラチン誘導体、すなわち分子中に官能基としてのアミノ基、イミノ基、ヒドロキシ基、カルボキシル基を持ち、それと反応して得る基を持った試薬で処理し改質したものでもよい。ゼラチンの一般的製造法に関しては良く知られており、例えばT.H.James:The Theory of Photographic Process 4th. ed. 1977(Macmillan)55項、科学写真便覧(上)72〜75項(丸善)、写真工学の基礎−銀塩写真編119〜124(コロナ社)等の記載を参考にすることができる。また、リサーチ・ディスクロージャー誌第176巻、No.17643(1978年12月)のIX項に記載されているゼラチンを挙げることができる。
【0034】
(ゼラチンの硬膜剤)
高屈折率層塗布液及び低屈折率層塗布液には、高屈折率層または低屈折率層を形成した後に、ゼラチン塗膜を硬化するため、必要に応じて硬化剤を添加することもできる。
【0035】
用いることのできる硬膜剤としては、通常の写真乳剤層の硬膜剤として使用されている公知の化合物を使用でき、例えば、ビニルスルホン化合物、尿素−ホルマリン縮合物、メラニン−ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物等の有機硬膜剤、クロム、アルミニウム、ジルコニウム等の無機多価金属塩類等を挙げることができる。
【0036】
(セルロース類)
本発明で用いることのできるセルロース類としては、水溶性のセルロース誘導体を好ましく用いることができ、例えば、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の水溶性セルロース誘導体や、カルボン酸基含有セルロース類であるカルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース等を挙げることができる。
【0037】
(増粘多糖類)
本発明で用いることのできる増粘多糖類としては、特に制限はなく、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類に挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。
【0038】
本発明でいう増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度により分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きな特性を備えた多糖類であり、さらに金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こすものであり、その粘度上昇幅は、添加することにより15℃における粘度が1.0mPa・s以上の上昇を生じる多糖類であり、好ましくは5.0mPa・s以上であり、更に好ましくは10.0mPa・s以上の粘度上昇能を備えた多糖類である。
【0039】
本発明に適用可能な増粘多糖類としては、例えば、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸及びアルギン酸塩、寒天、κ−カラギーナン、λ−カラギーナン、ι−カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類等が挙げられ、塗布液中に共存する金属酸化微粒子の分散安定性を低下させない観点から、好ましくは、その構成単位がカルボン酸基やスルホン酸基を有しないものが好ましい。そのような多糖類としては、例えば、L−アラビトース、D−リボース、2−デオキシリボース、D−キシロース等のペントース、D−グルコース、D−フルクトース、D−マンノース、D−ガラクトース等のヘキソースのみからなる多糖類であることが好ましい。具体的には、主鎖がグルコースであり、側鎖もグルコースであるキシログルカンとして知られるタマリンドシードガムや、主鎖がマンノースで側鎖がグルコースであるガラクトマンナンとして知られるグアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガム、ローカストビーンガム、タラガムや、主鎖がガラクトースで側鎖がアラビノースであるアラビノガラクタンを好ましく使用することができる。本発明においては、特には、タマリンド、グアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガムが好ましい。
【0040】
本発明においては、更には、二種類以上の増粘多糖類を併用することが好ましい。
【0041】
(反応性官能基を有するポリマー類)
本発明に適用可能な水溶性高分子としては、反応性官能基を有するポリマー類が挙げられ、例えば、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸−アクリルニトリル共重合体、アクリル酸カリウム−アクリルニトリル共重合体、酢酸ビニル−アクリル酸エステル共重合体、若しくはアクリル酸−アクリル酸エステル共重合体等のアクリル系樹脂、スチレン−アクリル酸共重合体、スチレン−メタクリル酸共重合体、スチレン−メタクリル酸−アクリル酸エステル共重合体、スチレン−α−メチルスチレン−アクリル酸共重合体、若しくはスチレン−α−メチルスチレン−アクリル酸−アクリル酸エステル共重合体等のスチレンアクリル酸樹脂、スチレン−スチレンスルホン酸ナトリウム共重合体、スチレン−2−ヒドロキシエチルアクリレート共重合体、スチレン−2−ヒドロキシエチルアクリレート−スチレンスルホン酸カリウム共重合体、スチレン−マレイン酸共重合体、スチレン−無水マレイン酸共重合体、ビニルナフタレン−アクリル酸共重合体、ビニルナフタレン−マレイン酸共重合体、酢酸ビニル−マレイン酸エステル共重合体、酢酸ビニル−クロトン酸共重合体、酢酸ビニル−アクリル酸共重合体等の酢酸ビニル系共重合体及びそれらの塩が挙げられる。これらの中で、特に好ましい例としては、ポリビニルアルコール、ポリビニルピロリドン類及びそれを含有する共重合体が挙げられる。
【0042】
本発明で好ましく用いられるポリビニルアルコールには、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールの他に、末端をカチオン変性したポリビニルアルコールやアニオン性基を有するアニオン変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。
【0043】
カチオン変性ポリビニルアルコールとしては、例えば、特開昭61−10483号公報に記載されているような、第一〜三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖または側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。
【0044】
カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル−(2−アクリルアミド−2,2−ジメチルエチル)アンモニウムクロライド、トリメチル−(3−アクリルアミド−3,3−ジメチルプロピル)アンモニウムクロライド、N−ビニルイミダゾール、N−ビニル−2−メチルイミダゾール、N−(3−ジメチルアミノプロピル)メタクリルアミド、ヒドロキシルエチルトリメチルアンモニウムクロライド、トリメチル−(2−メタクリルアミドプロピル)アンモニウムクロライド、N−(1,1−ジメチル−3−ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1〜10モル%、好ましくは0.2〜5モル%である。
【0045】
アニオン変性ポリビニルアルコールは、例えば、特開平1−206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61−237681号及び同63−307979号各公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7−285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。
【0046】
また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7−9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8−25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。ポリビニルアルコールは、重合度や変性の種類違い等二種類以上を併用することもできる。
【0047】
本発明においては、反応性官能基を有するポリマーを使用する場合には、硬化剤を使用してもよい。反応性官能基を有するポリマーがポリビニルアルコールの場合には、ホウ酸及びその塩やエポキシ系硬化剤が好ましい。
【0048】
〔水溶性高分子の含有量〕
各屈折率層中における水溶性高分子の含有量としては、5質量%以上50質量%以下が好ましく、10質量%以上40質量%以下がより好ましい。但し、水溶性高分子やエマルジョン樹脂等と併用する場合には、3質量%以上の含有量でもよい。水溶性高分子が少ないと塗膜乾燥時に膜面が乱れて透明性が劣化する傾向が大きくなる。一方、含有量が50質量%以下であれば、相対的に金属酸化物の含有量が増し、高屈折率層と低屈折率層の屈折率差を大きくすることが容易になる。
【0049】
本発明において、高屈折率層中における重量平均分子量が3万以下の水溶性高分子の含有量としては、高屈折率層全質量の10質量%以上、50質量%以下であることが好ましく、更に好ましくは、20質量%以上、40質量%以下である。また、高屈折率層中における重量平均分子量が5万以上の水溶性高分子の含有量としては、高屈折率層全質量の10質量%以上、50質量%以下であることが好ましく、更に好ましくは、15質量%以上、30質量%以下である。
【0050】
〔金属酸化物〕
本発明に係る金属酸化物は、高屈折率層、低屈折率層を構成するときに用いられ、上記の目的で使用される金属酸化物としては、例えば、二酸化チタン、酸化ジルコニウム、酸化亜鉛、合成非晶質シリカ、コロイダルシリカ、アルミナ、コロイダルアルミナ、チタン酸鉛、鉛丹、黄鉛、亜鉛黄、酸化クロム、酸化第二鉄、鉄黒、酸化銅、酸化マグネシウム、水酸化マグネシウム、チタン酸ストロンチウム、酸化イットリウム、酸化ニオブ、酸化ユーロピウム、酸化ランタン、ジルコン、酸化スズ、等を挙げることができる。
【0051】
なお、後記する金属酸化物の粒子の平均粒径は、粒子そのものあるいは層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
【0052】
高屈折率層に含有される金属酸化物としては、TiO、ZnO、ZrOが好ましく、高屈折率層を形成するための金属酸化物含有組成物の安定性の観点ではTiO(二酸化チタンゾル)がより好ましい。また、TiOの中でも特にアナターゼ型よりルチル型の方が、触媒活性が低いために高屈折率層や隣接した層の耐候性が高くなり、さらに屈折率が高いことから好ましい。
【0053】
また、本発明に係る低屈折率層には、後記する二酸化ケイ素(シリカ)を金属酸化物としてさらに添加してもよい。
【0054】
〔二酸化ケイ素〕
本発明で用いることのできる二酸化ケイ素(シリカ)としては、通常の湿式法で合成されたシリカ、コロイダルシリカ或いは気相法で合成されたシリカ等が好ましく用いられるが、本発明において特に好ましく用いられる微粒子シリカとしては、コロイダルシリカまたは気相法で合成された微粒子シリカが好ましく、中でも気相法により合成された微粒子シリカは、カチオン性ポリマーに添加したときに、粗大凝集体が形成されにくいので好ましい。また不定形粒子、球状粒子、針状粒子等任意の形状のものを使用することができる。
【0055】
金属酸化物の粒子は、カチオン性ポリマーと混合する前の微粒子分散液が一次粒子まで分散された状態であるのが好ましい。
【0056】
金属酸化物の粒子は、その粒径が100nm以下であり、4〜50nm、より好ましくは4〜30nmであることが好ましい。例えば、上記気相法微粒子シリカの場合、一次粒子の状態で分散された金属酸化物の粒子の一次粒子の平均粒径(塗設前の分散液状態での粒径)は、100nm以下のものが好ましく、より好ましくは4〜50nm、最も好ましくは4〜20nmである。
【0057】
最も好ましく用いられる、一次粒子の平均粒径が4〜20nmである気相法により合成されたシリカとしては、例えば、日本アエロジル社製のアエロジルが市販されている。この気相法微粒子シリカは、水中に、例えば、三田村理研工業(株)製のジェットストリームインダクターミキサー等により、容易に吸引分散することで、比較的容易に一次粒子まで分散することができる。
【0058】
気相法シリカとして現在市販されているものとしては、日本アエロジル社の各種のアエロジルが該当する。
【0059】
本発明で好ましく用いられるコロイダルシリカは、珪酸ナトリウムの酸等による複分解やイオン交換樹脂層を通過させて得られるシリカゾルを加熱熟成して得られるものであり、このコロイダルシリカは、例えば、特開昭57−14091号公報、同60−219083号公報、同60−219084号公報、同61−20792号公報、同61−188183号公報、同63−17807号公報、特開平4−93284号公報、同5−278324号公報、同6−92011号公報、同6−183134号公報、同6−297830号公報、同7−81214号公報、同7−101142号公報、同7−179029号公報、同7−137431号公報、及び国際特許公開WO94/26530号公報等に記載されている。
【0060】
コロイダルシリカの好ましい平均粒子径は通常は5〜100nmであるが特に7〜30nmの平均粒子径が好ましい。
【0061】
気相法により合成されたシリカ及びコロイダルシリカは、その表面をカチオン変成されたものであってもよく、また、Al、Ca、Mg及びBa等で処理された物であってもよい。
【0062】
〔二酸化チタン〕
二酸化チタンゾルの製造方法
本発明に使用する金属酸化物中、特に好ましい二酸化チタンゾルの製造方法について下記に記載する。
【0063】
(工程1)
ルチル型微粒子二酸化チタンの製造方法における第1の工程は、二酸化チタン水和物をアルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選択される少なくとも1種の塩基性化合物で処理する工程(工程1)である。
【0064】
二酸化チタン水和物は、硫酸チタン、塩化チタン等の水溶性チタン化合物の加水分解によって得ることができる。加水分解の方法は特に限定されず、公知の方法を適用することができる。なかでも、硫酸チタンの熱加水分解によって得られたものであることが好ましい。
【0065】
上記工程(1)は、例えば、上記二酸化チタン水和物の水性懸濁液に、上記塩基性化合物を添加し、所定温度の条件下において、所定時間処理する(反応させる)ことにより行うことができる。
【0066】
上記二酸化チタン水和物を水性懸濁液とする方法は特に限定されず、水に上記二酸化チタン水和物を添加して撹拌することによって行うことができる。懸濁液の濃度は特に限定されないが、例えば、TiO濃度が懸濁液中に30〜150g/Lとなる濃度であることが好ましい。上記範囲内とすることによって、反応(処理)を効率よく進行させることができる。
【0067】
上記工程(1)において使用するアルカリ金属の水酸化物及びアルカリ土類金属の水酸化物からなる群から選択される少なくとも1種の塩基性化合物としては特に限定されず、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等を挙げることができる。上記工程(1)における上記塩基性化合物の添加量は、反応(処理)懸濁液中の塩基性化合物濃度で30〜300g/L(リットル)であることが好ましい。
【0068】
上記工程(1)は、60〜120℃の反応(処理)温度で行うことが好ましい。反応(処理)時間は、反応(処理)温度によって異なるが、2〜10時間であることが好ましい。反応(処理)は、二酸化チタン水和物の懸濁液に、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウムの水溶液を添加することによって行うことが好ましい。反応(処理)後、反応(処理)混合物を冷却し、必要に応じて塩酸等の無機酸で中和した後、濾過、水洗することによって微粒子二酸化チタン水和物を得ることができる。
【0069】
(工程2)
また、第2の工程(工程(2))として、工程(1)によって得られた化合物をカルボン酸基含有化合物及び無機酸で処理してもよい。ルチル型微粒子二酸化チタンの製造において上記工程(1)によって得られた化合物を無機酸で処理する方法は公知の方法であるが、無機酸に加えてカルボン酸基含有化合物を使用して、粒子径を調整することができる。
【0070】
上記カルボン酸基含有化合物とは、−COOH基を有する有機化合物である。上記カルボン酸基含有化合物としては、2以上、より好ましくは2以上4以下のカルボン酸基を有するポリカルボン酸であることが好ましい。上記ポリカルボン酸は、金属原子への配位能を有することから、配位によって微粒子間の凝集を抑制し、これによって好適にルチル型微粒子二酸化チタンを得ることができるものと推測される。
【0071】
上記カルボン酸基含有化合物としては特に限定されず、例えば、蓚酸、マロン酸、琥珀酸、グルタル酸、アジピン酸、プロピルマロン酸、マレイン酸等のジカルボン酸;リンゴ酸、酒石酸、クエン酸等のヒドロキシ多価カルボン酸;フタル酸、イソフタル酸、ヘミメリト酸、トリメリト酸等の芳香族ポリカルボン酸;エチレンジアミン四酢酸等を挙げることができる。これらのなかから、2種以上の化合物を同時に併用するものであってもよい。
【0072】
なお、上記カルボン酸基含有化合物の全部または一部は、−COOH基を有する有機化合物の中和物(例えば、−COONa基等を有する有機化合物)であってもよい。
【0073】
上記無機酸としては特に限定されず、例えば、塩酸、硫酸、硝酸等を挙げることができる。上記無機酸は、反応(処理)用液中の濃度が0.5〜2.5モル/L、より好ましくは0.8〜1.4モル/Lになるように加えるとよい。
【0074】
上記工程(2)は、上記工程(1)によって得られた化合物を純水中に懸濁させ、撹拌下、必要に応じて加熱して行うことが好ましい。カルボン酸基含有化合物及び無機酸の添加は同時であっても順次添加するものであってもよいが、順次添加することが好ましい。
【0075】
添加は、カルボン酸基含有化合物添加後に無機酸を添加するものであっても、無機酸添加後にカルボン酸基含有化合物を添加するものであってもよい。
【0076】
例えば、上記工程(1)によって得られた化合物の懸濁液中にカルボキシル基含有化合物を添加し、加熱を開始し、液温が60℃以上、好ましくは90℃以上になったところで無機酸を添加し、液温を維持しつつ、好ましくは15分〜5時間、より好ましくは2〜3時間撹拌する方法(方法1);上記工程(1)によって得られた化合物の懸濁液中を加熱し、液温が60℃以上、好ましくは90℃以上になったところで無機酸を添加し、無機酸添加から10〜15分後にカルボン酸基含有化合物を添加し、液温を維持しつつ、好ましくは15分〜5時間、より好ましくは2〜3時間撹拌する方法(方法2)等を挙げることができる。これらの方法によって行うことにより、好適な微粒子状のルチル型二酸化チタンを得ることができる。
【0077】
上記工程(2)を上記方法1によって行う場合、上記カルボン酸基含有化合物は、TiO100モル%に対し0.25〜1.5モル%使用するものであることが好ましく、0.4〜0.8モル%の割合で使用することがより好ましい。カルボン酸基含有化合物の添加量が0.25モル%より少ない場合は粒子成長が進んでしまい目的とする粒子サイズの粒子が得られないおそれがあり、カルボン酸基含有化合物の添加量が1.5モル%より多い場合は粒子のルチル化が進まずアナタースの粒子ができてしまうおそれがある。
【0078】
上記工程(2)を上記方法2によって行う場合、上記カルボン酸基含有化合物は、TiO100モル%に対し1.6〜4.0モル%使用するものであることが好ましく、2.0〜2.4モル%の割合で使用することがより好ましい。
【0079】
カルボン酸基含有化合物の添加量が1.6モル%より少ない場合は粒子成長が進んでしまい目的とする粒子サイズの粒子が得られないおそれがあり、カルボン酸基含有化合物の添加量が4.0モル%より多い場合は粒子のルチル化が進まずアナタースの粒子ができてしまうおそれがあり、カルボン酸基含有化合物の添加量が4.0モル%を超えても効果は良好なものとならず、経済的に不利である。また、上記カルボン酸基含有化合物の添加を無機酸添加から10分未満で行うと、ルチル化が進まず、アナタース型の粒子ができてしまうおそれがあり、無機酸添加から15分を超えて行うと、粒子成長が進みすぎ、目的とする粒子サイズの粒子が得られない場合がある。
【0080】
上記工程(2)においては、反応(処理)終了後冷却し、更にpH5.0〜10.0になるように中和することが好ましい。上記中和は、水酸化ナトリウム水溶液やアンモニア水等のアルカリ性化合物によって行うことができる。中和後に濾過、水洗することによって目的のルチル型微粒子二酸化チタンを分離することができる。
【0081】
また、二酸化チタン微粒子の製造方法として、「酸化チタン−物性と応用技術」(清野学 p255〜258(2000年)技報堂出版(株))等に記載の公知の方法を用いることができる。
【0082】
二酸化チタン微粒子の好ましい一次粒子径は、5〜15nmであり、より好ましくは6〜10nmである。
【0083】
本発明に係る金属酸化物の平均粒径は、粒子そのものあるいは屈折率層の断面や表面に現れた粒子を電子顕微鏡で観察し、1,000個の任意の粒子の粒径を測定し、その単純平均値(個数平均)として求められる。ここで個々の粒子の粒径は、その投影面積に等しい円を仮定したときの直径で表したものである。
【0084】
〔コロイダルシリカ複合エマルジョン〕
また、本発明においては、コロイダルシリカ複合エマルジョンも低屈折率層において、金属酸化物として用いることができる。本発明に好ましく用いられるコロイダルシリカ複合エマルジョンは、粒子の中心部が重合体或いは共重合体等を主成分としてなり、特開昭59−71316号公報、特開昭60−127371号公報に記載されているコロイダルシリカの存在下でエチレン性不飽和結合を有するモノマーを従来公知の乳化重合法で重合して得られる。該複合体エマルジョンに適用されるコロイダルシリカの粒子径としては40nm未満のものが好ましい。
【0085】
この複合エマルジョンの調製に用いられるコロイダルシリカとしては、通常2〜100μmの一次粒子のものが挙げられる。エチレン性モノマーとしては、例えば炭素数が1〜18個のアルキル基、アリール基、或いはアリル基を有する(メタ)アクリル酸エステル、スチレン、α−メチルスチレン、ビニルトルエン、アクリロニトリル、塩化ビニル、塩化ビニリデン、酢酸ビニル、プロピオン酸ビニル、アクリルアミド、N−メチロールアクリルアミド、エチレン、ブタジエン等のラテックス業界で公知の材料が挙げられ、必要に応じて更にコロイダルシリカとの相溶性をより良くするためにビニルトリメトオキシシラン、ビニルトリエトオキシシラン、γ−メタクリロオキシプロピルトリメトオキシシラン等の如きビニルシランが、また、エマルジョンの分散安定に(メタ)アクリル酸、マレイン酸、無水マレイン酸、フマル酸、クロトン酸等のアニオン性モノマーが助剤的に使われる。なお、エチレン性モノマーは必要に応じて2種類以上を併用することができる。
【0086】
また、乳化重合におけるエチレン性モノマー/コロイダルシリカの比率は固形分比率で100/1〜200であることが好ましい。
【0087】
本発明に使用されるコロイダルシリカ複合体エマルジョンの中でより好ましいものとしては、ガラス転移点が−30〜30℃の範囲のものが挙げられる。
【0088】
また、組成的に好ましいものとしては、アクリル酸エステル、メタクリル酸エステル等のエチレン性モノマーが挙げられ、特に好ましいものとしては(メタ)アクリル酸エステルとスチレンの共重合体、(メタ)アクリル酸アルキルエステルと(メタ)アクリル酸アラルキルエステルの共重合体、(メタ)アクリル酸アルキルエステルと(メタ)アクリル酸アリールエステル共重合体が挙げられる。
【0089】
乳化重合で使われる乳化剤としては、例えばアルキルアリルポリエーテルスルホン酸ソーダ塩、ラウリルスルホン酸ソーダ塩、アルキルベンゼンスルホン酸ソーダ塩、ポリオキシエチレンノニルフェニルエーテル硝酸ソーダ塩、アルキルアリルスルホサクシネートソーダ塩、スルホプロピルマレイン酸モノアルキルエステルソーダ塩等が挙げられる。
【0090】
好ましい粒子径は1次粒子で10nm以下、また二次粒子で30nm以下であり、ヘイズが少なく可視光透過性に優れる。
【0091】
〔無機ポリマー〕
本発明に係る各屈折率層では、ジルコニウム原子含有化合物あるいはアルミニウム原子含有化合物等の無機ポリマーを用いることができる。
【0092】
本発明に適用可能なジルコニウム原子を含む化合物は、酸化ジルコニウムを除くものであるが、その具体例としては、二フッ化ジルコニウム、三フッ化ジルコニウム、四フッ化ジルコニウム、ヘキサフルオロジルコニウム酸塩(例えば、カリウム塩)、ヘプタフルオロジルコニウム酸塩(例えば、ナトリウム塩、カリウム塩やアンモニウム塩)、オクタフルオロジルコニウム酸塩(例えば、リチウム塩)、フッ化酸化ジルコニウム、二塩化ジルコニウム、三塩化ジルコニウム、四塩化ジルコニウム、ヘキサクロロジルコニウム酸塩(例えば、ナトリウム塩やカリウム塩)、酸塩化ジルコニウム(塩化ジルコニル)、二臭化ジルコニウム、三臭化ジルコニウム、四臭化ジルコニウム、臭化酸化ジルコニウム、三ヨウ化ジルコニウム、四ヨウ化ジルコニウム、過酸化ジルコニウム、水酸化ジルコニウム、硫化ジルコニウム、硫酸ジルコニウム、p−トルエンスルホン酸ジルコニウム、硫酸ジルコニル、硫酸ジルコニルナトリウム、酸性硫酸ジルコニル三水和物、硫酸ジルコニウムカリウム、セレン酸ジルコニウム、硝酸ジルコニウム、硝酸ジルコニル、リン酸ジルコニウム、炭酸ジルコニル、炭酸ジルコニルアンモニウム、酢酸ジルコニウム、酢酸ジルコニル、酢酸ジルコニルアンモニウム、乳酸ジルコニル、クエン酸ジルコニル、ステアリン酸ジルコニル、リン酸ジルコニル、シュウ酸ジルコニウム、ジルコニウムイソプロピレート、ジルコニウムブチレート、ジルコニウムアセチルアセトネート、アセチルアセトンジルコニウムブチレート、ステアリン酸ジルコニウムブチレート、ジルコニウムアセテート、ビス(アセチルアセトナト)ジクロロジルコニウム、トリス(アセチルアセトナト)クロロジルコニウム等が挙げられる。
【0093】
これらの化合物の中でも、炭酸ジルコニル、炭酸ジルコニルアンモニウム、酢酸ジルコニル、硝酸ジルコニル、酸塩化ジルコニル、乳酸ジルコニル、クエン酸ジルコニルが好ましく、特に、炭酸ジルコニルアンモニウム、酸塩化ジルコニル、酢酸ジルコニルが好ましい。上記化合物の具体的商品名としては、第一稀元素化学工業(株)製の酢酸ジルコニルZA(商品名)や、第一稀元素化学工業(株)製の酸塩化ジルコニル(商品名)等が挙げられる。
【0094】
ジルコニウム原子を含む化合物は、単独で用いてもよいし、異なる2種類以上の化合物を併用してもよい。
【0095】
また、本発明で用いることのできる分子内にアルミニウム原子を含む化合物には、酸化アルミニウムは含まず、その具体例としては、フッ化アルミニウム、ヘキサフルオロアルミン酸(例えば、カリウム塩)、塩化アルミニウム、塩基性塩化アルミニウム(例えば、ポリ塩化アルミニウム)、テトラクロロアルミン酸塩(例えば、ナトリウム塩)、臭化アルミニウム、テトラブロモアルミン酸塩(例えば、カリウム塩)、ヨウ化アルミニウム、アルミン酸塩(例えば、ナトリウム塩、カリウム塩、カルシウム塩)、塩素酸アルミニウム、過塩素酸アルミニウム、チオシアン酸アルミニウム、硫酸アルミニウム、塩基性硫酸アルミニウム、硫酸アルミニウムカリウム(ミョウバン)、硫酸アンモニウムアルミニウム(アンモニウムミョウバン)、硫酸ナトリウムアルミニウム、燐酸アルミニウム、硝酸アルミニウム、燐酸水素アルミニウム、炭酸アルミニウム、ポリ硫酸珪酸アルミニウム、ギ酸アルミニウム、酢酸アルミニウム、乳酸アルミニウム、蓚酸アルミニウム、アルミニウムイソプロピレート、アルミニウムブチレート、エチルアセテートアルミニウムジイソプロピレート、アルミニウムトリス(アセチルアセトネート)、アルミニウムトリス(エチルアセトアセテート)、アルミニウムモノアセチルアセトネートビス(エチルアセトアセトネート)等を挙げることができる。
【0096】
これらの中でも、塩化アルミニウム、塩基性塩化アルミニウム、硫酸アルミニウム、塩基性硫酸アルミニウム、塩基性硫酸珪酸アルミニウムが好ましく、塩基性塩化アルミニウム、塩基性硫酸アルミニウムが最も好ましい。
【0097】
〔アミノ酸〕
本発明においては、更に、金属酸化物の分散性を向上させる目的で、アミノ酸を添加することが好ましい。
【0098】
本発明でいうアミノ酸とは、同一分子内にアミノ基とカルボキシル基を有する化合物であり、α−、β−、γ−等いずれのタイプのアミノ酸でもよいが、等電点が6.5以下のアミノ酸であることが好ましい。アミノ酸には光学異性体が存在するものもあるが、本発明においては光学異性体による効果の差はなく、等電点が6.5以下のいずれの異性体も単独であるいはラセミ体で使用することができる。
【0099】
本発明に適用可能なアミノ酸に関する詳しい解説は、化学大辞典1 縮刷版(共立出版;昭和35年発行)268頁〜270頁の記載を参照することができる。
【0100】
本発明において、好ましいアミノ酸として、グリシン、アラニン、バリン、α−アミノ酪酸、γ−アミノ酪酸、β−アラニン、セリン、ε−アミノ−n−カプロン酸、ロイシン、ノルロイシン、フェニルアラニン、トレオニン、アスパラギン、アスパラギン酸、ヒスチジン、リジン、グルタミン、システイン、メチオニン、プロリン、ヒドロキシプロリン等を挙げることができ、水溶液として使用するためには、等電点における溶解度が、水100gに対し、3g以上が好ましく、たとえば、グリシン、アラニン、セリン、ヒスチジン、リジン、グルタミン、システイン、メチオニン、プロリン、ヒドロキシプロリン等が好ましく用いられ、金属酸化物粒子が、バインダーと緩やかな水素結合を有する観点から、水酸基を有する、セリン、ヒドロキシプロリンを用いることがさらに好ましい。
【0101】
〔屈折率層のその他の添加剤〕
本発明に係る高屈折率層と低屈折率層には、必要に応じて各種の添加剤を含有させることができる。
【0102】
例えば、特開昭57−74193号公報、同57−87988号公報及び同62−261476号公報に記載の紫外線吸収剤、特開昭57−74192号公報、同57−87989号公報、同60−72785号公報、同61−146591号公報、特開平1−95091号公報及び同3−13376号公報等に記載されている退色防止剤、アニオン、カチオンまたはノニオンの各種界面活性剤、特開昭59−42993号公報、同59−52689号公報、同62−280069号公報、同61−242871号公報及び特開平4−219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、帯電防止剤、マット剤等の公知の各種添加剤を含有させることもできる。
【0103】
〔重層塗布の製造方法〕
本発明の光学反射フィルムは、高屈折率層、低屈折率層を含む各構成層を、各々単独にあるいは同時に、公知の塗布方式から適宜選択して、支持体上に塗布、乾燥して製造することができる。塗布方式としては、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、カーテン塗布方法、あるいは米国特許第2,761,419号公報、同第2,761,791号公報に記載のホッパーを使用するスライドビード塗布方法、エクストルージョンコート法等が好ましく用いられる。
【0104】
同時重層塗布を行う際の各塗布液の粘度としては、スライドビード塗布方式を用いる場合には、5〜100mPa・sの範囲が好ましく、さらに好ましくは10〜50mPa・sの範囲である。また、カーテン塗布方式を用いる場合には、5〜1200mPa・sの範囲が好ましく、さらに好ましくは25〜500mPa・sの範囲である。
【0105】
また、塗布液の15℃における粘度としては、100mPa・s以上が好ましく、100〜30,000mPa・sがより好ましく、さらに好ましくは3,000〜30,000mPa・sであり、最も好ましいのは10,000〜30,000mPa・sである。
【0106】
塗布及び乾燥方法としては、塗布液を30℃以上に加温して、塗布を行った後、形成した塗膜の温度を1〜15℃に一旦冷却し、10℃以上で乾燥することが好ましく、より好ましくは、乾燥条件として、湿球温度5〜50℃、膜面温度10〜50℃の範囲の条件で行うことである。また、塗布直後の冷却方式としては、形成された塗膜均一性の観点から、水平セット方式で行うことが好ましい。
【0107】
また、本発明の光学反射フィルムを保管する際には、オーバーコートして乾燥した後、ロールに保管したまま、あるいはシート状に断裁した後、保管することが好ましい。30℃以上で一定時間、例えば、1日〜1ヶ月間保管すると、塗布ムラの軽減に役立つ。好ましい保管条件は、30〜50℃で1〜30日である。
【0108】
〔支持体〕
光学反射フィルムの支持体としては、種々の樹脂フィルムを用いることができ、ポリオレフィンフィルム(ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、3酢酸セルロース等を用いることができ、好ましくはポリエステルフィルムである。ポリエステルフィルム(以降ポリエステルと称す)としては、特に限定されるものではないが、ジカルボン酸成分とジオール成分を主要な構成成分とするフィルム形成性を有するポリエステルであることが好ましい。
【0109】
主要な構成成分のジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェニルエーテルジカルボン酸、ジフェニルエタンジカルボン酸、シクロヘキサンジカルボン酸、ジフェニルジカルボン酸、ジフェニルチオエーテルジカルボン酸、ジフェニルケトンジカルボン酸、フェニルインダンジカルボン酸等を挙げることができる。また、ジオール成分としては、エチレングリコール、プロピレングリコール、テトラメチレングリコール、シクロヘキサンジメタノール、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシエトキシフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルホン、ビスフェノールフルオレンジヒドロキシエチルエーテル、ジエチレングリコール、ネオペンチルグリコール、ハイドロキノン、シクロヘキサンジオール等を挙げることができる。これらを主要な構成成分とするポリエステルの中でも透明性、機械的強度、寸法安定性等の点から、ジカルボン酸成分として、テレフタル酸や2,6−ナフタレンジカルボン酸、ジオール成分として、エチレングリコールや1,4−シクロヘキサンジメタノールを主要な構成成分とするポリエステルが好ましい。中でも、ポリエチレンテレフタレートやポリエチレンナフタレートを主要な構成成分とするポリエステルや、テレフタル酸と2,6−ナフタレンジカルボン酸とエチレングリコールからなる共重合ポリエステル、及びこれらのポリエステルの二種以上の混合物を主要な構成成分とするポリエステルが好ましい。
【0110】
本発明に用いられるフィルム支持体の厚みは、10〜300μm、特に20〜150μmであることが好ましい。また、本発明のフィルム支持体は、2枚重ねたものであっても良く、この場合、その種類が同じでも異なってもよい。
【0111】
〔膜設計〕
本発明においては、少なくとも隣接した2層(高屈折率層及び低屈折率層)の屈折率差が0.2以上であることが好ましく、より好ましくは0.3以上である。また、上限には特に制限はないが通常1.4以下である。
【0112】
隣接した層界面での反射は、層間の屈折率比に依存するのでこの屈折率比が大きいほど、反射率が高まる。また、単層膜でみたとき層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると位相差により反射光を強めあうよう制御でき、反射率を上げることができる。ここで、nは屈折率、dは層の物理膜厚、n・dは光学膜厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と膜厚を制御して、可視光や、近赤外光の反射を制御する。即ち、各層の屈折率、各層の膜厚、各層の積層のさせ方で、特定波長領域の反射率をアップさせることができる。
【0113】
本発明の光学反射フィルムは反射率をアップさせる特定波長領域を変えることにより、可視光反射フィルムや近赤外光反射フィルムとすることができる。即ち、反射率をアップさせる特定波長領域を可視光領域に設定すれば可視光反射フィルムとなり、近赤外領域に設定すれば近赤外光反射フィルムとなる。
【0114】
本発明の光学反射フィルムを遮熱フィルムに用いる場合は、近赤外光反射フィルムとすればよい。高分子フィルムに互いに屈折率が異なる膜を積層させた多層膜を形成し、JIS R3106−1998で示される可視光領域の透過率が50%以上で、かつ、波長900〜1400nmの領域に反射率40%を超える領域を有するように光学膜厚とユニットを設計することが好ましい。
【0115】
太陽直達光の入射スペクトルのうち赤外域が室内温度上昇に関係し、これを遮蔽することで室内温度の上昇を抑えることができる。日本工業規格JIS R3106に記載された重価係数をもとに赤外の最短波長(760nm)から最長波長3200nmまでの累積エネルギー比率をみると、波長760nmから最長波長3200nmまでの赤外全域の総エネルギーを100としたときの、760nmから各波長までの累積エネルギーをみると、760から1300nmのエネルギー合計が赤外域全体の約75%を占めている。従って、1300nmまでの波長領域を遮蔽することが熱線遮蔽による省エネルギー効果の効率がよい。
【0116】
この近赤外光域(760〜1300nm)の反射率を最大ピーク値で約80%以上にすると、体感温度の低下が官能評価により得られる。たとえば8月の午前中の南東方法を向く窓際での体感温度が近赤外光域の反射率を最大ピーク値で約80%にまで遮蔽したとき明確な差がでた。
【0117】
このような機能を発現するのに必要となる多層膜構造を光学シミュレーション(FTG Software Associates Film DESIGN Version 2.23.3700)で求めた結果、屈折率が1.9以上、望ましくは2.0以上の高屈折率層を利用し、6層以上積層した場合に優れた特性が得られることがわかっている。例えば、高屈折率層と低屈折率層(屈折率=1.35)を交互に8層積層したモデルのシミュレーション結果をみると、高屈折率層の屈折率が1.8では反射率が70%にも達しないが、1.9になると約80%の反射率が得られる。また、高屈折率層(屈折率=2.2)と低屈折率層(屈折率=1.35)を交互に積層したモデルでは、積層数が4では反射率が60%にも達していないが、6層になると約80%の反射率が得られる。
【0118】
〔光学反射フィルムの応用〕
本発明の光学反射フィルムは、幅広い分野に応用することができる。例えば、建物の屋外の窓や自動車窓等長期間太陽光に晒らされる設備(基体)に貼り合せ、熱線反射効果を付与する熱線反射フィルム等の窓貼用フィルム、農業用ビニールハウス用フィルム等として、主として耐候性を高める目的で用いられる。特に、本発明の光学反射フィルムが直接もしくは接着剤を介してガラスもしくはガラス代替樹脂等の基体に貼合されている部材には好適である。
【0119】
接着剤は、窓ガラス等に貼り合わせたとき、光学反射フィルムが日光(熱線)入射面側にあるように設置する。また光学反射フィルムを窓ガラスと基材との間に挟持すると、水分等周囲ガスから封止でき耐久性に好ましい。本発明の光学反射フィルムを屋外や車の外側(外貼り用)に設置しても環境耐久性があって好ましい。
【0120】
本発明に適用可能な接着剤としては、光硬化性もしくは熱硬化性の樹脂を主成分とする接着剤を用いることができる。
【0121】
接着剤は紫外線に対して耐久性を有するものが好ましく、アクリル系粘着剤またはシリコーン系粘着剤が好ましい。更に粘着特性やコストの観点から、アクリル系粘着剤が好ましい。特に剥離強さの制御が容易なことから、アクリル系粘着剤において、溶剤系及びエマルジョン系の中で溶剤系が好ましい。アクリル溶剤系粘着剤として溶液重合ポリマーを使用する場合、そのモノマーとしては公知のものを使用できる。
【0122】
また、合わせガラスの中間層として用いられるポリビニルブチラール系樹脂、あるいはエチレン−酢酸ビニル共重合体系樹脂を用いてもよい。具体的には可塑性ポリビニルブチラール〔積水化学工業社製、三菱モンサント社製等〕、エチレン−酢酸ビニル共重合体〔デュポン社製、武田薬品工業社製、デュラミン〕、変性エチレン−酢酸ビニル共重合体〔東ソー社製、メルセンG〕等である。なお、接着層には紫外線吸収剤、抗酸化剤、帯電防止剤、熱安定剤、滑剤、充填剤、着色、接着調整剤等を適宜添加配合してもよい。
【実施例】
【0123】
以下実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。
【0124】
実施例中に記載の重量平均分子量は、ゲルパーミエーションクロマトグラフィー装置(Waters2695型、日本ウォーターズ(株)製)を用いて測定した。
【0125】
実施例1
《光学反射フィルムの作製》
〔塗布液の調製〕
(高屈折率層塗布液1の調製)
ジルコニアゾル(ナノユースZR30−AR 日産化学工業(株)製)60質量部を撹拌しながら50℃まで昇温した後、リン酸ポリオキシエチレンアルキルエーテル(フォスファノールRS−710、重量平均分子量1000、東邦化学工業(株)製)の5質量%水溶液125質量部を添加して30分間攪拌した。次いで、3質量%ホウ酸水溶液20質量部を添加し、ポリビニルアルコール(PVA235、重量平均分子量15万、(株)クラレ製)の5質量%水溶液100質量部と純水150質量部を添加して90分撹拌した後、5質量%界面活性剤水溶液(コータミン24P、花王(株)製)0.45質量部を添加して高屈折率層塗布液1を調製した。
【0126】
(高屈折率層塗布液2の調製)
ジルコニアゾルの代わりに20質量%二酸化チタンゾル(体積平均粒径35nm、ルチル型二酸化チタン)を使用したほかは高屈折率層用塗布液1と同様にして高屈折率層用塗布液2を調製した。
【0127】
(高屈折率層塗布液3の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりにカゼインホスホペプチド(明治CPP−III、重量平均分子量5000、(株)明治フードマテリア製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液3を調製した。
【0128】
(高屈折率層塗布液4の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりにリン酸オリゴ糖(POs−Ca45、重量平均分子量1000、江崎グリコ(株)製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液4を調製した。
【0129】
(高屈折率層塗布液5の調製)
ポリビニルアルコールの代わりに酸処理ゼラチン(AP−270、重量平均分子量13万、(株)ニッピ製)を使用し、3%ホウ酸水溶液を除いたほかは高屈折率層用塗布液4と同様にして高屈折率層用塗布液5を調製した。
【0130】
(高屈折率層塗布液6の調製)
酸処理ゼラチンの代わりにタマリンドシードガム(TG−500、重量平均分子量50万、MRCポリサッカライド(株)製)を使用したほかは高屈折率層用塗布液5と同様にして高屈折率層用塗布液6を調製した。
【0131】
(高屈折率層塗布液7の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりに純水を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液7を調製した。
【0132】
(高屈折率層塗布液8の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりにポリエチレングリコールモノセチルエーテル(重量平均分子量1300、東京化成工業社製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液8を調製した。
【0133】
(高屈折率層塗布液9の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりにコラーゲンペプチド(HBC−P20、重量平均分子量2万、新田ゼラチン(株)製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液9を調製した。
【0134】
(高屈折率層塗布液10の調製)
リン酸ポリオキシエチレンアルキルエーテルの代わりにオリゴ糖(テトラップ、重量平均分子量700、(株)林原製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液10を調製した。
【0135】
(高屈折率層塗布液11の調製)
ポリビニルアルコールの代わりにリン酸ポリオキシエチレンアルキルエーテル(フォスファノールRS−710、重量平均分子量1000、東邦化学工業(株)製)を使用したほかは高屈折率層用塗布液2と同様にして高屈折率層用塗布液11を調製した。
【0136】
(低屈折率層塗布液1の調製)
コロイダルシリカ(スノーテックスAK、日産化学工業(株)製)68質量部と3質量%ホウ酸水溶液20質量部を撹拌しながら40℃まで昇温した後、ポリビニルアルコール(PVA235、重量平均分子量15万、(株)クラレ製)の5質量%水溶液280質量部と純水240質量部を添加して10分間攪拌した後、5質量%界面活性剤水溶液(コータミン24P、花王(株)製)0.64質量部を添加して低屈折率層塗布液1を調製した。
【0137】
(低屈折率層塗布液2の調製)
ポリビニルアルコールの代わりに酸処理ゼラチン(AP−270、重量平均分子量13万、(株)ニッピ製)を使用し、3質量%%ホウ酸水溶液を除いたほかは低屈折率層用塗布液1と同様にして低屈折率層用塗布液2を調製した。
【0138】
(低屈折率層塗布液3の調製)
酸処理ゼラチンの代わりにタマリンドシードガム(TG−500、重量平均分子量50万、MRCポリサッカライド(株)製)を使用したほかは低屈折率層用塗布液2と同様にして低屈折率層用塗布液3を調製した。
【0139】
〔光学反射フィルムの作製〕
以下の高屈折率層、低屈折率層の形成においては、塗布液の安定性を確認するために、上記調製した高屈折率層塗布液、低屈折率層塗布液をそれぞれ45℃に保温しながら24時間撹拌保存した後に用いた。
【0140】
(光学反射フィルム1の作製)
〈低屈折率層1の形成〉
上記調製した低屈折率層用塗布液1を45℃に保温しながら、45℃に加温した厚さ50μmのポリエチレンテレフタレートフィルム上に、乾燥膜厚が175nmとなる条件で、ワイヤーバーを用いて塗布し、次いで、膜面が15℃以下となる条件で冷風を1分間吹き付けてセットさせた後、80℃の温風を吹き付けて乾燥させて、低屈折率層1を形成した。
【0141】
〈高屈折率層1の形成〉
さらに、高屈折率層用塗布液1を45℃に保温しながら、45℃に加温した上記ポリエチレンテレフタレートフィルムの低屈折率層1上に、乾燥膜厚が135nmとなる条件で、ワイヤーバーを用いて塗布し、次いで、膜面が15℃以下となる条件で冷風を1分間吹き付けてセットさせた後、80℃の温風を吹き付けて乾燥させて、高屈折率層1を形成した。
【0142】
上記形成した高屈折率層1上に、同様にして低屈折率層1/高屈折率層1から構成されるユニットをさらに5ユニット積層し、合計6ユニット(12層)から構成された交互積層膜を形成した後、最上層にさらに低屈折率層1を積層し、光学反射フィルム1を作製した。
【0143】
なお、膜面pHは7.2となるように調整した。pHの調整には、酢酸、アンモニア水を用いた。
【0144】
(光学反射フィルム2の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液2を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム2を作製した。
【0145】
(光学反射フィルム3の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液3を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム3を作製した。
【0146】
(光学反射フィルム4の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液4を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム4を作製した。
【0147】
(光学反射フィルム5の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液5を、低屈折率層用塗布液1の代わりに低屈折率層用塗布液2を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム5を作製した。
【0148】
(光学反射フィルム6の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液6を、低屈折率層用塗布液1の代わりに低屈折率層用塗布液3を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム6を作製した。
【0149】
(光学反射フィルム7の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液7を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム7を作製した。
【0150】
(光学反射フィルム8の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液8を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム8を作製した。
【0151】
(光学反射フィルム9の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液9を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム9を作製した。
【0152】
(光学反射フィルム10の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液10を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム10を作製した。
【0153】
(光学反射フィルム11の作製)
高屈折率層用塗布液1の代わりに高屈折率層用塗布液11を使用したほかは、光学反射フィルム1の作製と同様にして光学反射フィルム11を作製した。
【0154】
《光学反射フィルムの評価》
上記作製した各光学反射フィルムについて、下記の特性値の測定を行った。
【0155】
(可視光透過率及び近赤外反射率の測定)
分光光度計(U−4000型、日立製作所(株)製)を用い、各光学反射フィルムの800〜1400nmの領域における透過率を測定し、その平均値を求め、これを近赤外透過率とした。この値が小さいほど近赤外遮断性が高いことになる。また550nmにおける透過率を測定し、可視光透過率とした。
【0156】
その結果を表1に示す。
【0157】
【表1】

【0158】
表1の結果より明らかなように、本発明の光学反射フィルムは、比較例の光学反射フィルムに比べ、近赤外遮断性及び可視光透過性に優れることが分かる。
【0159】
実施例2
〔光学反射体の作製〕
実施例1で作製した光学反射フィルム1〜6の光学反射フィルムを用いて光学反射体1〜6を作製した。厚さ5mm、20cm×20cmの透明アクリル樹脂板上に、光学反射フィルム1〜6をアクリル接着剤で接着して、それぞれ光学反射体1〜6を作製した。
【0160】
〔評価〕
上記作製した光学反射体1〜6は、サイズが大きいにもかかわらず、容易に利用可能であり、また、本発明の光学反射フィルムを利用することで、優れた光反射性を確認することができた。

【特許請求の範囲】
【請求項1】
支持体上に高屈折率層と低屈折率層を交互に積層した少なくとも1つのユニットを含む光学反射フィルムにおいて、該高屈折率層が、(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する、重量平均分子量が3万以下の水溶性高分子、(2)重量平均分子量が5万以上の水溶性高分子、及び(3)金属酸化物を含有することを特徴とする光学反射フィルム。
【請求項2】
前記金属酸化物がルチル型二酸化チタンであることを特徴とする請求項1に記載の光学反射フィルム。
【請求項3】
前記(1)リン酸基またはその塩を有する、もしくはリン酸エステルまたはその塩を有する重量平均分子量が3万以下の水溶性高分子が、さらに水酸基を有することを特徴とする請求項1または2に記載の光学反射フィルム。
【請求項4】
請求項1〜3のいずれか1項に記載の光学反射フィルムが、基体の少なくとも一方の面に設けられたことを特徴とする光学反射体。

【公開番号】特開2013−7817(P2013−7817A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−139200(P2011−139200)
【出願日】平成23年6月23日(2011.6.23)
【出願人】(000001270)コニカミノルタホールディングス株式会社 (4,463)
【Fターム(参考)】